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NORMALITY OF MEROMORPHIC FUNCTIONS
PERTAINING SHARED VALUES

Abstract: Here n, k is certain whole numbers considering n > 2k + 4, a # 0 is complex number, and F is gathering of functions
meromorphic in D space, for every f €F, fn + af(k) and gn + ag(k) share b, and zeros have extend minimum of k + 1, at that point F is
ordinary in D
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1. Introduction and results
In this exploration, C is indicated as entire complex plane. Here f is meromorphic worark in area D <C. For
a € C, set Ela) = {_-; eD: flz)= ”} . The meromorphic capacities g and f share esteem a with the end goal that

Ligla) = £ (a) in 1. At the point when a = oo, zeros of f — a methods shafts of .

Let F a gathering of meromorphic functions characterized on D cC. F is said to be typical on D, in the feeling of Montel, if for any
grouping f; €F there exists a subsequence fnj merges circularly locally consistently on D, to a meromorphic work or oo (see [1], [2], [3]).

In Bloch's standard, all condition which reduces a meromorphic work in plane C to a consistent, changes a gathering of meromorphic
works in an area D to ordinary. It is vital to discover ordinariness criteria in shared qualities. Schwick[4] demonstrated that a gathering of
meromorphic works in area is typical if in which all capacity shares 3 unmistakable limited complex numbers with its first subordinates.
Sun[5] exhibited a gathering of meromorphic works in space is typical if in which each match of capacities share 3 settled discrete qualities,
which was ad libbed variant of Montel's Normal Criterion [6] by shared qualities. Numerous outcomes on ordinariness criteria with respect
to shared qualities was discovered [7-9].

In 2008, Zhang[10] proved
Theorem A. (see [10]). Let F be a gathering of capacities meromorphic in a space D, n be a positive whole number and a, b be two constants
with the end goal that a =6 0,00 and b 6= 0. In the event that n > 4 and for every fand g in F, /' — af" and g’ — ag" share the esteem b, at that
point F is ordinary in D.

In this paper,we replace f' by f¥) in Theorem A and obtain the following theorem.

Theorem 1. Let n, k be a positive whole numbers fulfilling n > 2k + 4, a 6= 0,00 and b =6 o be intricate numbers, and let F be a gathering of
capacities meromorphic in an area D. In the event that for each f,g €F, f" +af® and g" +ag® share b, and every one of the zeros have
assortment in any event k + 1, at that point F is ordinary in D.

Example: Let D ={z: |z| < 1} and F = {f.} where

: 1
.rrsl:-:J I_.—1-:' eln 1,2.3.....
. My 2
Clearly " | f* = H::; f}lr?q So for each pairm, n, f1 4 fi and f + f'share 0in D, but F is not normal at the point z = 0 since
fH=5) H“—-- —» o0 — o0 ). This example show that Theorem 1 is not valid if f doesn’t satisfy that all zeros have multiplicity at
leastk + 1.
2.Lemmas

In this section, some lemmas were illustrated.
Lemma 2.1([8]). F is a group of functions meromorphic on unit disc, all of zeros have multiplicity with minimum of k, and there exists A > 1
so that
f¥(2)l< A whenever f(z) = 0. Then if F is not normal, there exist, for each 0 < a <K,
a) anumber0<r<1;
b) points z,, [z,| <T;
c) functions f, € F; and
d) positive numbers p, — 0
such that P fulzn + puf) = gul€) = g(€ _)) locally uniformly with respect to the spherical metric, where g is a nonconstant

meromorphic function on C, all of zeros have multipﬁcity with minimum of k, such that g*(¢) < g(0) = kA + 1. Particularly, g has instructed
at most two; and, in case g is entire function, as exponential type. Lemma 2.2 [11] Let f be a meromorphic function, then
— 1 1 1
T(r,f) < N(r,f) + N(r, =) + N(r, —)—=N(r, —) + 5(r,f), @nf f 1 f

where
f ' 192f(0)(f(0) — 1))
s(rfy=2m(r)+  m(r,) + logl. f f 1 (0)
Lemma 2.3 Let f be a transcendental meromorphic function, n and k be two integers and n > 2k + 4, and all zeros of f are of multiplicity
greater than k + 1, then f" + af® assumes every finite complex value b infinitely often.

o W ey .
Proof: Lety{ x| 'I—‘Ir, and suppose that y(z) = —1 has only finite number of roots. Then by Lemma 2.2

T
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— —. 1.  — 1
T(r,v) < N(r,y)+ N(r,—) + N{(r, L S(r, ) 22)
! iy T
Now poles of (z) occur only at zeros of f(z), and those poles which are not instantaneously zeros of af®) — b have multiplicity minimum of n.
Zeros of w&z) can occur only at
zeros of af® — b which are not poles of f(z). Thus

. — 1 1., = 1 s o
Nir@)+ Nir,—) = —Nrw)+ Ny, —m— )+ N(r, f)
(I —

" aftcl —b
1 —
< ST(ry) +T(r ¥ 4+ N(r, ). (2.3)
t
By the first fundamental theorem,
— — 1 1 —
N(r,w) + N(r, Y T(rw) +T(r,f) + (k+ D)N(r,f) + S(r,f) wn
1
T(rw) + (k + 2)T(r,f) + S(r,f). (2.4)
<n
Take (2.4) into (2.1),
1
(1 —J]I’[r'. ) < (k+2)T(r, [)+ S(r, [ (25)
i
On the other hand,
W af(k) - b
nT(r,f) = T(rf)=T(r,———)
W
< T+ Ty +0()
< (k+2)T(r,f) + T(r,w) + S(r,), 3
that is
(n—k—=21)T(r,f) < T(r,p) + S(rf). (2.6)
Combine (3.5) and (3.6) obtaining
| k+2 :
(1—-=)T(r ) <|— O(D)|T(r, ¢ (2.7)
(1- (1 y) < [ +OWIT( )

which contradicts with the condition n > 2k + 4.
Thus proved Lemma 2.3.
Lemma 2.4 f is nonconstant rational function, n and k be two integers and n > 2k + 4, and all zeros of f are of multiplicity higher than k + 1,
then "+ af® has minimum of 2 distinct zeros.
Proof: Case 1. If f"+ af® has no zeros, it is easy to see that f is not a polynomial, then f is rational function but not a polynomial.
Let}.- _ F - F Ilrlfi.-] E EJ . We denote p = degP, and q = degQ, then degQ; = q + kt, degP; =p + k(t — 1).
; (=21 P (=20 ]™2 el 2 =23 )™ 7 h
PnQ

fn+af(k)=— Q1 +nQaP1 1Qn. (2.8)
deg(P"Q1) = np +q + kt, deg(P1Q") = p + k(t — 1) + nq.
Ifp>q,thennp+qg+kt—(p+k(t—1)+ng)=(n-1)(p-q)+k=>0,that is deg(P"Q,) > deg(P,Q"); If p < g, since n > 2k+4, then
np+q+kt—(p+k(t—1)+nq) = (n—1)(p—q)+k < 0, that is deg(P"Q;) < deg(P;Q"), thus f" +af® have zeros, which is a contradiction.
Case 2. "+ af® has only one distinct zero z,.
If f is a polynomial, then "+ af® = A(z — z,)". From the condition that all zeros of f are of multiplicity greater than k +1, it can be deduced
that z, is the only zero of f, so f = b(z — z5)™,m > k + 1, where b is a constant and m is a positive integer.
= pm(" =V ("~ k + 1)~ z9)"™* (2.9)
and "+ af® = A"z — 2)" + ¢(z — 20)"* = (2 — 20)"M[A(z — zo)"-"*+ C], (2.10) thus "+ af®) has two distinct zeros, contradiction.
So f is a non-polynomial rational function, then assuming
Alz — z)™
lz) = ( ) . (2.11)
G-m)i(zg @) (2 - z)"
where A is a constant, and s is a positive integer. By integration (2.4)
) _ (2 — z0)™ *g(2) : (2.12)

; L]y —— r
(2 ':'l._-lh ||:.:\. Zo 2zt ... (2 :H]rr.-+|

From (2.11) and (2.12)

An(z z
fn + af(k) = —0)nm +
a(z(z—zz0);m)n—1k(gz(—z)(zz2)—n2z---1)((nz—1)—nz1l-s)kn---s(z — zs)(n—1)ns—k

(z — 20)m_k[An(z — zO)nm_m+k + ag(z)(z — z1)(n-1)nl.k ---(z — zs)(n_1)ns_K]

= ( . (2 = 22)n2 (2 = 28)ns (2.13)
z z
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On the other hand, since "+ af*®) has only one zero,
Illr.'.' | ”IIIF{.I'.'l _
Combining (2.13) and (2.14)

Clz— z) . (2.14)

(z=m)™(z—20)"2. .. (2 = 2,)"

C(—29)'= (~ 20)"*04(2),
where g4(z) = A"(z—2) +ag(z)(z—z0) ™" .- (z—z5) ™ If | > m—k, then g,(z) has a zero z,, which is impossible. If | = m — k, g:(2)
= C, that is A"z — zo)"™""* +ag(2)(z—21)"-"—* - - - (z—2,)"-D"—*= C, thus nm—m+k = (n—1)N, where N = ny + n,+ --- + ng, thus (n — 1)(N —
m) = k, which is impossible since n > 2k + 4.
The proof of Lemma 2.4 is completed.
3. The Proof of Theorem 1
Assuming that D = A, the unit disc. Suppose that F is not normal on A. Then by Lemmal, we can find ;€ F,z;€ A, and p; — 0" such that

gi(€) = pi 7 filz +
pi¢) converges locally uniformly with respect to the sphericity metric to a nonconstant meromorphic function g on C, all of whose zeros have
multiplicity at least k, which satisfies g*(¢) < g(0) = kA + 1, in particular, g has order at most two.
On every compact subset of C we have
p] Uf} +afi” b = g}(€) +ag}" (€) — p}"Tb > g"(§) + ag® () -
If g"(¢) + ég(k)(f) =0, then g has no polés and g is not a polyndmial, thus g is a transcendental entire function. From g"(¢) + ag¥(&) = 0
we obtain L 4!, by the first fundamental theorem,

nm__m+k

(k)
i ; _ ( :
(n—1T(r,q) = (n—Dm(r,g) = m(r,g" ") = m(r. —u';—] S(r,q)

o i
since n > 2k + 4, we obtain T(r,g) = S(r,g), which is a contradiction, thus g"() + ag®(¢) 6= 0.
By Lemma 2.3 and Lemma 2.4 we obtain that g" + ag® has minimum 2 distinct zeros.
Next we prove that g" + ag® has only one distinct zero.
Let &and ¢ be two distinct zeros of g” + ag®. We choose a small 6 > 0 such that

DiN Dy,= @, where PR . - o .
Dy=(eC: | —&l<dand Do =£ €T |£—&5| <9

From (3.1), Hurwitz’s theorem implied that there exist points &€ D, and &* € D, such that for sufficiently large j
fin@zj + pidi) + afi(K)(zj + pici) = b, fin(zj + picj*) + afi(k)(zj + picj*) = b.
By the assumption of Theorem 1, we see that for each f,, € F
fmn(zj + pj&3) + afm(K)(zj + pid)) = b, fmn(zj + pj&j*) + afm(k)(zj + pi&j*) = b.

Fix m and let j —oo, we have zj+ pi§j— 2o, andz; | p?-Lf;‘ » zp and

(z0) + af®(z) = b.

Since the zeros of i1 . have no accumulation points, we deduce that z; +pi& = 7 and;;-—ﬁ-f“ =, for sufficiently large j.
fﬂ +'ﬂ ;llusn ’ _[[J ! i ..1' _i' ] u
Hence . ( s which contradicts the fact that & € Dy, &* € Dand DN Dy = @.
i T oaj T NEn TS

Thus we éomplete the proof of Theorem 1.
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