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NORMALITY OF MEROMORPHIC FUNCTIONS 

PERTAINING SHARED VALUES 

Abstract: Here n, k is certain whole numbers considering n ≥ 2k + 4, a ≠ 0 is complex number, and F is gathering of functions 

meromorphic in D space, for every f ∈F, fn + af(k) and gn + ag(k) share b, and zeros have extend minimum of k + 1, at that point F is 

ordinary in D  
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1. Introduction and results 

In this exploration, C is indicated as entire complex plane. Here f is meromorphic worark in area D ⊂C. For 

 . The meromorphic capacities g and f share esteem a with the end goal that

. At the point when a = ∞, zeros of f − a methods shafts of f. 

Let F a gathering of meromorphic functions characterized on D ⊂C. F is said to be typical on D, in the feeling of Montel, if for any 

grouping fj ∈F there exists a subsequence fnj merges circularly locally consistently on D, to a meromorphic work or ∞ (see [1], [2], [3]). 

In Bloch's standard, all condition which reduces a meromorphic work in plane C to a consistent, changes a gathering of meromorphic 

works in an area D to ordinary. It is vital to discover ordinariness criteria in shared qualities. Schwick[4] demonstrated that a gathering of 

meromorphic works in area is typical if in which all capacity shares 3 unmistakable limited complex numbers with its first subordinates. 

Sun[5] exhibited a gathering of meromorphic works in space is typical if in which each match of capacities share 3 settled discrete qualities, 

which was ad libbed variant of Montel's Normal Criterion [6] by shared qualities. Numerous outcomes on ordinariness criteria with respect 

to shared qualities was discovered [7-9]. 

In 2008, Zhang[10] proved 

Theorem A. (see [10]). Let F be a gathering of capacities meromorphic in a space D, n be a positive whole number and a, b be two constants 

with the end goal that a =6 0,∞ and b 6= ∞. In the event that n ≥ 4 and for every f and g in F, f′ − af
n
 and g′ − ag

n
 share the esteem b, at that 

point F is ordinary in D. 

In this paper,we replace f′ by f
(k) 

in Theorem A and obtain the following theorem. 

Theorem 1. Let n, k be a positive whole numbers fulfilling n ≥ 2k + 4, a 6= 0,∞ and b =6 ∞ be intricate numbers, and let F be a gathering of 

capacities meromorphic in an area D. In the event that for each f,g ∈F, f
n
 +af

(k)
 and g

n
 +ag

(k)
 share b, and every one of the zeros have 

assortment in any event k + 1, at that point F is ordinary in D. 

Example: Let D = {z : |z| < 1} and F = {fn} where 

 
Clearly . So for each pair share 0 in D, but F is not normal at the point z = 0 since

 This example show that Theorem 1 is not valid if f doesn’t satisfy that all zeros have multiplicity at 

least k + 1. 

2.Lemmas 
In this section, some lemmas were illustrated. 

Lemma 2.1([8]). F is a group of functions meromorphic on unit disc, all of zeros have multiplicity with minimum of k, and there exists A ≥ 1 

so that 

|f
(k)

(z)|≤ A whenever f(z) = 0. Then if F is not normal, there exist, for each 0 ≤ α ≤ k, 

a) a number 0 < r < 1; 

b) points zn, |zn| < r; 

c) functions fn ∈ F; and 

d) positive numbers ρn → 0 

such that ) locally uniformly with respect to the spherical metric, where g is a nonconstant 

meromorphic function on C, all of zeros have multiplicity with minimum of k, such that g
♯
(ξ) ≤ g

♯
(0) = kA + 1. Particularly, g has instructed 

at most two; and, in case g is entire function, as exponential type. Lemma 2.2 [11] Let f be a meromorphic function, then  

  1 1 1 

T(r,f) < N(r,f) + N(r, ) + N(r, − ) − N(r, ) + S(r,f), (2.1) f f 1 f′ 

where 

 f′ f−′ 192f(0)(f(0) − 1)| 

S(r,f) = 2m(r,) + m(r,) + log|. f f 1 f′(0) 

Lemma 2.3 Let f be a transcendental meromorphic function, n and k be two integers and n ≥ 2k + 4, and all zeros of f are of multiplicity 

greater than k + 1, then f
n 
+ af

(k) 
assumes every finite complex value b infinitely often. 

Proof: Let , and suppose that ψ(z) = −1 has only finite number of roots. Then by Lemma 2.2  
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 . (2.2) 

Now poles of ψ(z) occur only at zeros of f(z), and those poles which are not instantaneously zeros of af
(k) 

− b have multiplicity minimum of n. 

Zeros of ψ(z) can occur only at 

zeros of af
(k) 

− b which are not poles of f(z). Thus 

(2.3) 

By the first fundamental theorem,  

 1 1  

N(r,ψ) + N(r, ) ≤ T(r,ψ) + T(r,f) + (k + 1)N(r,f) + S(r,f) ψ n 

1 

 T(r,ψ) + (k + 2)T(r,f) + S(r,f). (2.4) 

≤ n 

Take (2.4) into (2.1),  

. (2.5) 

On the other hand, 

 
n 

af(k) − b 

 nT(r,f) = T(r,f ) = T(r, ) 

 ψ 

≤ T(r,f
(k)

) + T(r,ψ) + O(1) 

≤ (k + 1)T(r,f) + T(r,ψ) + S(r,f), 3 

that is 

(n − k − 1)T(r,f) ≤ T(r,ψ) + S(r,f). 

Combine (3.5) and (3.6) obtaining 

(2.6) 

  (2.7) 

− − 

which contradicts with the condition n ≥ 2k + 4. 

Thus proved Lemma 2.3. 

Lemma 2.4 f is nonconstant rational function, n and k be two integers and n ≥ 2k + 4, and all zeros of f are of multiplicity higher than k + 1, 

then f
n 
+ af

(k) 
has minimum of 2 distinct zeros. 

Proof: Case 1. If f
n 
+ af

(k) 
has no zeros, it is easy to see that f is not a polynomial, then f is rational function but not a polynomial. 

Let . We denote p = degP, and q = degQ, then degQ1 = q + kt, degP1 = p + k(t − 1). 

PnQ 

 fn + af(k) = Q1 +nQaP1 1Qn. (2.8) 

deg(P
n
Q1) = np + q + kt, deg(P1Q

n
) = p + k(t − 1) + nq. 

If p ≥ q, then np + q + kt − (p + k(t − 1) + nq) = (n − 1)(p − q) + k > 0, that is deg(P
n
Q1) > deg(P1Q

n
); If p < q, since n ≥ 2k+4, then 

np+q+kt−(p+k(t−1)+nq) = (n−1)(p−q)+k < 0, that is deg(P
n
Q1) < deg(P1Q

n
), thus f

n 
+af

(k) 
have zeros, which is a contradiction. 

Case 2. f
n 
+ af

(k) 
has only one distinct zero z0. 

If f is a polynomial, then f
n 
+ af

(k) 
= A(z − z0)

l
. From the condition that all zeros of f are of multiplicity greater than k +1, it can be deduced 

that z0 is the only zero of f, so f = b(z − z0)
m
,m ≥ k + 1, where b is a constant and m is a positive integer. 

 f
(k) 

= bm(
m 

− 
1)

···(
m 

− k + 1)(
z 
− z0)

m
−

k 
(2.9) 

and f
n 
+ af

(k) 
= A

n
(z − z0)

nl 
+ c(z − z0)

m
−

k 
= (z − z0)

m
−

k
[A(z − z0)

nl
−

m+k 
+ C], (2.10) thus f

n 
+ af

(k) 
has two distinct zeros, contradiction. 

So f is a non-polynomial rational function, then assuming 

 . (2.11) 

where A is a constant, and s is a positive integer. By integration (2.4)  

 , (2.12) 

From (2.11) and (2.12)  

 An(z z 

fn + af(k) = − 0)nm + 

a(z(z−−zz0)1m)n−1k(gz(−z)(zz2)−n2z···1)((nz−1)−nz1−s)kn···s(z − zs)(n−1)ns−k 

(z − z0)m−k[An(z − z0)nm−m+k + ag(z)(z − z1)(n−1)n1−k ···(z − zs)(n−1)ns−k] 

 
 = − )n1(z − z2)n2 ···(z − zs)ns .(2.13) 

 (z z1 
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On the other hand, since f
n 
+ af

(k) 
has only one zero,  

 . (2.14) 

Combining (2.13) and (2.14)  

C(
z 
− z0)

l 
= (

z 
− z0)

m
−

k
g1(z), 

where g1(z) = A
n
(z−z0)

nm
−

m+k 
+ag(z)(z−z1)

(n
−

1)n1
−

k 
···(z−zs)

(n
−

1)ns
−

k
. If l > m−k, then g1(z) has a zero z0, which is impossible. If l = m − k, g1(z) 

= C, that is A
n
(z − z0)

nm
−

m+k 
+ag(z)(z−z1)

(n
−

1)n1
−

k 
···(z−zs)

(n
−

1)ns
−

k 
= C, thus nm−m+k = (n−1)N, where N = n1 + n2 + ··· + ns, thus (n − 1)(N − 

m) = k, which is impossible since n ≥ 2k + 4. 

The proof of Lemma 2.4 is completed. 

3. The Proof of Theorem 1 

Assuming that D = ∆, the unit disc. Suppose that F is not normal on ∆. Then by Lemma1, we can find fj ∈ F,zj ∈ ∆, and ρj → 0
+ 

such that
k
 

ρjξ) converges locally uniformly with respect to the sphericity metric to a nonconstant meromorphic function g on C, all of whose zeros have 

multiplicity at least k, which satisfies g
♯
(ξ) ≤ g

♯
(0) = kA + 1, in particular, g has order at most two. 

On every compact subset of C we have 

 . (3.1) 

If g
n
(ξ) + ag

(k)
(ξ) ≡ 0, then g has no poles and g is not a polynomial, thus g is a transcendental entire function. From g

n
(ξ) + ag

(k)
(ξ) ≡ 0 

we obtain , by the first fundamental theorem, 

, 

since n ≥ 2k + 4, we obtain T(r,g) = S(r,g), which is a contradiction, thus g
n
(ξ) + ag

(k)
(ξ) 6≡ 0. 

By Lemma 2.3 and Lemma 2.4 we obtain that g
n 
+ ag

(k) 
has minimum 2 distinct zeros. 

Next we prove that g
n 
+ ag

(k) 
has only one distinct zero. 

Let ξ0 and  be two distinct zeros of g
n 
+ ag

(k)
. We choose a small δ > 0 such that 

D1 ∩ D2 = ∅, where . 

From (3.1), Hurwitz’s theorem implied that there exist points ξj ∈ D1 and ξj∗ ∈ D2 such that for sufficiently large j 

fjn(zj + ρjξj) + afj(k)(zj + ρjξj) = b, fjn(zj + ρjξj∗) + afj(k)(zj + ρjξj∗) = b. 

By the assumption of Theorem 1, we see that for each fm ∈ F 

fmn(zj + ρjξj) + afm(k)(zj + ρjξj) = b, fmn(zj + ρjξj∗) + afm(k)(zj + ρjξj∗) = b. 

Fix m and let j →∞, we have zj + ρjξj → z0, and , and 

 
Since the zeros of have no accumulation points, we deduce that zj +ρjξj = z0 and , for sufficiently large j. 

Hence , which contradicts the fact that ξj ∈ D1, ξj∗ ∈ D2 and D1 ∩ D2 = ∅. 

Thus we complete the proof of Theorem 1. 
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