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I. INTRODUCTION 

 

In 2008, Wanchitra Towanlong and Paisan Nakmahachalasint [9], investigated the generalized Hyers-Ulam Rassias stability of a quadratic 

functional equation 

 

                                          g(3u + v) + g(3u − v) = g(u + v) + g(u − v) + 16g(u). 

 

In 2017, Hark-Mahn Kim and Young Soon Hong [5], investigated an alternative generalized Hyers-Ulam stability theorem of a modified 

quadratic functional equation in a modular space Xρ using ∆3-condition without the Fatou property on the modular function ρ. 

To know about Ulam problem and Hyers-Ulam, generalized Hyers-Ulam, gener- alized Hyers-Ulam-Rassias stabilities, one can refer [1], 

[2], [3], [6], [7], [8] and [10]. The definitions related to our main theorem can be referred in [4]. 

 

In  this  paper,  we  obtain  the  general  solution  and  investigate  the  Hyers-Ulam, generalized  Hyers-Ulam  and  generalized  Hyers-

Ulam-Rassias  stabilities  of  the  new generalized quadratic functional equation 

                        

z(px + y) + z(px − y) + z(x + py) + z(x − py) = z(x + y) + z(x − y) + 2p
2

{z(x) + z(y)}                                     (1.1) 

 

for p   0, ±1 in modular space by using fixed point theory.  The paper organized as follows: 

 

We find general solution of (1.1) in Section-2.  In Section-3, we investigate Hyers- Ulam,  generalized  Hyers-Ulam  and  generalized  

Hyers-Ulam-Rassias  stabilities  of functional  equation  (1.1)  in  modular  space  by  using  fixed  point  theory  and  given the conclusion in 

section-4. 

 

II. GENERAL SOLUTION OF (1.1) 

Theorem 2.1.  If  a  function  z  :  X  →  Y   is  a  solution  of  the  functional  equation (1.1), then z  is quadratic and even. 

Proof.  Assume z satisfies the functional equation (1.1).  Letting (x, y) by (0, 0) in (1.1), we get z(0) = 0.  Setting y = 0 in (1.1), we obtain 

z(px) = p
2

z(x),                                                                                                     (2.1) 

 

for all  x  ∈  X.   Thus z is quadratic.   Let  x  =  0  in  (1.1)  and  by  (2.1),  we  get z(−y) = z(y) for all y ∈ X.  Thus z is an even function. 

 

III. STABILITY OF GENERALIZED QUADRATIC FUNCTIONAL EQUATION 

Assume that π is a convex modular on π− complete modular space Xπ with the Fatou property such that satisfies the ∆p-condition with 0 < 

v ≤ p.  Also, let U be a linear space.  We use the following abbreviation for a given function z: U → Xπ:  

                   Gpz(x, y):= z(px + y) + z(px − y) + z(x + py) + z(x − py)− {z(x + y) + z(x − y)} − 2p
2

{z(x) + z(y)}  for all x, y ∈ U  with p  0, 

±1.  

 

Theorem 3.1.  Let a: U
2 

→ [0, +∞) be a function such that 

                                                                                                                                                 (3.1) 

and 

       

                                                                                                                                                   (3.2)    

for all x, y ∈ U  with s<1. Suppose that z: U → Xπ satisfies the condition  
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                                                                  π (Gpz(x, y)) ≤ a(x, y),                                                                                                    (3.3) 

for all x, y ∈ U  and z(0)=0. Then there exists a unique quadratic mapping Qp: U → Xπ such that 

                                                                                                                                            (3.4) 

for all x, y ∈ U. 

Corollary 3.2. Let X be a Banach space, a: U
2 

→ [0, +∞) be a function such that 

                                                                                                                                                 (3.5) 

and 

       

                                                                                                                                                    (3.6) 

for all x, y ∈ U  with s<1. Suppose that z: U → X satisfies the condition  

                                                                  ||Gpz(x, y) || ≤ a(x, y),                                                                                                      (3.7) 

for all x, y ∈ U  and z(0)=0. Then there exists a unique quadratic mapping Qp: U → X such that 

                                                                                                                                         (3.8) 

for all x ∈ U. 

Theorem 3.3. Let a: U
2 

→ [0, +∞) be a function such that 

                                                                                                                                                (3.9) 

and 

       

                                                                                                                                                           (3.10) 

for all x, y ∈ U  with s<1. Suppose that z: U → X satisfies the condition  

                                                               π (Gpz(x, y)) ≤ a(x, y),                                                                                                     (3.11) 

for all x, y ∈ U  and z(0)=0. Then there exists a unique quadratic mapping Qp: U → Xπ such that 

                                                                                                                                (3.12) 

for all x ∈ U. 

 

Corollary 3.4. Let a: U
2 

→ [0, +∞) be a function such that 

                                                                                                                                                           (3.13) 

and 

       

                                                                                                                                                            (3.14) 

for all x, y ∈ U  with s<1. Suppose that z: U → X satisfies the condition  

                                                                  ||Gpz(x, y) || ≤ a(x, y),                                                                                                    (3.15) 

for all x, y ∈ U  and z(0)=0. Then there exists a unique quadratic mapping Qp: U → X such that 

                                                                                                                                      (3.16) 

for all x ∈ U. 

The following corollaries are the immediate consequence of Corollary 3.2 and Corollary 3.4 which gives the Hyers-Ulam and generalized 

Hyers-Ulam stabilities of the functional equation (1.1). 

Corollary 3.5. Let X be a Banach space, a: U
2 

→ [0, +∞) be a function such that 

                                                                                                                                               (3.17) 

and 

       

                                                                                                                                                  (3.18) 
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for all x, y ∈ U  with s<1. Suppose that z: U → X satisfies the condition  

                                                                                                                                                                           (3.19) 

for all x, y ∈ U  and z(0)=0. Then there exists a unique quadratic mapping Qp: U → X defined by 

                                                   
such that  

                                                                                                                                                            (3.20) 

for all x∈ U  with p  0, ±1. 

Corollary 3.6. Let U and X be a linear space and a Banach space, respectively. Suppose that z: U → X satisfies the inequality 

                                                                                                                                         (3.21) 

for all x, y ∈ U  and z(0)=0 with 0 ≤ t < 2 or t > 2. Then there exists a unique quadratic mapping Qp: U → X defined by 

                                                   
such that  

                                                                                                                  (3.22) 

for all x∈ U  with p  0, ±1. 

 

IV. CONCLUSION 

In this paper, we introduced a new generalized quadratic functional equation and obtained the general solution and stabilities in modular 

space by using fixed point theory. 
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