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Abstract. This article presents an enhanced ant colony optimization (eACO) algorithm for solving the capacitated vehicle routing prob-

lem (CVRP). CVRP is the core component of VRP, and also a difficult combinatorial optimization problem. An enhanced ACO algorithm 

is implemented on five CVRP benchmark problems, improving several of the best-so-far results existing in the literature. The computa-

tional results show that the enhanced heuristic can produce optimal solutions when compared to other existing heuristics. Results indi-

cate that the proposed heuristic is an alternative to solve CVRP. 
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________________________________________________________________________________________________________ 

 

I. Introduction 

The Vehicle Routing Problem is a widely examined problem in the field of operation research and combinatorial optimization. VRP is a 

class of problems including the plan of optimal routes for a fleet of vehicles to benefit a set of customers subject to side constraints. It has 

significance in various important domains, e.g. transportation, travelling, distribution and logistics [1] etc.  

Reflecting the huge variety of conditions, a large number of extensions of VRP exist, depending on the nature of the delivered goods, re-

quired service quality and the type of customers and vehicles. Some typical complications are: deliveries within a specific time window 

(VRPTW) [2], customers require pickups and deliveries (VRPPD), backhauling (VRPB), vehicles sitting at multiple depots (MDVRP), split 

delivery (SDVRP) [3] etc. In all these cases, the goal is to provide services at minimum cost.  In the vast landscape of variants, capacitated 

VRP occupies a central position. Therefore, the complexity as well as the importance of this variant has motivated many people, to find all 

possible methods to solve the capacitated vehicle routing problem optimally. 

Some of the proposed exact and approximate methods that can lead to optimal solutions to the CVRP include: branch-and-bound (B&B), 

branch-and-cut (B&C) [4], branch-and-price (B&P) [3, 5, 6]. However, these exact algorithms can solve only small size instances optimally 

and not suitable for large size instances having very high computational complexities of VRPs [1, 2, 7]. Therefore, researchers switched to 

exceptionally efficient nature inspired techniques based on the intelligence present in ants, birds, bacteria, bees, water drop etc. These strate-

gies are capable to give optimal solutions for large and complex problems in tractable time window. 

In the last two-three decades an increasing number of meta-heuristics have been developed to solve the CVRP. The work can be catego-

rized into simulated annealing [8], tabu search [1, 9, 10], large neighborhood search [11], variable neighborhood search [12], genetic algo-

rithm [13, 14], evolutionary algorithms [15, 16, 17], particle swarm optimization [18, 19, 20] ant colony optimization [21, 22, 23, 24], artifi-

cial bee colony [25] etc. VRP meta-heuristics broad overviews can be seen in various survey papers [3, 26, 27]. Table 1 highlights some 

well-known ACO based algorithms for CVRP. 

 

Table 1. Some well-known ACO algorithms for CVRPs [26, 48] 

Author  Year  Method Results/Comparison  

Bullnheimer 1999 Ant System (AS) A competitive solution approach for CVRPs 

Bell et. al. 2004 Multi Colony ACO  Better approach for large problems 

Reimann et.al. 2004 Savings Based AS Solved large and complex VRPs optimally 

Manfrin 2004 ACO Results found better than 5 heuristics 

Doerner et.al 2006 Parallel ACO Parallel solutions better than serial solutions 

Yu,Yang, Yao 2009 Improved ACO (IACO) Efficient hybrid approach for VRPs 

Bin et.al. 2009 Ant_weight + GA Improved solutions by exploring search space 

Zhang & Tang 2009 SS_ACO + NS Competitive to produce quality solutions 

Bouhafs 2010 ACO + Savings + LS Improvement in results by local search 

Ren et. al. 2010 ACO + Local search Results are better than other heuristics 

Kanthavel 2011 Nested_PSO Proved as better meta-heuristic 

W. F. Tan 2012 ACO + Swap + 3-opt Found quality solutions in reasonable time 

Gomez & Salhi 2014 New_ABC Better than original ABC & other heuristics 

Wang et. al. 2016 AMR + Savings (SA) Much Efficient than existing algorithms 

Teymourian et.al. 2016 IWD + Cuckoo + LSHA Got 90% optimal solutions on benchmark instances 

Gupta & Saini 2017 
ACO + 2-Opt + Swap +  

Memory + Trail reset 

Efficient algorithm for optimal solutions also improved existing 

best known solutions   

 

Designing a superior approach for the CVRP may decrease the cost of goods, travel, transportation, making striking effects on our econ-

omy. In the pursuit to accomplish better optimal solutions, the present endeavor is aimed to tackle the CVRP using an improved ACO algo-

rithm. The performance of the algorithm is evaluated on five different benchmark instances, proposed by Augerat in 1995 (set A, set B) [28], 

Christofides and Eilon in 1969 (set E) [29], Christofides, Mingozzi and Toth in 1979 [30] and Fisher in 1994 (set F) [31] and the results are 

compared with the results of other heuristics available in literature. 
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The article is organized as follows: Section 2 gives the CVRP formulation and highlights the objectives and constraints connected to the 

problem. In Section 3 the refinements made to basic algorithm to make it enhanced ACO algorithm is given. Definition of variables and 

improved results with their comparisons are presented in Section 4 and the last section gives the conclusion and future work scope.  

 

II. CVRP Formulation 

CVRP is the most elementary variant of VRP in which the fleet of vehicles have same capacity limits. Formally, the CVRP can be defined as 

[1]: 

Graph: the problem is defined on an undirected graph        ,                   is the set of vertices and   is an edge set.  

Depot: in the graph, vertex    stands for the depot from where a route begins and ends. 

Clients: the problem is characterized for  customers presented by vertices             . Every client has a non-negative deterministic 

mand  . 

Vehicles: each vehicle has maximum capacity  . Vehicles can serve many clients, however, the total of demands to every client should not 

surpass the vehicle capacity  .Also, the vehicle must begin and end at the depot. 

Travelling Cost:     represents the cost of travelling between customers i and j. It is mostly figured out using Euclidian distance between the 

clients. 

Route: starting from the depot, constructed of sequence of visited nodes and finally ending at the depot. The length of each route   relies on 

the number of clients. 

CVRP: each vehicle has restricted capacity. It guarantees that the sum of customers’ requests    can't surpass the vehicle capacity  . Also, 

the aggregate route distance     of a vehicle can not exceed its route length constraint. It likewise guarantees that every client can be served 

by just a single vehicle.  

The CVRP is solved to accomplish number of objectives while considering certain constraints that are expressed below:  

 

 Objectives: 

 Minimize the total cost of travelling. 

 Minimize the total number of vehicles.  

 Minimize the distance travelled by all vehicles. 

 Constraints:  

 Every client should be visited only once.  

 Each vehicle must begin and end at the depot. 

 Total requests of clients of any route don’t exceed the vehicle capacity. 

III. Enhanced ACO Algorithm 

Marco Dorigo proposed the ACO algorithm in 1992 [32], which aims to find optimal solutions in a graph, based on the conduct of ants 

looking for a path between their colony and a food source [2].The colony mates communicate to each other with the help of a trace known as 

pheromone. Pseudo-code for the original ACO algorithm is given below: 

Procedure ACO_Algorithm 

       while(not_termination) 

      constructSolution() 

     applyLocalSearch() 

     pheromoneUpdate() 

       end while 

end procedure 

 

In the proposed method, solutions are enhanced by considering several factors:  

1) Two cities (customers) from different routes are exchanged using 1-1swap heuristic, i.e. c1 (city) from t1 (tour) is swapped with c2 from t2, 

if it can improve the solution.            

2) After few iterations ants won't explore some edges because of lower pheromones, consequently can stuck in local minima. Therefore, in 

avoidance to being trapped in local minima, pheromone will be reset (based on Bullnheimer ACO algorithm) for all the edges [21] and to 

achieve exploitation, pheromone increased for the edges that found best solution so far, by some factor. 

3) Each ant has an associated memory to record the current solution (which can be further improved) and a count variable (no. of iterations 

for which solution is not improved). Hence, solution is improved in each iteration rather than building a new solution. 

The pseudo code for enhanced ACO algorithm is given as: 

 

1) Initialize Parameters 

        For maximum Iterations: 

2) Solution Construction: 

        For each ant: 

              if Previous_Solution = Null 

                     Build New Solution starting from depot 

              else Improve Previous_Solution as follows: 

      a) Choose new edge not in Previous_Solution that lead to maximum saving 

      b) New_Tour = Old_Tour + new edge + Build remaining solution 

3) Apply Local Search: 2-opt + Swap 

4) Update Memory   

        For each ant: 

 Previous_Solution = New_Solution 

 if  New_Solution_Cost < Previous_Solution_Cost 

          Count = 0                  % no. of times solution not improved 

 else Count = Count + 1 

          if Count >Max_Count 
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  Previous_Solution = Null 

Count = 0;          % reset count 

5) Update Pheromone 

6) Reset Pheromone  

if Iteration % Max_R ==0 

 Reinforce Pheromone for each edge (i , j) as: 

 if (i, j) belongs to best Solution 

          Pheromone (i , j) =  Initial + New Pheromone 

 else 

           Pheromone (i , j) = Initial Pheromone 

 

After initializing the enhanced ACO algorithm, two basic steps: (i) route construction and (ii) pheromone update, are repeated for the 

given set of iterations. For initial placement, the number of artificial ants kept equal to the number of customers, so that one ant can be 

placed at one customer, at the start of the iterations. To improve the performance and to reduce the computational time of the algorithm a 2-

opt local search is included.  

Each ant starts at some random vertex   and then selects one edge from its neighborhood using probability   given as: 

 

    = {
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Here,      is probability for choosing an edge      , which is biased by α and β parameters, that determine the relative impact of the trails 

and the visibility respectively.     is pheromone trails deposited on edge       and    is the visibility of edge      , which is defined as recip-

rocal of distance[22]. Parameters   and   are used for the visibility as: 

 

                                         

 

Ants choose next cities, until each city has been visited. Whenever, the choice of city leads to infeasible solution due to capacity or total 

length constraint, a new tour is created.   

The pheromones are updated by elitist ants only, ranked according to solution quality. The updating rule is given as: 
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Here,   is the trail persistence            , thus the pheromone evaporation can be calculated as            
 
 is the amount by which 

pheromone increased on an edge       visited by      best ant and    is the best solution found by the best ant. 

    
      ⁄  is the amount by which elitist ants increases the pheromone, if an edge      belongs to the best-so-far solution.   is the objective 

value of best-so-far solution found. Here,   and   are the scaling factors. 

 

IV. Solving CVRP with Enhanced ACO algorithm 

In this section the benchmarks taken under study, the parameters setting applied for the enhanced ACO algorithm and the results obtained 

and their comparison with other existing heuristics is discussed. 

4.1 Benchmark Problems 

The enhanced ACO algorithm was tested on standard benchmarks of CVRP. These include five Euclidean distance type VRP instances 

described in Augerat set A and set B [28], Christofides and Eilon set E [29], Christofides, Mingozzi and Toth (CMT)[30] and Fisher set F 

[31]. All the considered instances are freely available at CVRP library created by Ivan Xavier [33]. 

Set A has 27 different instances with number of customers ranging from 32 to 80, having general type demands and Euclidian distances 

and set B contains 23 instances with maximum of 78 customers and a depot. From set E, 11 instances were tested in which number of cus-

tomers ranging from 22 to 101. Set F has 3 instances with 44, 71 and 134 customers.  

The last set consist of 14 different problems contain 50 to 199 customers and an additional service point. Customers are randomly dis-

tributed in the plane for first 10 problems, but they are clustered in other 4 problems. Problems 1-10 are identical, except that problems 6-10 

have route length constraint i.e. route of each vehicle is bounded, while the former problems are free from this restriction. On the other hand, 

the clustered problems 13 and 14 are the counterparts of 11 and 12, with tour length constraint.  

In the following figures of CVRP solutions, the depot is pointed by a bold square and customers around the cities are marked by a circle. 

The straight line connects the route traversed by vehicles from one customer to another. X-axis and Y-axis (figure 2 onwards) show the x and 

y coordinates of customers’ respectively. 

4.2 Parameters Used 

Enhanced ACO heuristic has been coded in MATLAB 2015 and experiments were performed on 2.93 GHz i7 octa-core computer. In 

this, M artificial ants are used, which are initially placed at customers             . The candidate list size i.e. nearest neighborhood of each 

city was set to N/4, i.e. only one fourth locations (the closest ones) were considered.  

The initial pheromone concentration is tuned to T0  = 1.0 (started with 0.92), as it is a decent practice suggested by Dorigo et. al. [22] to 

set the initial pheromone to a value that is slightly higher than the expected measure of pheromone deposited i.e. ρ = 0.9 (tuned, started with 
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0.80) by the ants in one run. Further, to achieve exploitation the pheromone is raised by T1 = 1.2 (tuned from 2.0) for the edges belonging to 

best-so-far solution. 

   

 

 
   

Figure 1. Shows the plot for Cost when f = g are fixed and α = β varies from 1 to 10. 

 

To reduce the number of parameters to tune, α is set equal to β (α = β). The performance of the heuristic is then evaluated using different 

values of α and β in the interval from 1 to10. It is found that the performance of the heuristics is insensitive over this range for many test 

instances, and for the majority of the test instances setting α = β to 5 seems to be the best choice. Similarly, for parameters f and g, we tested 

different values in the span of 1 to 10 and we found f = g = 2 as a good choice. We also checked responses of α, β against f, g, by fixing f, g 

while varying α, β and vice-versa on the scale of 1 to 10. The recorded responses are: (i) eACO algorithm performs best for values f = g ≥ 2 

and α = β = 5(ii) optimal for f = g ≥ 2 and α = β = 4, 6 and (iii) near optimal for α = β ≥ 4 and f = g = 4,5,6, as shown in Fig. 1 for 

VRPNC_1 instance.  

A non-iterative tuning method is used, in which a fixed set of variables is created during initialization only. Then each of these variables 

is tested in the test phase in order to find the best value in the given set. Hence, this type of tuning follows INITIALIZES and TEST method 

[47]. Initialization can be done by random sampling, or by generating a systematic grid. 

All test instances, were simulated using σ = 6 elitist ants, which further contributed to update pheromones. An overview of parameters 

used by eACO algorithm for evaluating CVRP instances is given in Table 2. 

 

Table 2. Parameters used in implementation. 

Population size M = N-1, customers in each set 

Nearest neighborhood of each city NN = N/4 

Initial pheromones T0  = 1.0 and T1 = 1.2 

Alpha and Beta α = β = 5 

Max_Count K = 20 

Elitist ant σ = 6 

Trail persistence ρ = 0.9 

Max_R R = 20 

Other scaling parameters f = g = 2, a = 10, b = 10,  

Number of iterations Max_Iteration = 500 

 

In this, Swap heuristic improves the clusters of the solution by changing two cities from different tours. Also, 2-opt is applied to each of 

the vehicle tour built by the ants, that crosses over itself and reorder it to avoid crossing. For better testing and comparison of all the instanc-

es, the maximum iterations are taken as 500. 

From computation, it is noticed that the proposed ACO with the above parameters setting is able to achieve optimal solutions in first 200 

iterations and also gives a good compromise between solution quality and computation time. 

4.3 Computational Results 

The algorithm first tested on set A and set B datasets. Set A consists of 27 instances with maximum of 80 customers, having general type 

demands and Euclidian distances.  On the other hand set B contains 23 instances with number of customers ranging from 31 to 78. Figure 2 

shows the plots for 32 nodes instance of set A and in Fig. 3 graph for 62 nodes problem of set B is shown. 
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Figure 2. Instance: A_n33_k6, Customers:32, 

         Capacity: 100, Vehicles: 6, Solution: 699.31 

      Figure 3. Instance:B_n63_k10, Customers:62, 

      Capacity: 100, Vehicles: 10, Solution: 1448.85 

 
 

 

Figure 4.Routes traversed by the six vehicles for A_n33_k6 instance. 

 

The eACO algorithm has three functions for constraints checking and the newly constructed route is checked for constraint satisfaction 

by all the three functions. As the algorithm runs, solution_construction function builds new route and calculates the sum of demands for all 

customers belonging to that route. Then the second function, viz., decision_rule, checks for capacity and route length constraints by 

comparing it with vehicle capacity and maximum route length. If for any route, sum of demands exceeds the vehicle capacity, that route will 

be reconstructed otherwise will be checked for further improvement by improve_solution function. Hence, for all routes this 3-step 

verification is done in order to build the final routes for the customers. 

In the following figures for every route, total number of customers’ served and their sum of demands is displayed and these demands are 

either less than or equal to vehicles’ capacity in order to follow capacity constraint. 

Figure 4 and 5 describe the routes traversed by each of the vehicle to find optimal solutions for the above mentioned datasets. The prob-

lem further tested was set F (Fisher) dataset, which consists of depot and nodes coordinates, and the customers are separated by EUC_2D 

type distances. Plots for set F instances for nodes 44 and 134 are shown in Fig. 6 and 7 respectively. 
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Figure 5. Routes followed by the ten vehicles for B_n63_k10 instance. 

 

  
 

           Figure 6. Instance:F_n45_k4, Customers:44 

           Capacity: 2010, Vehicles: 4,Solution: 721.44 

 

Figure 7. Instance:F_n135_k7, Customers:134, 

           Capacity: 2210, Vehicles:7, Solution:1155.61 

 

Figure 8 and 9 below shows the route taken by each vehicle along with the demands satisfied for every route for Fisher instances: 

F_n45_k4 and F_n135_k7 respectively. 

   

 

 
 

Figure 8. Optimal routes for all the four vehicles for F_n45_k4 instance. 
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Figure 9. Optimal routes for all the seven vehicles for F_n135_k7 instance. 

 

 

The algorithm was finally tested on set E (Christofides and Eilon) and CMT (Christofides Mingozzi and Toth) instances. Set E consists 

of total eleven instances and CMT dataset has 14 different types of instances. 

Figure 10 and 11 show the MATLAB plots for VRPNC_9, 150 nodes instance of CMT and E_n33_k4, 32 nodes instance of set E re-

spectively.  

   

 

  

 

Figure 10. Instance:VRPNC_9,Customers:150 

 Capacity: 200, Vehicles: 12, Solution: 1146.65 

 

       Figure 11. Instance:E_n33_k4, Customers:32, 

      Capacity: 8000, Vehicles: 4, Solution: 823.07 

 

Figure 12 and 13 below show the routes traversed by every vehicle along with the sum of demands fulfilled for each tour, for VRPNC_9 

and E_n33_k4 instances respectively. 
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Figure 12. Routes traversed by the twelve vehicles for VRPNC_9 instance. 

 

 
 

Figure 13. Routes taken by the four vehicles for E_n33_k4 instance. 

 

Figure 14 gives the cost versus iterations plot for Vrpnc_1 instance, which clearly shows that optimal value is achieved after some 130 

iterations and after that it remains constant. 

 

 
   

Figure 14. Number of Iterations v/s Cost (524.61) plot for VRPNC_1. 
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4.4 Results Comparison 

This section gives the detailed description about the results obtained for all the benchmarks taken into consideration and also presents the 

comparison of the results with the best known and other heuristics results given in the literature. The computational results are presented for 

both best solution obtained and on average solution for 5 runs, for each instance. Table 3 presents the results for Fisher - set F benchmarks. 

Table 3. Comparison of present eACO results with best known and other heuristics results for set F 

 

Instance Best 

known 

CPSO-

SA
A
 

PACO
B
 PSO-

SR-2
C
 

LB 

Tabu
D
 

eACO
E
 eACO 

Avg.
F
 

eACO 

[min] 

F_n45_k4 

F_n72_k4 

F_n135_k7 

724 

237 

1162 

724 

237 

1200 

724 

237 

1170 

724 

237 

1162 

724 

232.5 

1157.5 

721.44 

238.16 

1155.61 

722.62 

244.27 

1158.46 

1.40 

7.26 

13.37 

 
A 

Results from Chen (2011) hybrid PSO [38]. 
C 

Results from Kachitvichyanukul (2009) PSO [18]. 
E
Best solution obtained from ACO (present method). 

B 
Results from Ting (2012) hybrid ACO& PSO 

[39]. 
D
Results from Augerat et.al.(1998), Tabu Search 

[40]. 
F
Average solution obtained from ACO in 5 runs. 

 

Table 4.Comparison of present eACO results with Best known results and other heuristics for set A 

 

Instance Best 

known 

PSO
A
 SC-ESA

B
 DELS

C
 SAMCSA

D
 eACO

E
 eACO 

Avg.
F
 

eACO 

[min] 

A_n32_k5 

A_n33_k5 

A_n33_k6 

A_n34_k5 

A_n36_k5 

A_n37_k5 

A_n37_k6 

A_n38_k5 

A_n39_k5 

A_n39_k6 

A_n44_k6 

A_n45_k6 

A_n45_k7 

A_n46_k7 

A_n48_k7 

A_n53_k7 

A_n54_k7 

A_n55_k9 

A_n60_k9 

A_n61_k9 

A_n62_k8 

A_n63_k9 

A_n63_k10 

A_n64_k9 

A_n65_k9 

A_n69_k9 

A_n80_k10 

784 

661 

742 

778 

799 

669 

949 

730 

822 

831 

937 

944 

1146 

914 

1073 

1010 

1167 

1073 

1354 

1034 

1288 

1616 

1314 

1401 

1174 

1159 

1763 

784 

661 

742 

778 

799 

669 

949 

730 

822 

831 

937 

944 

1146 

914 

1073 

1014 

1170 

1073 

1356 

1038 

1288 

1626 

1320 

1409 

1177 

1162 

1778 

784 

661 

742 

778 

799 

669 

949 

730 

822 

831 

937 

944 

1146 

914 

1084 

1011 

1168 

1073 

1355 

1034 

1298 

1624 

1315 

1409 

1178 

1159 

1776 

784 

661 

742 

778 

799 

669 

949 

730 

822 

831 

937 

944 

1146 

914 

1073 

1010 

1167 

1073 

1354 

1035 

1288 

1624 

1316 

1416 

1181 

1165 

1769 

771.47 

647.48 

733.43 

775.95 

781.35 

673.57 

905.98 

716.15 

824.44 

827.23 

928.61 

917.14 

1148.84 

892.51 

1064.61 

1014.15 

1162.11 

1076.55 

- 

1033.58 

- 

- 

- 

- 

1182.21 

- 

- 

751.49 

662.26 

699.31 

780.93 

802.40 

670.02 

930.64 

683.08 

824.98 

829.69 

938.18 

947.23 

1042.91 

891.07 

1088.06 

993.53 

1097.28 

1071.98 
1356.84 

1047.46 

1236.94 

1634.54 

1328.78 

1414.75 

1191.34 

1158.96 

1758.69 

760.07 

668.81 

704.73 

784.17 

804.38 

673.05 

936.58 

694.23 

830.02 

835.25 

940.38 

954.72 

1065.18 

902.27 

1097.64 

1010.12 

1122.20 

1078.04 

1358.46 

1056.79 

1257.13 

1646.35 

1340.37 

1428.05 

1193.04 

1172.07 

1774.69 

0.52 

0.46 

0.42 

1.14 

1.51 

3.18 

3.39 

2.24 

3.19 

4.02 

5.27 

5.40 

4.46 

5.33 

5.57 

6.05 

6.29 

6.52 

6.58 

7.15 

7.36 

7.02 

7.48 

8.04 

8.22 

8.53 

9.47 

 
A
Chandramouli et. al.(2012) PSO method [34]. 

C
Teohet. al. (2015)differential evolution [36]. 

E
Solutions obtained by present ACO. 

B 
Stanojevic et.al. (2013) savings method [35]. 

D
Ernesto et.al. (2014) simulated annealing [37]. 

F
Average solutions obtained by our ACO in 5 

runs. 

 

Table 3 to 7 report the comparison of results between eACO algorithm and other algorithms for set F, set A, set B, set E and CMT in-

stances respectively. In every table the primary column signifies the CVRP instance name. The second column shows the best-so-far solution 

for each instance and further columns exhibit the computational results of other existing algorithms. The second-to-last and third-to-last col-

umns represent the results obtained from the proposed ACO method and the average solution computed for 5 runs, respectively. The naming 

convention is defined for each instance, for example: A_n32_k5 implies instance belongs to set A, having 31 customers and 5 vehicles. 

 

Table 5. Comparison of present eACO results with Best known and other heuristics results for set B 

 

Instance Best 

known 

PSO
A
 SC-

ESA
B
 

DELS
C
 SAMC-

SA
D
 

eACO
E
 eACO 

Avg.
F
 

eACO 

[min] 

B_n31_k5 

B_n34_k5 

672 

788 

672 

788 

672 

788 

672 

788 

616.77 

772.28 
604.61 

673.03 

614.67 

692.47 

0.51 

0.53 
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B_n35_k5 

B_n38_k6 

B_n39_k5 

B_n41_k6 

B_n43_k6 

B_n44_k7 

B_n45_k5 

B_n45_k6 

B_n50_k7 

B_n50_k8 

B_n51_k7 

B_n52_k7 

B_n56_k7 

B_n57_k7 

B_n57_k9 

B_n63_k10 

B_n64_k9 

B_n66_k9 

B_n67_k10 

B_n68_k9 

B_n78_k10 

955 

805 

549 

829 

742 

909 

751 

678 

741 

1312 

1032 

747 

707 

1144 

1598 

1496 

861 

1316 

1032 

1272 

1221 

955 

805 

549 

829 

742 

909 

751 

678 

741 

1315 

1038 

747 

707 

1162 

1598 

1496 

864 

- 

1034 

1273 

1249 

963 

815 

549 

866 

746 

921 

751 

686 

741 

1329 

1032 

752 

707 

1155 

1600 

1538 

861 

1341 

1050 

1292 

1246 

955 

805 

549 

829 

742 

909 

751 

678 

741 

1313 

1033 

747 

707 

1166 

1599 

1504 

861 

1322 

1032 

1281 

1230 

887.65 

691.79 

539.56 

798.42 

721.61 

848.60 

707.08 

666.38 

685.60 

- 

1007.75 

694.89 

635.08 

1141.53 

1524.67 

1511.30 

839.17 

- 

1032.37 

- 

- 

856.83 

781.33 
553.15 

819.83 

728.82 

870.71 

755.87 

686.56 

680.17 

1299.81 

1031.23 

679.17 

691.66 

1173.81 

1613.47 

1448.85 

867.63 

1308.86 

1049.09 

1281.36 

1216.71 

889.26 

794.79 

553.21 

827.08 

737.31 

897.13 

764.81 

688.05 

689.40 

1307.15 

1033.28 

684.34 

699.33 

1182.70 

1621.87 

1462.65 

874.89 

1315.06 

1053.48 

1290.36 

1225.56 

1.06 

1.27 

1.42 

1.58 

2.23 

2.46 

2.57 

3.16 

2.59 

3.37 

3.28 

2.57 

3.18 

3.56 

3.28 

4.35 

4.49 

5.26 

6.08 

5.54 

7.08 

 
A
Chandramouli et. al. (2012) PSO method [34]. 

C 
Teohet. al. (2015) differential evolution [36]. 

E
Best solutions obtained frompresent ACO. 

B 
Stanojevic et.al. (2013) savings method [35]. 

D 
Ernesto et.al. (2014) simulated annealing [37]. 

F
Average solutions obtained from ACO in 5 runs. 

 

Table 6.Comparison of present eACO results with Best known and other heuristics results for set E 

 

Instance Best 

known 

AMC-

PA
A
 

DELS
B
 BCP

C
 LB Tab-

u
D
 

eACO
E
 eACO 

Avg.
F
 

eACO 

[min] 

E_n22_k4  375 375 375 375 375 374.83 375.06 0.36 

E_n23_k3  569 569 569 569 569 524.54 531.78 0.41 

E_n30_k3  534 534 534 534 508.5 505.01 520.04 0.58 

E_n33_k4 835 869 835 835 833.5 823.06 833.16 1.16 

E_n51_k5 521 587 521 521 514.52 511.61 522.82 2.53 

E_n76_k7  

E_n76_k8  

682 

735 

762 

819 

689 

738 

682 

735 

661.25 

711.05 
667.24 

726.93 

683.56 

735.67 

7.49 

7.37 

E_n76_k10 830 921 843 830 789.31 838.90 848.21 8.05 

E_n76_k14 1021 1135 1032 1022 - 1007.34 1018.3 8.32 

E_n101_k8 815 916 822 817 796.15 824.10 836.12 11.51 

E_n101_k14 1067 1201 1086 1071 - 1064.47 1074.94 12.23 

 
A
Osaba et. al. (2014)Adaptive multi-crossover [41]. 

C 
Fukasawa (2004) Branch-and-Cut-and-Price [42]. 

E
Solutions obtained by present ACO. 

B 
Teohet. al. (2015) differential evolution [36].

 

D 
Results from Augerat et.al.(1998), Tabu Search 

[40]. 
F
Average solutions obtained by our ACO in 5 

runs. 

 

Results and their comparison for 14 instances of Christofides Mingozzi and Toth (CMT) dataset is shown is Table 7. The naming format 

is given as Vrpnc_1, which means CMT instance 1 and this way for other 13 instances. The number of customers in these 14 instances is 

ranging from 50 to 199. CMT instances Vrpnc_1 to Vrpnc_5, Vrpnc_11 and Vrpnc_12 are with vehicle capacity constraints, whereas 

Vrpnc_6 to Vrpnc_10, Vrpnc_13, Vrpnc_14 add an extra restriction of maximum route length and with drop time. 

Table 7. Comparison of present eACO results with Best known and other heuristics results for Christofides (CMT) instances 

Instance Best known Veh. 

no.
A
 

SEP-AS
B
 AGES

C
 OCGA

D
 Veh. 

no.
E
 

eACO
F
 eACO Avg.

G
 eACO 

[min] 

Vrpnc_1 

Vrpnc_2 

Vrpnc_3 

Vrpnc_4 

Vrpnc_5 

Vrpnc_6 

Vrpnc_7 

Vrpnc_8 

Vrpnc_9 

Vrpnc_10 

Vrpnc_11 

524.61 

835.26 

826.14 

1028.42 

1291.29 

555.43 

909.68 

865.94 

1162.55 

1395.85 

1042.11 

5 

10 

8 

12 

17 

6 

11 

9 

14 

18 

7 

524.61 

835.26 

826.14 

1028.42 

1311.48 

555.43 

909.68 

865.94 

1162.55 

1407.21 

1042.11 

524.61 

835.26 

826.14 

1028.42 

1291.29 

555.43 

909.68 

865.94 

1162.55 

1401.12 

1042.11 

524.61 

835.26 

826.14 

1028.42 

1299.64 

555.43 

909.68 

865.94 

1163.38 

1406.23 

1042.11 

5 

10 

8 

12 

17 

5 

11 

8 

12 

17 

7 

524.61 

835.84 

826.11 

1028.76 

1301.3 

533.00 

854.17 

868.81 

1146.64 

1418.91 

1045.49 

524.61 

837.12 

826.14 

1030.54 

1308.89 

538.45 

866.70 

874.96 

1152.02 

1422.54 

1051.38 

2.40 

7.35 

12.06 

16.53 

24.17 

2.54 

7.48 

12.29 

17.24 

25.15 

14.22 
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Vrpnc_12 

Vrpnc_13 

Vrpnc_14 

819.56 

1541.14 

866.37 

10 

11 

11 

819.56 

1544.01 

866.37 

819.56 

1541.14 

866.37 

819.56 

1542.25 

866.37 

10 

10 

10 

819.02 

1537.52 

864.46 

821.31 

1541.85 

868.94 

12.57 

14.43 

12.51 

 
A
Vehicle used for CMT instances by other heuristics . 

C
Mester(2007) active guided evolution methods [45]

 

E
Vehicle used for CMT instances by our ACO.

 

G
Average solutions obtained by our ACO in 5 runs. 

B
Tarantilis(2005) Adaptive memory programming 

[44].
 

D
Habibeh(2012) Optimized crossover GA [46]. 

F
Solutions obtained by present ACO approach. 

 

 

The last column of every table represents the computational time (in minutes) taken by the eACO algorithm, to find optimal results for 

that particular instance. However, as there are contrasts in the simulation setups and number of iterations of various heuristics, a comparison 

of execution times is hardly meaningful. 

 

V. Conclusion 

In this paper, we presented an enhanced ant colony optimization (eACO) algorithm to solve the CVRP optimally. The present approach is 

examined on several benchmark instances, such as: set A, set B, set E, set F and CMT instances. Results comparisons of our eACO algo-

rithm with other existing heuristics are shown through tables and we can clearly see (highlighted values) that for some instances solutions 

obtained are superior to best known solutions. We have tested total 78 instances from 5 benchmark problems and we consider the behaviour 

of eACO very satisfactory, as it is able to improve up to 46 instances and the solution for other 32 instances is close to existing best ones.  

Likewise, eACO algorithm also reduced the vehicle count for 6 instances of CMT dataset. 

The computational results prove that the proposed algorithm is an interesting novel approach to optimize CVRP and can obtain much bet-

ter solutions in comparison to other existing heuristics. Hence, the most significant contribution of the proposed solution algorithm is its 

efficiency to optimize both small and large problems of CVRP, both in terms of cost and vehicle count. The proposed eACO algorithm is 

able to achieve results better than best known results. Still for some of the instances, solutions obtained are not optimal but are near optimal 

to the best known results. However, further parameter tuning and use of other local search techniques may help to achieve optimum results 

for all instances.  

As for future scope, it will be interesting to improve the performance of the algorithm by parallel implementation along with integration 

and hybridization of eACO with other intelligent techniques. Besides this, eACO can be tested on other VRP variants such as VRPTW, 

VRPPD and also eACO results will be compared with our other solution algorithms for VRPs specially PSO and IWD etc.  
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