
© 2018 JETIR September 2018, Volume 5, Issue 9                                               www.jetir.org  (ISSN-2349-5162)  

 

JETIR1809111 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 546 

 

Maximal and Minimal Beta open set in Topological 

Space 

S.JANAKI
1
 AND M.PALANISAMY

2 

1
 Research Scholar in Mathematics, Vivekanandha college of arts and sciences for women (Autonomous) Tiruchengode 

Namakkal(Dt),Tamilnadu,India. 
2
Assistant professor Department of  Mathematics, Vivekanandha college of arts and sciences for women (Autonomous) 

Tiruchengode Namakkal(Dt),Tamilnadu,India. 

 
Abstract. Minimal open sets for a topology are defined and investigated. They are found to form an Alexandroff space on  . 

Decompositions of open sets and continuity are provided using minimal open sets. Also minimal regularity and minimal normality are 

defined and studied. While Hausdorffness implies minimal regularity, the product of normal spaces are found to be minimal normal. we 

introduce new classes of sets called maximal  -open sets and minimal   -open sets and investigate some of their fundamental properties 

 

Key word and phrases:  -open, maximal open sets, minimal open sets, minimal closed, maximal  -open sets and minimal  -closed. 

 

 

I.INTRODUCTION.  
Now a days topological approaches are being investigated in a big way in various diverse field such as computer graphics, 

evolutionary theory, robotics etc.[6, 9, 16] to name a few. One such approach to computer graphics utilizes finite, connected order 

topological space[8]. In a finite topological space, the intersection of all open neighbourhoods of a point p  is again an open neighbourhood 

of p , which is the smallest one. It is called the minimal neighbourhood of p . The topology of a finite space is completely determined by 

its minimal neighbourhoods. However, in a general framework of all topological spaces this is not true. Nevertheless, the sets which are 

realized as arbitrary intersection of open sets in topology are quite interesting. The study of  -open sets and their properties were initiated by 

Njastad [13] in 1965; his introduction of   -open sets. Andrijevic [17] gave some properties of  -closure of a set A is denoted by  Cl(A), 

and defined as intersection of all  -closed sets containing the set A. 

F. Nakaok and N. Oda [19] and [20] introduced the notation of maximal open sets and minimal open sets in topological spaces. In 

(2010 ) Mlguel Caldas, Saeid Jafari and Seithuti P. Moshokes [18]; introduce the notion of maximal  -open, minimal  -closed,  -semi 

maximal open and  -semi minimal closed and investigate some of the fundamental properties.  

 In this paper, we have made an investigation of all these type of sets. The minimal open sets, as we call them, being a weaker form 

of open sets, are studied here in the light of other generalized form of open sets.  And the concept of a new class of open sets called maximal 

 -open sets and minimal   -closed sets. We also investigate some of their fundamental properties 

 

II. PRELIMINARIES 

2.1 Definition    
 Let (X,τ) be a topological space. Then a subset A of (X,τ) is called, 

I.Semi-open [10] if             . 

II.α-open [13] if                 . 

III.Pre-open [11] if             . 

IV.β-open [1] if                . 

V.Regular open (regular closed resp.,)[5]                                     

The complement of a semi-open (resp. α-open, pre-open, β open) set is known as semi-closed (resp.α-closed, pre-closed, β-closed) set. 

2.2 Definition  

A subset S of a topological spaces       is said to be 

I.An A-set[14] if      , where   is open and   is regular closed. 

II.A t-set [15] if                 
III.A B-set [15] if there is an open set   and a t-set A in X such that      .  

 Let       be a mapping ,   be an arbitrary open set in  . Then   is said to besemi-continuous[10] (resp. pre- continuous[11], α-

continuous[12], β-continuous[14]). If        is semi-open (resp. pre-open, α-open, β-open) in  .   is said to be A-continuous [14] (resp. B-

continuous[15]) if        is an A-set (resp. B-sets) in X whenever V is open in Y . It is known that α-continuity implies pre-continuity and 

semi-continuity, A-continuity implies semi-continuity[14]. It can be shown that a subset S in X is open if and only if it is an A-set and an α-

set [14] or equivalently, it is pre-open set and B-set[15] 

2.3. [13] Definition  

A subset A of a space X is said to be β-open set if     (          ). The complement of all
 
β-open set is said to be β-closed. As 

in the usual sense, the intersection of all β-closed sets of X containing A is called the β -closure of  A. also the union of all β-open sets of X 

contained in A is called the β-interior of  A.  

2.4. [21] Definition 

 A subset A of a space X is said to be  -open set if for each x A, there exists an open set G such that             

2.5. [20] Definition  

 A proper nonempty open set U of X is said to be a maximal open set if any open set which contains U is X or U.  
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2.6. [20] Definition  

 A proper nonempty open set U of X is said to be a minimal open set if any open set which contained in U is   or U.  

2.7. [19] Definition  

 A proper nonempty closed subset F of X is said to be a maximal closed set if any closed set which contains F is X or F.  

2.8. [19] Definition  

 A proper nonempty closed subset F of X is said to be a minimal closed set if any closed set which contained in F is  or F.  

2.9. [18] Definition  

 A proper nonempty  -open set U of X is said to be a maximal  -open set if any  -open set which contains U is X or U.  

2.10. [18] Definition  

A proper nonempty  -closed set B of X is said to be a minimal  -closed set if any  -closed set which contained in B is   or F. 

  

III. MINIMAL OPEN SETS 

In this section, first we define minimal open sets in a topology. It is shown that although, minimal open sets are weaker form of 

open sets of the given topology, yet they also form a topology on their own. 

3.1 Definition  

Let       be a topological space . A Set     is called minimal open if A can be expressed as intersection of a subfamily of open 

sets.  

The collection of minimal open sets of  topology       is denoted by M. clearly, every open sets is minimal open. In a finite space, 

open sets are the only minimal open sets. 

The following example gives an idea about the abundance of minimal open sets. 

3.2 Example  

Let    , the set of natural numbers, equppied with the cofinite topology. Then every subset of   is minimal open. 

 

3.3 Result 

 For a topological space         

I.       

II. M is closed under arbitrary union, 

III. M is closed under arbitrary intersection.  

Proof 
 i),iii),are obvious. 

 ii) hold in view of the fact that P(X), the power set of X forms a completely distributive lattice under union and intersection of sets. 

3.4 Definition  

Let       be a topological space and    . Then minimal cover of A, denoted by      , is defined as                 
  . 
From the definition, it follows that       is the smallest minimal open set containing A. 

3.5 Theorem  

Let       be a topological space and A,B be subsets of X . Then the following hold: 

I.        ; 

II.   (     )       ; 

III. If     then            ; 

IV.                    ; 

V.        . 

Proof 

Obvious from the definition of minimal cover of A. 

 This shows that       is a closure operator. An operator similar to    was defined for generalized topological spaces in [3]. 

However the definition in [3] seems to erroneous or incomplete. 

3.6 Theorem  

 Let       be a topological spaces. We define 

                
Then       is a topological space and    . 

Proof 

 Clearly      . Let      where              . Since          , thus                   and hence            
          . conversely, suppose that             . Then         . For each      and hence there exist an open set    containing    

for each  , such that       therefore         , which contains       . Hence             .         

 Therefore                        hence                                    . Lastly we show that if       

then      . we know that                        . But             and hence            . Thus   form a 

topology.Furthermore let    , then        . Thus    . Hence    . 

3.7 Theorem  

 Let       be a topological space. Then       form an Alexandroff space[2], that is, it is closed under arbitrary intersection also. 

Proof 

 Let      for each     then                      for each  . Thus                  . Again                  . 

Hence                     therefore if      then          . 

From theorem 3.5 and theorem 3.7 , one can observe that       |             is also a topology. 

 The members of   are called the minimal open or         open sets of  . If X is finite, then    . 
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In the following, we study the interrelationship of minimal open sets with other existing notions and finally obtain a decomposition of open 

set. 

 

IV A DECOMPOSITION OF OPEN SETS. 

 The operator    defined in the previous section can be used to define new weaker forms of open sets. We show that these weaker 

forms provide decomposition of open sets as well as that of continuity. 

4.1 Definition  

 Let       be a topological space. A subset     is said to be  

I.   -pre-open if             , 

II.   -t-set if                  , 

Where     is the interior operator. 

 One can observe that every open set is   -pre open set as well as   -t-set. But converse is not true in general. In fact, we have the 

following example: 

 

4.2 Example 

 Let    , the set of real number with the usual topology. Take          . Then A is neither open nor semi-open and  -open 

set. But A is   -pre open-set as   ((5,6)           
Similarly if we take        , then B is   -t-set but not open. 

 We can observe that if X is finite, then the class of   -preopen sets always forms a discrete topology. Because if X is finite then    

(A) is an open set containing A.  

4.3 Remark  

 A closed set need not be a   -t-set. We have the following example: 

4.4 Example  

 Let             with topology   {                         }. If we take      . Then   is closed but not   -t-set. 

 In example 4.4, we see that       is a t-set but not   -t-set whereas          , being an open set is a   -t-set, but not a t-set. 

Thus we can conclude that   -t-set is independent of t-set. 

 Our next example establish a fact that a   -t-set is independent of open, semi-open, pre-open, α-open and β-open sets. 

4.5 Example  

 Let    , the set of real number with the usual topology. Take            . Then   is neither semi-open,pre-open,α-open and 

β-open sets. but   is   -t-set. 

4.6 Example 

 Let             with topology    {                         }. If we take          . Then   is α-open set and hence pre-

open, semi-open and β-open set. But   is not   -t-set because        . 

 Also a   -t-set independent from  -set and  -set. We have the following example: 

4.7 Example  

 Let             with topology   {                         }. If we take          , then   is  -set because A is closed. 

Burt A is not a   -t-set. 

4.8 Example  

 Let             with topology   {                     }. If we take        , then A is A-set. But A is not a   -t-set.  

4.9 Example  

 Let    , the set of real numbers with the usual topology. Take   [              . Then B is   -t-set. But not a B-set. If 

we take             is a   -t-set but not an A-set because A is not a semi-open set. 

 Hence a   -t-set is independent from A-set and B-set. 

4.10 Proposition  

 If A,B are two   -t-set, then     is also a   -t-set. 

Proof 

 Let A,B be two   -t-set. Then                         (           )     (     )     (     )          

                . Therefore                      . Hence    is   -t-set. 

 Thus the family of   -t-set forms an infratopology [7], where an infrotopology [7] on a set X is collection τ of subsets of X having 

the following properties: 

I.   and X are in τ. 

II. The intersection of the element of any finite sub collection of τ is in τ. 

 In our next theorem, we provide a decomposition of open set in term of    -pre-open and   -t-set. 

 

4.11 Theorem  

 Let       be a topological space. A subset     is open if and only if   -pre-open and   -t-set. 

Proof 

 Let     is open set. Therefor   is   -pre-open as well as   -t-set. 

Conversely, let S be a   -pre-open and   -t-set. We have      (     )          . Hence   is open. 

Now we proceed to provide a decomposition for continuous mappings. 

 

4.12 Definition  

 Let       be a mapping. Then   is said to be  

I.   -pre-continuous if             -pre-open, 

II.   -t-continuous if        is    -t-set, 
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Where V is any arbitrary open set in Y. 

 From the discussion provide above, it follow that   -t-contiuity does not imply semi-continuity, hence does not imply continuity,α-

continuity or A-continuity. We have the following example in this regard. 

4.13 Example  

 Let    , the set of real number with the usual topology  and         with the topology            . Let       be 

defined as: 

                              

                    

Then f  is    -t-continuous but neither semi-continuous nor continuous.   

  -t-continuity is independent from B-continuity and A-continuity also. Here are the example: 

4.14 Example  

 Let    , the set of real number with the usual topology  and         with the topology            . Let       be 

defined as: 

                 [                
                    

Then f is   -t-continuous but not B-continuous. 

4.15 Example  

 Let            , with the topology   {                         } and         with the  topology            . Let 

      be defined as:                        . Then f is B-continuous but not   -t-continuous. 

Similarly, 

4.16 Example  

 Let            , with the topology   {                         } on   and topology                            let 

      be defined as identity map. Then   is  -continuous but not   -t-continuous because       is not a   -t-set in  . 

From theorem 4.11 we have decomposition of continuity in the following manner: 

4.17 Theorem  

 A mapping      is continuous if and only if it is both   -pre continuous and   -t-continuous. 

 

V.  MINIMAL SEPARATION AXIOMS: 

 In this section we defied and introduced minimal open sets through give the relation between minimal   , minimal   , minimal   , 

minimal    and minimal    and also examples. 

5.1 Definition  

 A space   is a minimal-   space iff it satisfies the    axiom, i.e., for each       such that     there is an minimal open set 

    so that   contains one of   and   but not the other. 

5.2 Definition  

 A space   is a minimal    space iff it satisfies the   axiom, i.e., for each       such that     there is an minimal open set 

    so that     but    . 

 

 

5.3 Example  

 The set       furnished with the topology {           } is called sierpinski space. It is minimal-   but not minimal-  . 

5.4 Remark  

 Every   space is minimal -  space but converse is not true in general. 

5.5 Definition  

 A space   is a minimal-  space or minimal hausdorff space iff it satisfies the   axiom, i.e., for each      such that     there 

are minimal open sets       so that         and      . 

5.6 Remark  

 Every minimal-   space is minimal-   space but converse is not true in general. 

5.7 Definition  

 A space   is minimal regular iff for each     and each minimal closed     such that     there are minimal open sets 

      so that         and      . A regular minimal-   space is called a minimal-  . 

5.8 Remark  

 Every    space minimal regular . But converse is not true in general. 

5.9 Remark  

 Every minimal hausdrorff space is minimal regular. But converse is not true in general. 

5.10 Definition  

 A space   is minimal normal iff for each pair     of disjoint minimal closed subsets of   there is a pair     disjoint minimal open 

subsets of   so that    ,     and      . A minimal normal    space is called a minimal    space. 

5.11 Remark  

 Every regular space is minimal normal but converse is not true in general. 

 

VI. MINIMAL REGULARITY 

 In this section, we further use the concept of minimal open sets to define a weaker form of regularity. Some interesting results are 

obtained here. While Hausdorffness implies minimal regularity. Also the product of normal spaces is found to be minimal normal. 

6.1 Definition  

 A topological space X is said to be minimal regular if for each pair consist of a point x and a closed set B not containing x, there 

exist a disjoint pair of minimal open set and an open set, containing x and B respectively. 
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 Since every open set is minimal open therefore every regular space is minimal regular as well. Converse is however not true. Here is 

an example. 

6.2 Example  

 Let    , the set of natural numbers, equipped with the cofinite topology. Then every subset of X is minimal open. Then X is a 

minimal regular space but not a regular space. 

6.3 Theorem  

 Let X  be a topological space then X is minimal regular if and only if given a point     and an open neighborhood U of x, there 

exists an minimal open neighborhood V of x such that               
Proof 

 Suppose that X is minimal regular space and x and an open neighborhood U of x are give. Then        is a closed set  not 

containing x. By the hypothesis, there exists a pair of disjoin minimal open set V and open set W, containing x and B respectively, that is, 

    and    . then       is disjoint from B and hence                      then is        . 

 Conversely, suppose that a point x and a closed set B not containing x are given. Then      , is an open set containing x. 

Therefore there is a minimal open neighborhood V of x such that        . Then the minimal open sets V and the open set          are 

disjoint sets containing x and B respectively. Thus       is minimal regular. 

6.4 Theorem  

 Every Hausdorff space is minimal regular. 

 

Proof 

 Let X be a hausdorff space. Let x and B be a pair of a point and a closed set not containing the point x. then for every    , we 

have    . Therefore by the given hypothesis, there exist disjoint open set    and    such that     ,      and        . Then 

{  |   } is an open cover of   and           is an minimal open set containing x such that      . Therefore X is minimal 

regular. 

Our next theorem is on the product of regular space. 

6.5 Theorem  

 Product of minimal regular spaces is again minimal regular. 

Proof 

 Let      be a family of minimal regular spaces. Let   ∏    
. Let        be a point of X and U be an open neighbourhood of 

   . We choose a basis element ∏    
about x contained in U. then      for each   . As   is minimal regular, there exists an minimal 

open set    in   such that                . Now ,    being minimal open, we have,         ,where     is open in   . If    

  , we simply choose      . Then by using the fact [5] that   (∏      )  ∏ (      ) , we find that   ∏     is an minimal open 

set in ∏    
. Since          ∏      ∏        , it follows that            ∏       . hence X is minimal regular.  

6.6 Definition  

 A topological space X is said to be minimal normal if every pair of disjoint closed sets are contained in disjoint minimal open sets 

 one can observe that every normal space is minimal normal. But converse is not true in general. 

In Example 6.2 X is minimal normal but not normal. 

In our next theorem, we provide that minimal regular spaces are minimal normal. 

6.7 Theorem  
 Every minimal regular space is minimal normal. 

Proof 

 Let X  be minimal regular space. Let A and B be disjoint closed subsets of X. then for each     has an open neighbourhood    , 

because      . By the given hypothesis, there exists an minimal open set    such that        doesn’t intersect B, that is      
            therefore    |     forms an minimal open covering of A. in the same way,{   |     is also an minimal open covering of 

B. thus          and           are minimal open sets containing A and B respectively. 

 Now we define   
                    and   

                     . here   
  and   

  are  minimal open sets. Since arbitrary 

union of closed sets are minimal closed, therefore                is minimal closed. (Because if A is minimal open, then 

                         . thus                         , where        , closed sets). Thus                   

   [                  here [                 is an minimal open set in X, therefore   
                    is again an minimal open set 

in X. similarly   
  is minimal open. Now, we have       

  and       
  are disjoint minimal open covers containing A and B respectively. 

Therefore X is minimal normal space. 

6.8 Corollary  

 Thus from the theorem 6.7 and 6.5 we can say that the product of normal T1-space is coming out be minimal normal. 

 

VII. MAXIMAL AND MINIMAL  -OPEN SETS. 

7.1 Definition  

 A proper nonempty β-open set A of X is said to be a maximal β-open set if any β-open set which contains A is X or A. 

7.2 Definition  

 A proper nonempty β-closed set B of X is said to be a minimal β -closed set if any β -closed set which contained in B is   or B. 

The family of all maximal β-open (resp.; minimal β -closed) sets will be denoted by 

                       we set 

                          and 

                                  . 
7.3 Theorem  

 Let A be a proper nonempty subset of X. Then A is a maximal  -open set if X\A is a minimal  -closed set.  
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Proof 

 Necessity. Let A be a maximal  -open. Then     or     . Hence,      or        . Therefore, by Definition 7.2,     

is a minimal   -closed set.  

 Sufficiency. Let     is be a minimal  -closed set.  Then          or        . Hence,     or     which implies that 

  is a maximal  -open set.  

The following example shows that maximal-open sets and maximal  -open sets are in general independent. 

7.4 Example  

 Consider           with topology   {       }. Then the family of       {                   }. So      is a maximal 

open in X, which is not maximal  -open in X, and       is a maximal  -open in X, which is not maximal open in X. 

7.5 Theorem 

 Any open set if it is a maximal  -open set then it is a maximal open set. 

Proof 

 Let   be open and maximal  -open set in a topological space  . We want to prove that   is a maximal open set. Suppose that   is 

not maximal open set, then     and there exists an open set   such that     and    , but every open set is  -open, this implies that 

  is a  -open set containing   and     and      which is contradiction. Hence   is a maximal open set. 

7.6  Theorem  

 For any topological space   , the following statements are true.  

1) Let   be a maximal   -open set and   be a  -open. Then             . 

2) Let   and   be maximal  -open sets. Then             . 

3) Let   be a minimal  -closed set and   be a  -closed set. Then               
4) Let   and   be minimal  -closed sets. Then               

Proof (1) 

 Let   be a maximal  -open set and   be a  -open set. If       , then we are done. But if      , then we have to prove 

that    , but       means       and      . Therefore we have       and   is a maximal  -open, then by Definition 

7.1,        or      , but      ,then      , which implies     .  

Proof (2) 

 Let   and   be maximal  -open sets. If      , then we have done. But if      , then we have to prove that    . Now 

     , means        and       . Now       and   is a maximal   -open, then by Definition 7.1,       or      

, but      , therefore,      , which implies    . Similarly if        we obtain    . Therefore    . 

Proof (3) 

 Let   be a minimal   -closed set and   be a   -closed set. If      , then there is nothing to prove. But if      ,   then we 

have to prove that    . Now if      , then       ,    and      . Since       and given that   is minimal  -closed, 

then Definition 7.2,       or      . But      ,  then      ,   which implies    .  

Proof (4) 

 Let   and   be two minimal  -closed sets. If      , then there is nothing to prove. But if       ,then we have to prove 

that    . Now if      , then        and      . Since       and given that   is minimal  -closed, then by Definition 

7.2,       or      . But       then      , which implies    . Similarly if       and given that   is minimal  -

closed, then by Definition 7.2,        or        But      , then       which implies    . Then    .  

7.7 Theorem  

 Let   be a maximal  -open set and x is an element of    . Then       for any   -open set    containing x. 

1) Let A be a maximal  -open set. Then either of the following (i) or (ii) holds:  

i. For each      , and each  -open set   containing x,    .  

ii. There exists a  -open set   such that      , and    .  

2) Let   be a maximal   open set. Then either of the following (i) or (ii) holds: 

i. For each      , and each  -open set   containing x, we have      . 

ii. There exists a  -open set   such that        .  

Proof 

1) Since      , we have     for any  -open set   containing x. Then      , by Theorem 7.5(1). Therefore,      . 

2) If (i) does not hold, then there exists an element x of    , and a   -open set   containing x such that    . By (1) we have     
 .  

3) If (ii) does not hold, then we have       for each       and each  -open set   containing x. Hence, we have      . 

7.8 Theorem 

 Let     and   be maximal  -open sets such that    . If      , then either           . 

Proof  

 Given      . If    , then there is nothing to prove. But If    , then we have to prove    . Using Theorem 7.6(2), we 

have  

      [       
              [         
              [                     
                                       

                                     

                       

                             . 

This implies     also from the definition of maximal  -open set it follows that    .  

7.9 Theorem 

 Let     and   be maximal   -open sets which are different from each ether. Then            . 
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Proof 

 Let           ). Then                        . Hence,                . Since by Theorem 

7.6(2),         We have         which implies    . From the definition of maximal   -open set it follows that    . 

Contradiction to the fact that     and   are different from each other. Therefore            . 

7.10 Theorem 

1) Let   be a minimal  -closed set of  . If    , then     for any  -closed set   containing x. 

2) Let   be a minimal  -closed set of  . Then               .  
Proof  

1) Let            and          , such that    . This implies that       and      . But since   is minimal  -

closed, by Definition 2.4,       which contradicts the relation that      . Therefore    .  

2) By (1) and the fact that   is  -closed containing x, we have                 . Therefore we have the result.  

7.11 Theorem 

1) Let   and         be minimal  -closed sets. If         , then there exist     such that     . 

2) Let   and          be minimal  -closed sets. If       for each     , then             

Proof  

1) Let   and        be minimal  -closed sets with          .we have to prove that       . Since if        , then  

       and hence,              which is a contradiction. Now as       , then        and         . Since 

       and give that   is minimal  -closed , then by Definition 2.3,        or       . But       , then      
  which implies     . Therefore,     . 

2) Suppose that              then there exists     such that       . By Theorem 7.6(4), we have      which is a 

contradiction to the fact     . Hence,             . 

7.12 Theorem 

 Let   be a maximal β-open set. Then          or         . 

Proof 

 Since   is a maximal β-open sets, the only following cases (1) and (2) occur by theorem 7.7(2): 

1) For each       and each  -open set   of x, we have      , let x be any element of      and    be any  -open set of  x. 

since      , we have       for any  -open set   of x. hence,           . Since                    
                           

2) There exists a  -open set   such that        , since       is a   -open set,   is a    -closed set. Therefore,   
      . 

7.13 Theorem 

 Let   be a maximal  -open set. Then               or            . 

Proof 

 By Theorem 7.7, we have following cases (1)              or(2)                
7.14 Theorem  

 Let   be a maximal  -open set and   a nonempty subset of    . Then           . 

Proof 

 Since         , we have      . for any element x of     and any   -open set   of x by Theorem 7.12. Then     
        Since     is a  -closed set and      ,   we see that                      therefore                

7.15 Corollary  

 Let   be a maximal  -open set and   a subset of   with    . Then         . 

Proof 

 Since       ,there exists a nonempty subset   of     such that      . Hence we have                  
                        by Theorem 7.14. Therefore         .  

7.16 Theorem  

 Let   be a maximal  -open set and assume that the subset     has two element at least. Then              for any element of 

   .  

Proof 

 Since         by our assumption, we have the result by Corollary 7.15.  

7.17 Theorem  

 Let   be a maximal  -open set, and   be a proper subset of   with    . Then,          .  

Proof 

 If    , then                   . Otherwise,      , and hence    . It follows that          . Since   is a 

maximal β-open set, we have also          . Therefore          .  
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