THE STABILITY OF CUBIC AND QUARTIC FUNCTIONAL EQUATION IN F-SPACES

R. MURALI ${ }^{1}$, M. GOWRISANKARI ${ }^{2}$
${ }^{1,2}$ PG and Research Department of Mathematics, Sacred Heart College (Autonomous), Tirupattur - 635 601, Vellore(Dt), Tamil Nadu, India.

ABSTRACT. The intention of this paper is to know some result for the stability of cubic and quartic functional equation in F-Spaces.

Keywords: Hyers-Ulam stability, F-spaces, β-normed spaces, cubic functional equations, and quartic functional equations.

MSC: 39B52; 39B72; 39B82; 46L07; 47L25

1 INTRODUCTION AND PRELIMINARIES

The Stability Problem for functional equations starts from the famous talk of Ulam and the partial solution of Hyers to the Ulam's problem [2, 9]. Thereafter, Rassias [8] attempted to solve the stability Problem of the Cauchy additive functional equation in a more general setting. The concept introduced by Rassias's theorem significantly influenced a number of Mathematicians to investigated the stability problems for various functional equations see [1, 2, 3, 5, 7]. Recently, Xiuzhoung Yang [10] proved the Hyers Ulam-Rassias stability of quadratic functional equation and Orthogonal stability of the Pexiderized quadratic functional equation in F-Spaces. In [4], Jun and Kim considered the following cubic functional equation

$$
f(2 u+v)+f(2 u-v)=2 f(u+v)+2 f(u-v)+12 f(u)
$$

It is easy to show that the equation $f(u)=u^{3}$ satisfies the above functional equation, which is called a cubic functional equation and every solution of the cubic functional equation is said to be a cubic mapping. In [6], Lee et al. considered the following quartic functional equation

$$
f(2 u+v)+f(2 u-v)=4 f(u+v)+4 f(u-v)+24 f(u)-6 f(v)
$$

It is easy to show that the function $f(u)=u^{4}$ satisfies the above functional equation, which is called a quartic functional equation and every solution of the quartic functional equation is said to be a quartic mapping. We recall some basic facts concerning F-spaces.
Definition 1.1. [10] Let U be a linear space over \mathbf{K} that denotes either complex or real numbers. A nonnegative valued function $\|$.$\| defined on$ U is called F -norm if it satisfies the following conditions:
(1) $\|u\|=0$ if and only iff $u=0$.
(2) $\|x u\|=\|u\|$ for all $x \in K,|x|=1$.
(3) $\|u+v\| \leq\|u\|+\|v\|$.
(4) $\left\|x_{n} u\right\| \rightarrow 0$ provided $x_{n} \rightarrow 0$.
(5) $\left\|x u_{n}\right\| \rightarrow 0$ provided $u_{n} \rightarrow 0$.
(6) $\left\|x_{n} u_{n}\right\| \rightarrow 0$ provided $x_{n} \rightarrow 0, u_{n} \rightarrow 0$.

A linear space equipped with F-norm is called F^{*}-space which will be denoted by $(U,\| \| \|)$ or U . A complete F^{*}-space is called F -space.
Definition 1.2. [10] Let U be a linear space over K that denotes either complex or real numbers and $0<\beta \leq 1$. A nonnegative valued function $\|\cdot\|$ defined on U is called β - norm if it satisfies the following conditions:
(1) $\|u\|=0$ if and only iff $u=0$.
(2) $\|x u\|=\left|x^{\beta}\right|\|u\|$ for all $x \in \mathrm{~K}$.
(3) $\|u+v\| \leq\|u\|+\|v\|$.

A linear space equipped with β - norm is called β - normed space, which will be denoted by $(U,\|\cdot\|)$ or briefly U .
In this paper, we present the Stability of Cubic and Quartic Functional Equations in
F-Spaces.

2 THE STABILITY OF CUBIC FUNCTIONAL EQUATION IN F-SPACES

Theorem 2.1. Let U be a real vector space and V be F -space in which there exist $\frac{1}{2} \leq c<1$ such that $\left\|\frac{v}{2}\right\| \leq c\|v\|$ for all $u \in V$, and let $\varphi: U \times U \rightarrow R^{+}$be a function such that

$$
\begin{equation*}
\sum_{i=0}^{\infty} c^{3 i} \varphi\left(2^{i} u, 0\right) \tag{2.1}
\end{equation*}
$$

Converges and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} c^{3 n} \varphi\left(2^{n} u, 2^{n} v\right)=0 \text { for all } u, v \in U \tag{2.2}
\end{equation*}
$$

Suppose that f satisfies

$$
\begin{equation*}
\|f(2 u+v)+f(2 u-v)-2 f(u+v)-2 f(u-v)-12 f(u)\| \leq \varphi(u, v) \text { for all } u, v \in U . \tag{2.3}
\end{equation*}
$$

Then there exist a unique cubic function $g: U \rightarrow V$ which satisfies the following equation

$$
\begin{equation*}
f(2 u+v)+f(2 u-v)-2 f(u+v)-2 f(u-v)-12 f(u)=0 \quad \text { for all } u, v \in U . \tag{2.4}
\end{equation*}
$$

and the inequality

$$
\begin{array}{r}
\|f(u)-g(u)\| \leq c^{4} \sum_{i=0}^{\infty} c^{3 i} \varphi\left(2^{i} u, 0\right) \quad \text { for all } u \in U . \\
g(u)=\lim _{n \rightarrow \infty} 2^{-3 n} f\left(2^{n} u\right) \text { for all } u, v \in U . \tag{2.6}
\end{array}
$$

Function g is given by

Proof:

Put $\mathrm{v}=0$ in inequality (2.3), we have

$$
\begin{align*}
& \|2 f(2 u)-16 f(u)\| \leq \varphi(u, 0) \quad \text { for all } \quad u \in U . \tag{2.7}\\
& \left\|f(u)-8^{-1} f(2 u)\right\| \leq c^{4} \varphi(u, 0) \quad \text { for all } \quad u \in U . \tag{2.8}
\end{align*}
$$

Replace u by $2 u$ and multiply 8^{-1} on both sides of inequality (2.8), we get

$$
\begin{equation*}
\left\|8^{-1} f(2 u)-8^{-2} f\left(2^{2} u\right)\right\| \leq c^{4} c^{3} \varphi(2 u, 0) \quad \text { for all } \quad u \in U . \tag{2.9}
\end{equation*}
$$

Now adding the inequality (2.8) and (2.9), we get

$$
\begin{equation*}
\left\|f(u)-8^{-2} f\left(2^{2} u\right)\right\| \leq c^{4}\left[\varphi(u, 0)+c^{3} \varphi(2 u, 0)\right] \text { for all } \quad u \in U . \tag{2.10}
\end{equation*}
$$

Similarly we have

$$
\begin{equation*}
\left\|f(u)-8^{-3} f\left(2^{3} u\right)\right\| \leq c^{4}\left[\varphi(u, 0)+c^{3} \varphi(2 u, 0)+c^{6} \varphi\left(2^{2} u, 0\right)\right] \text { for all } u \in U \tag{2.11}
\end{equation*}
$$

By using induction on positive integer n , we have

$$
\begin{equation*}
\left\|f(u)-8^{-n} f\left(2^{n} u\right)\right\| \leq c^{4} \sum_{i=0}^{n-1} c^{3 i} \varphi\left(2^{i} u, 0\right) \quad \text { for all } \quad u \in U . \tag{2.12}
\end{equation*}
$$

We have to prove the sequence $\left\{8^{-n} f\left(2^{n} u\right)\right\}$ is convergence.
Now replace u by $2^{m} u$ and multiply 8^{-m} on both sides of inequality (2.12), we have

$$
\begin{equation*}
\left\|8^{-(n+m)} f\left(2^{n+m} u\right)-8^{-m} f\left(2^{m} u\right)\right\| \leq c^{4} \sum_{i=m}^{n} c^{3 i} \varphi\left(2^{i} u, 0\right) \text { for all } \quad u \in U . \tag{2.13}
\end{equation*}
$$

The right hand side $\rightarrow 0$ as $m \rightarrow \infty$
\Rightarrow The sequence $\left\{8^{-n} f\left(2^{n} u\right)\right\}$ is a Cauchy sequence.
$\Rightarrow \sum_{i=0}^{\infty} c^{3 i} \varphi\left(2^{i} u, 0\right)$ is converges.
Now define

$$
g(u)=\lim _{n \rightarrow \infty} 2^{-3 n} f\left(2^{n} u\right) \quad \text { for all } u \in U
$$

Now taking limit on both sides of the inequality (2.12), we have

$$
\|f(u)-g(u)\| \leq c^{4} \sum_{i=0}^{\infty} c^{3 i} \varphi\left(2^{i} u, 0\right) \quad \text { for all } u \in U
$$

Now we have to prove T satisfies the equation (2.4).

Here replace u and v by $2^{n} u, 2^{n} v$ respectively and multiply 8^{-n} on both sides of inequality (2.3), we have

$$
\left\|8^{-n}\left[f\left(2^{n}(2 u+v)\right)+f\left(2^{n}(2 u-v)\right)-2 f\left(2^{n}(u+v)\right)-2 f\left(2^{n}(u-v)\right)-12 f\left(2^{n} u\right)\right]\right\| \leq c^{3 n} \varphi\left(2^{n} u, 2^{n} v\right)
$$

for all $u, v \in U$.
(2.14) Taking limit as $\mathrm{n} \rightarrow \infty$ we find that g satisfies equation (2.4).

$$
\begin{aligned}
& \|g(2 u+v)+g(2 u-v)-2 g(u+v)-2 g(u-v)-12 g(u)\| \leq \lim _{n \rightarrow \infty} c^{3 n} \varphi\left(2^{n} u, 2^{n} v\right) \text { for all } u, v \in U . \\
& g(2 u+v)+g(2 u-v)-2 g(u+v)-2 g(u-v)-12 g(u)=0 \quad \text { for all } u, v \in U .
\end{aligned}
$$

Now we have to prove the uniqueness of a cubic function T subject to inequality (2.5). Let us assume that there exist a cubic function $\mathrm{S}: \mathrm{U} \rightarrow \mathrm{V}$ which satisfies the equation (2.4) and inequality (2.5).
$S\left(2^{n} u\right)=8^{n} S(u)$ and $T\left(2^{n} u\right)=8^{n} T(u)$ for all $u \in U$ and $n \in N$.

$$
\begin{aligned}
\Rightarrow\|S(u)-T(u)\| & =\left\|8^{-n} S\left(2^{n} u\right)-8^{-n} T\left(2^{n} u\right)\right\| \\
& =\left\|8^{-n}\left[S\left(2^{n} u\right)-f\left(2^{n} u\right)\right]+8^{-n}\left[f\left(2^{n} u\right)-T\left(2^{n} u\right)\right]\right\| \\
& \leq c^{4} \sum_{i=0}^{\infty} c^{3(n+i)} \varphi\left(2^{n+i} u, 0\right) \quad \text { for all } u \in U .
\end{aligned}
$$

By letting $n \rightarrow \infty$ in the proceeding inequality, we find the uniqueness of g.
Hence the proof.
Corollary 2.2. Let U be a real vector space and V be a complete β-normed space $(0<\beta \leq 1)$ and let $\varphi: U \times U \rightarrow R^{+}$be a function such that

Converges and

$$
\begin{equation*}
\sum_{i=0}^{\infty} 8^{-\beta i} \varphi\left(2^{i} u, 0\right) \tag{2.15}
\end{equation*}
$$

Suppose that f satisfies

$$
\begin{equation*}
\|f(2 u+v)+f(2 u-v)-2 f(u+v)-2 f(u-v)-12 f(u)\| \leq \varphi(u, v) \text { for all } u, v \in U . \tag{2.17}
\end{equation*}
$$

Then there exist a unique cubic function $g: U \rightarrow V$ which satisfies the following equation

$$
\begin{equation*}
f(2 u+v)+f(2 u-v)-2 f(u+v)-2 f(u-v)-12 f(u)=0 \quad \text { for all } u, v \in U . \tag{2.18}
\end{equation*}
$$

and the inequality

$$
\begin{equation*}
\|f(u)-g(u)\| \leq 16^{-\beta} \sum_{i=0}^{\infty} 8^{-\beta i} \varphi\left(2^{i} u, 0\right) \quad \text { for all } u \in U \tag{2.19}
\end{equation*}
$$

Function g is given by

$$
\begin{equation*}
g(u)=\lim _{n \rightarrow \infty} 2^{-3 n} f\left(2^{n} u\right) \text { for all } u, v \in U \tag{2.20}
\end{equation*}
$$

3 THE STABILITY OF QUARTIC FUNCTIONAL EQUATION IN F-SPACES

Theorem 3.1. Let U be a real vector space and V be F -space in which there exist $\frac{1}{2} \leq c<1$ such that $\left\|\frac{v}{2}\right\| \leq c\|\nu\|$ for all $u \in V$, and let $\varphi: U \times U \rightarrow R^{+}$be a function such that

$$
\begin{equation*}
\sum_{i=0}^{\infty} c^{4 i} \varphi\left(2^{i} u, 0\right) \tag{3.1}
\end{equation*}
$$

Converges and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} c^{4 n} \varphi\left(2^{n} u, 2^{n} v\right)=0 \text { for all } u, v \in U \tag{3.2}
\end{equation*}
$$

Suppose that f satisfies $\|f(2 u+v)+f(2 u-v)-4 f(u+v)-4 f(u-v)-24 f(u)+6 f(v)\| \leq \varphi(u, v)$ for all $u, v \in U$. (3.3)
Then there exist a unique quartic function $g: U \rightarrow V$ which satisfies the following equation

$$
\begin{equation*}
f(2 u+v)+f(2 u-v)-4 f(u+v)-4 f(u-v)-24 f(u)+6 f(v)=0 \quad \text { for all } u, v \in U \tag{3.4}
\end{equation*}
$$

and the inequality

$$
\begin{equation*}
\|f(u)-g(u)\| \leq c^{5} \sum_{i=0}^{\infty} c^{4 i} \varphi\left(2^{i} u, 0\right) \quad \text { for all } u \in U \tag{3.5}
\end{equation*}
$$

Function g is given by

$$
\begin{equation*}
g(u)=\lim _{n \rightarrow \infty} 2^{-4 n} f\left(2^{n} u\right), \quad \text { for all } u, v \in U \tag{3.6}
\end{equation*}
$$

Proof:

Put $v=0$ in inequality (3.3), we have

$$
\begin{equation*}
\|2 f(2 u)-32 f(u)\| \leq \varphi(u, 0) \quad \text { for all } \quad u \in U \tag{3.7}
\end{equation*}
$$

Divide by 32 , we get

$$
\begin{equation*}
\left\|f(u)-16^{-1} f(2 u)\right\| \leq c^{5} \varphi(u, 0) \quad \text { for all } \quad u \in U \tag{3.8}
\end{equation*}
$$

Replace u by $2 u$ and multiply 16^{-1} on both sides of inequality (3.8), we get

$$
\begin{equation*}
\left\|16^{-1} f(2 u)-16^{-2} f\left(2^{2} u\right)\right\| \leq c^{5} c^{4} \varphi(2 u, 0) \quad \text { for all } \quad u \in U \tag{3.9}
\end{equation*}
$$

Now adding inequality (3.8) and (3.9), we get

$$
\begin{equation*}
\left\|f(u)-16^{-2} f\left(2^{2} u\right)\right\| \leq c^{5}\left[\varphi(u, 0)+c^{4} \varphi(2 u, 0)\right] \text { for all } \quad u \in U . \tag{3.10}
\end{equation*}
$$

Similarly we have

$$
\begin{equation*}
\left\|f(u)-16^{-3} f\left(2^{3} u\right)\right\| \leq c^{5}\left[\varphi(u, 0)+c^{4} \varphi(2 u, 0)+c^{8} \varphi\left(2^{2} u, 0\right)\right] \text { for all } u \in U . \tag{3.11}
\end{equation*}
$$

By using induction on positive integer n , we have

$$
\begin{equation*}
\left\|f(u)-16^{-n} f\left(2^{n} u\right)\right\| \leq c^{5} \sum_{i=0}^{n-1} c^{4 i} \varphi\left(2^{i} u, 0\right) \quad \text { for all } \quad u \in U . \tag{3.12}
\end{equation*}
$$

We have to prove the sequence $\left\{16^{-n} f\left(2^{n} u\right)\right\}$ is convergence.
Now replace u by $2^{m} u$ and multiply 16^{-m} on both sides of inequality (3.12), we have

$$
\begin{equation*}
\left\|16^{-(n+m)} f\left(2^{n+m} u\right)-16^{-m} f\left(2^{m} u\right)\right\| \leq c^{5} \sum_{i=m}^{n} c^{4 i} \varphi\left(2^{i} u, 0\right), \text { for all } \quad u \in U . \tag{3.13}
\end{equation*}
$$

The right hand side $\rightarrow 0$ as $m \rightarrow \infty$
\Rightarrow The sequence $\left\{16^{-n} f\left(2^{n} u\right)\right\}$ is a Cauchy sequence.
$\Rightarrow \sum_{i=0}^{\infty} c^{4 i} \varphi\left(2^{i} u, 0\right)$ is converges.
Now define

$$
g(u)=\lim _{n \rightarrow \infty} 2^{-4 n} f\left(2^{n} u\right) \quad \text { for all } u \in U .
$$

Now taking limit on both sides of inequality (3.12), we have

$$
\|f(u)-g(u)\| \leq c^{5} \sum_{i=0}^{\infty} c^{4 i} \varphi\left(2^{i} u, 0\right), \quad \text { for all } u \in U
$$

The proof is similar to the proof of the above Theorem.
Corollary 3.2. Let U be a real vector space and V be a complete β-normed space $(0<\beta \leq 1)$ and let $\varphi: U \times U \rightarrow R^{+}$be a function such that

$$
\begin{equation*}
\sum_{i=0}^{\infty} 16^{-\beta i} \varphi\left(2^{i} u, 0\right) \tag{3.14}
\end{equation*}
$$

Converges and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} 16^{-\beta n} \varphi\left(2^{n} u, 2^{n} v\right)=0 \quad \text { for all } u, v \in U \tag{3.15}
\end{equation*}
$$

Suppose that f satisfies

$$
\begin{equation*}
\|f(2 u+v)+f(2 u-v)-4 f(u+v)-4 f(u-v)-24 f(u)+6 f(v)\| \leq \varphi(u, v) \tag{3.16}
\end{equation*}
$$

for all $u, v \in U$. Then there exist a unique quartic function $g: U \rightarrow V$ which satisfies the following equation

$$
\begin{equation*}
f(2 u+v)+f(2 u-v)-4 f(u+v)-4 f(u-v)-24 f(u)+6 f(v)=0 \quad \text { for all } u, v \in U . \tag{3.17}
\end{equation*}
$$

and the inequality

$$
\begin{equation*}
\|f(u)-g(u)\| \leq 32^{-\beta} \sum_{i=0}^{\infty} 16^{-\beta i} \varphi\left(2^{i} u, 0\right) \quad \text { for all } u \in U . \tag{3.18}
\end{equation*}
$$

Function g is given by

$$
\begin{equation*}
g(u)=\lim _{n \rightarrow \infty} 2^{-4 n} f\left(2^{n} u\right) \quad \text { for all } u, v \in U \tag{3.19}
\end{equation*}
$$

REFERENCES

[1] T. Aoki, On the Stability of the linear transformation in Banach Spaces, J. Math. Soc. Jpn.2, pp. 64-66, 1950.
[2] D.H. Hyers, On the stability of the linear functional equation, Proceedings of the National Academy of Sciences of the United States of America, vol.27, pp.222-224, 1941.
[3] D.H. Hyers and Th.M. Rassias, Approximate homomorphism, Aequationes Math. 44, 1992, pp. 125-153.
[4] K. Jun, H. Kim, The Generalized Hyers-Ulam-Rassias stability of a cubic functional equation, J. Math. Anal. Appl. 274, pp. 867-878, 2002.
[5] S.M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis, vol. 48 of Springer Optimization and Its Applications, Springer, New York, NY, USA, 2011.
[6] S. Lee, S. Im, I. Hwang, Quartic functional equations, J. Math. Anal. Appl., 307, 387-394, 2005.
[7] A. Najati, J.R. Lee and C. Park, On a Cauchy-Jenson functional inequality, Bull. Malaysian Math. Sci. Soc. 2, 33, 253-263, 2010.
[8] S.M. Ulam, Problems in Modern Mathematics, John Wiley \& Sons, New York, NY, USA, 1960.
[9] S.M. Ulam, A Collection of the Mathematical Problems, Interscience, New York 1960.
[10] Xiuzhong Yang, On the stability of Quadratic Functional Equations in F-Spaces, Journal of Function Spaces, pp. 1-7, 2016.

