MODULAR STABILITY OF THE GENERALIZED QUADRATIC FUNCTIONAL EQUATION

R.MURALI ${ }^{\mathbf{1}}$, P.DIVYAKUMARI ${ }^{\mathbf{2}}$
${ }^{1,2}$ PG and Research Department of Mathematics, Sacred Heart College (Autonomous), Tirupattur-635 601, TamilNadu, India

Abstract: In this paper, authors obtain general solution and investigate the Hyers-Ulam, generalized Hyers-Ulam, generalized Hyers-Ulam-Rassias stabilities of generalized quadratic functional equation in modular space using fixed point theory.

IndexTerms - Modular space, quadratic functional equation, generalized Hyers- Ulam- Rassias stability.
2010 Mathematics Subject Classification: 39B52, 39B72, 39B82, 46 B03.

I. INTRODUCTION

In 2008, Wanchitra Towanlong and Paisan Nakmahachalasint [9], investigated the generalized Hyers-Ulam Rassias stability of a quadratic functional equation

$$
g(3 u+v)+g(3 u-v)=g(u+v)+g(u-v)+16 g(u)
$$

In 2017, Hark-Mahn Kim and Young Soon Hong [5], investigated an alternative generalized Hyers-Ulam stability theorem of a modified quadratic functional equation in a modular space X_{ρ} using $\Delta 3$-condition without the Fatou property on the modular function ρ.

To know about Ulam problem and Hyers-Ulam, generalized Hyers-Ulam, gener- alized Hyers-Ulam-Rassias stabilities, one can refer [1], [2], [3], [6], [7], [8] and [10]. The definitions related to our main theorem can be referred in [4].

In this paper, we obtain the general solution and investigate the Hyers-Ulam, generalized Hyers-Ulam and generalized Hyers-Ulam-Rassias stabilities of the new generalized quadratic functional equation

$$
\begin{equation*}
\mathrm{z}(\mathrm{px}+\mathrm{y})+\mathrm{z}(\mathrm{px}-\mathrm{y})+\mathrm{z}(\mathrm{x}+\mathrm{py})+\mathrm{z}(\mathrm{x}-\mathrm{py})=\mathrm{z}(\mathrm{x}+\mathrm{y})+\mathrm{z}(\mathrm{x}-\mathrm{y})+2 \mathrm{p}^{2}\{\mathrm{z}(\mathrm{x})+\mathrm{z}(\mathrm{y})\} \tag{1.1}
\end{equation*}
$$

for $\mathrm{p} \neq 0, \pm 1$ in modular space by using fixed point theory. The paper organized as follows:
We find general solution of (1.1) in Section-2. In Section-3, we investigate Hyers- Ulam, generalized Hyers-Ulam and generalized Hyers-Ulam-Rassias stabilities of functional equation (1.1) in modular space by using fixed point theory and given the conclusion in section-4.

II. GENERAL SOLUTION OF (1.1)

Theorem 2.1. If a function $\mathrm{z}: \mathrm{X} \rightarrow \mathrm{Y}$ is a solution of the functional equation (1.1), then z is quadratic and even.
Proof. Assume z satisfies the functional equation (1.1). Letting (x, y) by $(0,0)$ in (1.1), we get $z(0)=0$. Setting $y=0$ in (1.1), we obtain

$$
\begin{equation*}
\mathrm{z}(\mathrm{px})=\mathrm{p}^{2} \mathrm{z}(\mathrm{x}) \tag{2.1}
\end{equation*}
$$

for all $\mathrm{x} \in \mathrm{X}$. Thus z is quadratic. Let $\mathrm{x}=0$ in (1.1) and by (2.1), we get $\mathrm{z}(-\mathrm{y})=\mathrm{z}(\mathrm{y})$ for all $\mathrm{y} \in \mathrm{X}$. Thus z is an even function.

III. STABILITY OF GENERALIZED QUADRATIC FUNCTIONAL EQUATION

Assume that π is a convex modular on π - complete modular space X_{π} with the Fatou property such that satisfies the Δ_{p}-condition with $0<$ $\mathrm{v} \leq \mathrm{p}$. Also, let U be a linear space. We use the following abbreviation for a given function $\mathrm{z}: \mathrm{U} \rightarrow \mathrm{X}_{\pi}$:

$$
G_{p} z(x, y):=z(p x+y)+z(p x-y)+z(x+p y)+z(x-p y)-\{z(x+y)+z(x-y)\}-2 p^{2}\{z(x)+z(y)\} \text { for all } x, y \in U \text { with } p \neq 0
$$ ± 1.

Theorem 3.1. Let a: $\mathrm{U}^{2} \rightarrow[0,+\infty)$ be a function such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{p^{2 n}} a\left\{p^{n} x, p^{n} y\right\}=0 \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
a\{p x, p y\} \leq p^{2} s a\{x, y\} \tag{3.2}
\end{equation*}
$$

for all $\mathrm{x}, \mathrm{y} \in \mathrm{U}$ with $\mathrm{s}<1$. Suppose that $\mathrm{z}: \mathrm{U} \rightarrow \mathrm{X}_{\boldsymbol{\pi}}$ satisfies the condition

$$
\begin{equation*}
\pi\left(\mathrm{G}_{\mathrm{p}} \mathrm{z}(\mathrm{x}, \mathrm{y})\right) \leq \mathrm{a}(\mathrm{x}, \mathrm{y}), \tag{3.3}
\end{equation*}
$$

for all $x, y \in U$ and $z(0)=0$. Then there exists a unique quadratic mapping $Q_{p}: U \rightarrow X_{\pi}$ such that

$$
\begin{equation*}
\pi\left(Q_{p}(x)-z(x)\right) \leq \frac{1}{p^{2}(1-s)} a(x+0) \tag{3.4}
\end{equation*}
$$

for all $x, y \in U$.
Corollary 3.2. Let X be a Banach space, a: $U^{2} \rightarrow[0,+\infty)$ be a function such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{p^{2 n}} a\left\{p^{n} x, p^{n} y\right\}=0 \tag{3.5}
\end{equation*}
$$

and

$$
\begin{equation*}
a\{p x, p y\} \leq p^{2} s a\{x, y\} \tag{3.6}
\end{equation*}
$$

for all $x, y \in U$ with $s<1$. Suppose that $z: U \rightarrow X$ satisfies the condition

$$
\begin{equation*}
\left\|\mathrm{G}_{\mathrm{p}} \mathrm{z}(\mathrm{x}, \mathrm{y})\right\| \leq \mathrm{a}(\mathrm{x}, \mathrm{y}) \tag{3.7}
\end{equation*}
$$

for all $x, y \in U$ and $z(0)=0$. Then there exists a unique quadratic mapping $Q_{p}: U \rightarrow X$ such that

$$
\begin{equation*}
\left\|Q_{p}(x)-z(x)\right\| \leq \frac{1}{p^{2}(1-s)} a(x, 0) \tag{3.8}
\end{equation*}
$$

for all $x \in U$.
Theorem 3.3. Let a: $U^{2} \rightarrow[0,+\infty)$ be a function such that

$$
\lim _{n \rightarrow \infty} v^{2 n} a\left(\frac{x}{p^{n}}, \frac{y}{p^{n}}\right)=0
$$

and

$$
\begin{equation*}
a\left(\frac{x}{p^{\prime}}, \frac{y}{p}\right) \leq \frac{s}{p^{2}} a\{x, y\} \tag{3.10}
\end{equation*}
$$

for all $x, y \in U$ with $s<1$. Suppose that $z: U \rightarrow X$ satisfies the condition

$$
\begin{equation*}
\pi\left(\mathrm{G}_{\mathrm{p}} \mathrm{z}(\mathrm{x}, \mathrm{y})\right) \leq \mathrm{a}(\mathrm{x}, \mathrm{y}) \tag{3.11}
\end{equation*}
$$

for all $x, y \in U$ and $z(0)=0$. Then there exists a unique quadratic mapping $Q_{p}: U \rightarrow X_{\pi}$ such that

$$
\begin{equation*}
\pi\left(Q_{p}(x)-z(x)\right) \leq \frac{s}{p^{2}(1-s)} a(x, 0) \tag{3.12}
\end{equation*}
$$

for all $x \in U$.

Corollary 3.4. Let a: $U^{2} \rightarrow[0,+\infty)$ be a function such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} p^{2 n} a\left(\frac{x}{p^{\prime}} \cdot \frac{y}{p^{\prime \prime}}\right)=0, \tag{3.13}
\end{equation*}
$$

and

$$
\begin{equation*}
a\left(\frac{x}{p}, \frac{y}{p}\right) \leq \frac{s}{\nu^{2}} a\{x, y\} \tag{3.14}
\end{equation*}
$$

for all $x, y \in U$ with $s<1$. Suppose that $z: U \rightarrow X$ satisfies the condition

$$
\begin{equation*}
\left\|\mathrm{G}_{\mathrm{p}} \mathrm{z}(\mathrm{x}, \mathrm{y})\right\| \leq \mathrm{a}(\mathrm{x}, \mathrm{y}) \tag{3.15}
\end{equation*}
$$

for all $x, y \in U$ and $z(0)=0$. Then there exists a unique quadratic mapping $Q_{p}: U \rightarrow X$ such that

$$
\begin{equation*}
\left\|Q_{p}(x)-z(x)\right\| \leq \frac{s}{p^{2}(1-s)} a(x, 0) \tag{3.16}
\end{equation*}
$$

for all $x \in U$.
The following corollaries are the immediate consequence of Corollary 3.2 and Corollary 3.4 which gives the Hyers-Ulam and generalized Hyers-Ulam stabilities of the functional equation (1.1).
Corollary 3.5. Let X be a Banach space, a: $\mathrm{U}^{2} \rightarrow[0,+\infty)$ be a function such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{p^{2 n}} a\left\{p^{n} x, p^{n} y\right\}=0 \tag{3.17}
\end{equation*}
$$

and

$$
\begin{equation*}
a\{p x, p y\} \leq p^{2} s a\{x, y\} \tag{3.18}
\end{equation*}
$$

for all $x, y \in U$ with $s<1$. Suppose that $z: U \rightarrow X$ satisfies the condition

$$
\begin{equation*}
\left\|D_{p} z(x, y)\right\| \leq \Theta, \tag{3.19}
\end{equation*}
$$

for all $\mathrm{x}, \mathrm{y} \in \mathrm{U}$ and $\mathrm{z}(0)=0$. Then there exists a unique quadratic mapping Q_{p} : $\mathrm{U} \rightarrow \mathrm{X}$ defined by
$Q_{n}(x)=\lim _{n \rightarrow \infty} \underset{\substack{z\left\langle p^{n} x\right) \\ p^{2 n}}}{ }$
such that

$$
\begin{equation*}
\left\|Q_{p}(x)-z(x)\right\| \leq \frac{\Theta}{p^{2}-1} \tag{3.20}
\end{equation*}
$$

for all $\mathrm{x} \in \mathrm{U}$ with $\mathrm{p} \neq 0, \pm 1$.
Corollary 3.6. Let U and X be a linear space and a Banach space, respectively. Suppose that z : $U \rightarrow X$ satisfies the inequality

$$
\begin{equation*}
\left\|G_{p} z(x, y)\right\| \leq \Theta\left(\|x\|^{t}+\|y\|^{t}\right), \tag{3.21}
\end{equation*}
$$

for all $\mathrm{x}, \mathrm{y} \in \mathrm{U}$ and $\mathrm{z}(0)=0$ with $0 \leq \mathrm{t}<2$ or $\mathrm{t}>2$. Then there exists a unique quadratic mapping $\mathrm{Q}_{\mathrm{p}}: \mathrm{U} \rightarrow \mathrm{X}$ defined by $Q_{n}(x)=\lim _{n \rightarrow \infty} \underset{p^{2 n}}{2\left\langle p^{n^{x}}\right)}$
such that

$$
\begin{equation*}
\left\|Q_{p}(x)-z(x)\right\| \leq \frac{\varepsilon}{\left|p^{2}-p^{t}\right|}\|x\|^{t}, \forall x \in U, p \neq 0, \pm 1 . \tag{3.22}
\end{equation*}
$$

for all $\mathrm{x} \in \mathrm{U}$ with $\mathrm{p} \neq 0, \pm 1$.

IV. CONCLUSION

In this paper, we introduced a new generalized quadratic functional equation and obtained the general solution and stabilities in modular space by using fixed point theory.

References

[1] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc.Japan, 2 (1950), 64-66.
[2] P.Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 184 (1994), 431-436.
[3] D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci., 27 (1941), 222-224.
[4] Iz-iddine El-Fassi and Samir Kabbaj, On the generalized orthogonal stability of mixed type additive-cubic functional equations in modular spaces, Tbilisi Mathematical Journal, 9(1) (2016), 231-243.
[5] Hark-Mahn Kim and Young Soon Hong, Approximate Quadratic Mappings in Modular Spaces, International Journal of Pure and Applied Mathematics, 116(1) 2017, 31-43.
[6] J.M. Rassias, On approximately of approximately linear mappings by linear mappings, J. Funct. Anal. USA, 46(1982), 126130.
[7] K.Ravi, M. Arunkumar and J.M. Rassias, On the Ulam stability for the orthogonally general Euler-Lagrange type functional equation, International Journal of Mathematical Sciences, 3(08)(Autumn 2008), 36-47.
[8] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math.Soc., 72 (1978), 297-300.
[9] Wanchitra Towanlong and Paisan Nakmahachalasint, A quadratic functional equation and its generalized Hyers-Ulam Rassias stability, Thai Journal of Mathematics, special Issue (Annual Meeting in Mathematics, 2008) : 85-91.
[10] S.M. Ulam, A collection of the mathematical problems, Interscience Publ., New York, 1960.
[11] Kittipong Wongkum, Poom Kumam, Yeol Je Cho, Phatiphat Thounthong, Parin Chaipunya, On the generalized Ulam-HyersRassias stability for quartic functional equation in modular spaces, J. Nonlinear Sci. Appl., 10(2017), 1399-1406.

