
© 2018 JETIR September 2018, Volume 5, Issue 9 www.jetir.org (ISSN-2349-5162)

JETIR1809142 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 768

Early Malicious Query Detected in web application

Teena Sahu

Mtech scholar
Department of Computer Science & Engg.

Bharti College of Engineering &

Technology, durg

L. P. Bhaiya
Department of Electronic &

Telecommunication Engg.

Associate professor

Bharti College of Engineering &

Technology, durg

Suman Kumar Swarnkar
Department of Computer Science & Engg.

Assistant professor

Bharti College of Engineering &

Technology, durg

ABSTRACT
The development of the web is expanding step by step, for the
most part content is database driven. There are numerous web
applications like E-Commerce, saving money where he/she
needs to trust on this application and need to give individual

data into their fundamental database. On the off chance that
there is no privacy and security of data, at that point any one
can take or see our data or may use this data for getting into
mischief action. One of them is SQL infusion, a programmer
may embed his terrible/vindictive SQL code into other's
database and running of those questions is fit to separate
private and significant data or may devastate the database. In
this paper, proposing a method to recognize SQL infusion
utilizing the shrouded web slithering strategy consolidating
with parse tree and advanced mark. The proposed plot finds a
SQL infusion helplessness by reproducing web assault and
break down the information of the reaction. The proposed
procedure is contrasted with concealed web creeping strategy
with dissect its viability. For trial assessment, execute this
framework in PHP & PYTHON with MYSQL database to
dissect the outcomes.

Keywords
SQL injection, Hidden web Crawling, Parse tree, Digital
Signature.

1. INTRODUCTION
At display web is an imperative wellspring of data and
correspondence channel amongst client and specialist
organizations. As utilizing of web application is expanding,
there is increment of web assault too. One of them is SQL
infusion assaults (SQLIA), this powerlessness may prompt
unapproved access of assets, heightening of benefits and loss
of privacy and honesty. As of late the episode of SQLIA has
been high to the point that an overview done by new IBM-X
Force Threat Intelligence [3] for year 2014 very nearly 10 %
expansion in security assaults on business which releases one
billion records of individual identifiable data (PII) were
spilled. Every one of these assaults are because of SQLIAs
and other digital assaults.

SQL is one of the web assaults utilized by programmers to

swipe information from associations. It is an application layer
assault. In this instrument, malignant SQL order is executed
by the web application, uncovering the backend database. A
SQL infusion assault can happen when a web application uses
client provided information without appropriate approval or
encoding as a component of a SQL question. Infused SQL ban
can change SQL articulation and envelops the security of web
application.

As appeared in Fig. 1 assailants infuse pernicious SQL code

and recover individual data. In this a straightforward site page
where the client needs to give his client id and secret key to
login in "form.php" which is gone through a firewall, web
server, application server lastly to database server.

Internet

Firewall

http://example.com/form.html?userid=abcd &

password=anything or ‘x’=’x

Attacker
Web Server

 Reterieve PersonalInformation:

Userid : ram123

Password : r1@23

Gender : M

Application Server

DB Server

Fig. 1: SQL injection

SQLIAs isn't really anticipated by firewall and interruption
identification framework in light of the fact that the sites
should be open, security component permits open web
movement to speak with web application (for the most part
keep running more than 80/443).

http://www.jetir.org/
http://example.com/form.html?userid=abcd

© 2018 JETIR September 2018, Volume 5, Issue 9 www.jetir.org (ISSN-2349-5162)

JETIR1809142 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 769

In this paper, consolidating shrouded web creeping [4, 6, 11]
with parse tree [5, 17] and computerized mark to recognition
of SQL infusion as well as aversion at run time so the targets
are counted as takes after:

• In shrouded web creeping method joining the recognition
of SQL infusion at run time, examination of concealed
web slithering strategy is sustained into running time
discovery framework.

• To enhance the validation, utilize computerized marks,

which enhance adaptability of the framework.

• Use the parse tree to identify suspected defenselessness

with another proposed approach.

• Implement this framework and contrast with concealed

web creeping with break down the outcomes.

To assess this approach, we test over PHP web application
[12] to distinguish SQL infusion as evident positive, false
positive and false negative outcomes.

The association of the paper as follows in area 2 portrayal of
kinds of SQL infusion assaults, in segment 3 Hidden web
slithering procedure and SQL infusion, in a segment 4 parse
tree system and SQL infusion, in segment 5 proposed
technique, in segment 6 conclusion the future work.

2. TYPES OF SQL INJECTION

ATTACKS

The basic types of SQL attacks [7] are as follows:

Tautologies based SQL attack:

Repetition implies in each conceivable elucidation dependably
ascertains to genuine, this assault is infused by utilizing
restrictive OR administrator by which SQL question computes
to genuine. This assault skirted the client validation and
concentrates the information by embeddings contingent OR
administrator in the WHER statement of a SQL inquiry. It will
reshape the SQL question into redundancy by which database
will be presented to an unapproved client. On the off chance
that an assailant embeds in a question 'abcd' as secret word
and anything' OR 'x'='x as watchword the inquiry moves
toward becoming:
Select * from userdetails where userid=‘abcd’ and
password =’anything’ or ‘x’=’x’

On the basis of operator precedence rule, the WHERE clause
is evaluated to true for one row, so the query will return whole
records. By this an assailant will be able to access personal
information of the user.

Piggybacked Queries attack:

As the name recommends that programmer infuses extra
question with unique one by which database gets different
SQL inquiries. In this technique unique inquiry is legitimate,
yet another question is assaulting question with initial one.
This sort of question is permitted in one inquiry because of
miss setup of a framework. Assume an aggressor infuses abcd
as userid and'; drop table pqr as a watchword then the
subsequent inquiry seems to be:

Select * from userdetails where userid=‘abcd’ and
password = “; drop table pqr--‘

In this original query executed normally returns zero rows, a
query delimiter (";") is recognized by the database and
executed the additional injected query. The consequences of
this query will wipe out valuable information from the
database.

Union Query:
Union Query:

The union query attack is done by introducing a UNION
keyword into a vulnerable parameter which will return the
union of original and injected query.

The SQL UNION operator fetched the results (rows) from
participating queries. Suppose the code injected by an attacker
is ‘UNION select * from empldetails-- in user id field and
abcd in password field so the query becomes:

Select * from userdetails where userid = ‘’ UNION selects

* from empldetails –‘ and password = ‘abcd’;

Using comment operator (--) will ignore the rest of the query,
i.e. password = 'abcd'. So, in this query original query
acknowledges a null set value as there is no matching details
in the table userdetails and the injected query will return all
the data from empdetails table.

Illegal/Logically Incorrect Queries:

In this type of injection this is pre-attacking steps for more

attacks; it means that collection of information about the type
and structure of the database. In this method some error
messages returned by the application server by analyzing
these messages, an attacker is able to take the advantage of
this weakness. Sometime these logical error messages not
only give the data type of certain columns, but also the name
of the table and columns.

Inference:

In this method attacking code is applied to a secured database
which does not give any logical error messages. This method
normally works on the basis of true false statement. After
collecting sensitive information, the assailants inject different
conditions (how the database behaves as true or false means
working or not on this injecting code) and determine the
situation carefully. If the injecting code evaluates to true
implies that page working is normally and if it is false means
that page behaving is not normal. This type of attack is blind
attack. Similarly, to blind attack there is time attack. In this
attack, an attacker tries to gather information of those
parameters which are based on time delays in the response of
a query or database.

http://www.example.com/product.php?product_id=100

AND if (version () like ‘5%’, sleep (15), ‘false’))--

Here in this attack, an attacker is determining the version of
MYSQL is 5.X or not and also introduces a delay of 15
seconds to respond this query.

Stored Procedures:

In access relational database system, there is a subroutine
called stored procedure and stored in the data dictionary. In
this there is the definition of data validation and access
control mechanism. In this centralized logic is built to access
resources and complex queries are moved into a stored
procedure. In this attack first, an attacker uses pre-attacking
code to find the database type and version using
illegal/logically incorrect queries. After finding this an
attacker uses various procedures through injecting code. As
the code of stored procedure is written by the developer, so
these procedures are not vulnerable to SQLIAs. They may be
vulnerable to provide the administrative access.

Suppose an assailant injects ‘; SHUTDOWN; -- into either the
user id or password fields then the resulting query is:

http://www.jetir.org/

© 2018 JETIR September 2018, Volume 5, Issue 9 www.jetir.org (ISSN-2349-5162)

JETIR1809142 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 770

Select* from userdetails where userid=‘abcd’ and
password = ‘’; SHUTDOWN; -- ‘

This query will cause the database to shut down.

Alternate Encodings:

In this method defensive coding is used by an assailant to
bypass injected code which is encoded text. Encoding
methods like hexadecimal, ASCII and Unicode character
encoding. Scanner and detection techniques are not effective
against such attacks. See the following illustration:

Select* from userdetails where userid= ‘’ and password =
‘ ’; exce (char (0x736875746446j776e)) ‘

Here in char () function ASCII hexadecimal encoding scheme
is used; this will return the actual character of the hexadecimal
encoded character. This encoded text means is shut down of
database when this attacking code is executed.

3. HIDDEN WEB CRAWLER AND SQL
INJECTION [6]
To detect SQL injection vulnerability in hidden web crawler is
based on response analysis of a web page. On the basis of
collected information by crawler, attacking code query is
submitted to web servers then the behavior of page is

 Choose URL

 Retrieve Pages

 Extract Links & add to queue

 Y N

 Form

N

 Form Analysis

Y

 Authentication

analyzed whether the SQL injection is performed or not.

3.1 Strategy of Hidden Web Crawler

Now a day, users have to provide correct authentication
information to web services, to access corresponding web
services. This authentication information is utilized in hidden
web crawling to improve the overall security detection
system. This methodology is based on access authorization
data table (AADT) which is 5 attributes information is
follows:

Choose authentication
Choose authentication
information

Enter authentication
information maually

Y
Response Analysis

N

Login or not

Ai = (TOi, Hi, Ni, Ti, Vi) where TOi is target website address,
Hi is hash value of target website, Ni is the name of
authorization input form, Ti is type of form and last Vi is the
used to save the value which is assigned to authorization input

For example, if target website URL is www.examplecode.com
is detected, Ai and Ai+1 is calculated as follows:

Ai = (www.examplecode.com, be1e49a29c8d31ej187r,
username, password, Jony)

Ai+1 = (www.examplecode.com, be1e49a29c8d31ej187r,
Passfully, password, 123457)

Firstly, AADT is established before traversing of target
website. The analyzing engine of crawler identify all
vulnerable spots or it can say collect all information where
user submits his/her information. When page requires
authentication information the AADT compute this 5-attribute
information where Vi has default value then AADT match
these values against at if matches successfully then it replaces
Vi’s default value with its correct value and get to access web
services. For response analysis is used such as cookies,
session and so on. The crawler is recursively started to
perform deep crawling on founding of any URL or hyperlink
which improves overall detection. The strategy as shown in
figure 2:

Form Analysis

Fig 2: Hidden Web Crawling Strategy

3.2 Attacking Code & Response Analysis

To test this strategy attacking code is constructed to analyze
the response as follows: If the response analyzing result
shows that the SQL command executed invalidated by the
values of “attacking code” injected by the attacker or if the
values of “attacking code” lead to database logical exceptions

raised by the database server. When there is no way to find
out confirmed the result, then these are doubtful cases.

4. PARSE TREE AND SQL INJECTION
DETECTION [5]
To detect SQL injection vulnerability in parse tree the SQL query

is represented as a tree format. The grammar knowledge of

statement is required for parsing. With the help of parse tree, they

determine whether the queries are same or not.

When an attacker submits any SQL attacking code to database
server then the structure of attacking query is different from
actual query as shown in fig. 3:

http://www.jetir.org/

© 2018 JETIR September 2018, Volume 5, Issue 9 www.jetir.org (ISSN-2349-5162)

JETIR1809142 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 771

Select * from users where username=? And password=?

Select Select from Table where Where

list list clause

Identifier Identifier Identifier = Literal and Identifier = Literal

* Users Username

Password

Fig 3a: Parse Tree of actual query

Select *from users where username=’Greg’ and
password=’secret’

Select Select Form Table where Where
list list clause

Identifier Identifier Identifier = Literal And Identifier = Literal

* Users Username ‘Greg’ Password ‘secret’

Fig 3b: Parse Tree of attacking query

Here attacking code means any modification or changes done
to the original query or it can say crafting of user input. In
parse tree user input are present as empty literal at leaf nodes
of tree. When the input is supplied then the input is filled into
empty leaf nodes. The value of leaf nodes must be in position
and literal.

As shown in fig 3a the parse tree of a SQL query is Select *
from user where username =? and password =? These

question marks are replaced by user supplied input by which
comparison is made that structure of SQL query is same or
not.

The SQLGuard class have the capability of string building and
parsing so this class is used to implement this solution in java
with 3 ms overhead. A fresh key is generated when any SQL
string is prepended with SQLGuard.init(). For every query
new key is generated because of loading of page. When any
query is submitted to database server, with help of
SQLGuard.wraps(s). It is first pre-postened with current key.
By this way an attacker can’t guess the key. The private
method of SQLGuard class verify() is used to remove the key

from beginning of query and use it to identify wrapped used
input which is used for building for parse tree. After building
of parse tree comparison is made on the basis of structure by
which malicious query is detected.

5. PROPOSED METHODOLOGY
AND SQLINJECTION
To distinguish SQL infusion at run time joining concealed
web creeping strategy with parse tree and computerized
signature. Execute this framework in Eclipse on Window 7, 3
GB RAM design with 2.40 GHz processor. The design of the
proposed technique is appeared in figure 4:

In Evaluation stage, right off the bat experience a shrouded
web crawler to discover all connections and defenseless spots
with advanced signature, here utilizing the computerized
signature for approval of client rather than AADT table to
enhance adaptability of framework yet the outcomes at this
stage have false positive and false negative. Comparison of
the proposed plot is finished with the concealed web crawler
[4, 6, 11] outcomes and prior apparatuses ZAP [14] and Vega
[15] to dissect its adequacy.

http://www.jetir.org/

© 2018 JETIR September 2018, Volume 5, Issue 9 www.jetir.org (ISSN-2349-5162)

JETIR1809142 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 772

.

Evaluation and Detection Phase

 Hidden Web

User Results

 Crawler

Benign

Database

Queries

 Queries

Web Pages

User Inputs

Malicious

Query

Parse Tree Generator Phase

Detected

Parse

Parse tree

Run Time

Fig 4: Evaluation and Detection phase of proposed

methodology

At Detection stage, at run time parse tree method is utilized to

expel the presumed powerlessness in shrouded web crawler.

For this doing parsing of SQL explanation before

incorporation of client contribution after consideration of

contribution for PHP web application. At that point brushing

the two outcomes to evacuate the presumed powerlessness by

a shrouded web crawler strategy along these lines:

R= (A OR RSM) AND (SM AND RSM)

Here A is detection of vulnerability by hidden web crawler.

RSM is run time parsing of SQL statement.

SM is parsed of SQL statement before inclusion of input.

The proposed methodology has been tested over [12] web
application with these attacking codes:

Table 1: Attacking code construct
Attacking code

1’ or ‘1

Anything’ or ‘x’=’x

x' OR user like '%r%

and 1’=’1

‘ or ‘x’=’x

x’ and email is null;--

‘ or 1=1--

x’; drop table members; --

%3b

%20and%20’1’=’1

http://www.jetir.org/

© 2018 JETIR September 2018, Volume 5, Issue 9 www.jetir.org (ISSN-2349-5162)

JETIR1809142 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 773

5.1 Result and Response Analysis
Trial of 10 assaulting code against php web application [12]

and for adequacy of actualized framework comes about

contrasting. The result examination on reaction is finished by

along these lines:

 The result is genuine positive If the breaking down

outcome demonstrates that the SQL summon executed

negated by the benefits of "assaulting code" built by the

finder.

 The result is false positive while assaulting code prompts

database special case blunder.

 Doubtful cases appear when there is no real way to

discover genuine positive and false positive outcomes.

 False negative outcomes are those which are not

distinguished by the framework.

Table 2: Results of Our System as per whitelist

Dataset Query
True

Positive

False

Positive

True

Negative

False

Negative

BenignOnly.txt 24 0 0 0 24

ClassDataSet.txt 51 27 0 0 24

MaliciousOnly.txt 27 27 0 0 0

WhitelistDataSet.txt 27 23 0 4 0

Table 3: Results of Our System as per blacklist

Dataset Query
True

Positive

False

Positive

True

Negative

False

Negative

BenignOnly.txt 24 0 0 0 24

ClassDataSet.txt 51 27 0 24 0

MaliciousOnly.txt 27 27 0 0 0

WhitelistDataSet.txt 27 23 0 4 0

The arrangement is tried on php web application [12] with the
rundown appeared in table1 assaulting code in which
actualized framework can identify all these weaknesses where
as in shrouded web crawler there is 1 false negative and 3
false positive separately so executed framework is superior to
anything concealed web slithering. Actualize this

http://www.jetir.org/

© 2018 JETIR September 2018, Volume 5, Issue 9 www.jetir.org (ISSN-2349-5162)

JETIR1809142 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 774

Table 4: Results of F-Value, TP Rate & FP Rate

Method F-value (%)
TP rate

(%)
FP rate (%)

Linear combination [10] 71.73 92.39 0.61

Wavelet transform [14 61.04 82.61 0.81

Dimensionality reduction [15] 70.48 86.96 0.56

Adaptive learning (AMODS) 94.79 98.91 0.09

Proposed Method 95.76 99.19 0.06

system for PHP web application [12] and the total time
overhead for this is 99.19% TP Rate & 0.06% FP Rate which
is greater than parse tree [5] technique.

The results in graphical format is as follows:

Fig. 6 Chart of F-Value & TP Rate

Fig. 7 Chart of FP Rate

In this it is seen that implemented system is able to detect all
attacking code which are listed in table1, in hidden web
crawler is able to detect 95.76% .

6. CONCLUSION AND FUTURE WORK
Above all web application in light of middleware innovation,
to recover data from social database SQL. From the above
outcomes and diagram discourse it can be say that actualized
framework is more secure whereas shrouded web crawler can
distinguish half powerlessness.In proposed conspire time
overhead increments. Actualized framework gives another
way to deal with secure a web application. In not so distant
future we may improve the calculation utilized as a part of
shrouded web crawler and parse tree to identify SQL infusion.

7. REFERENCES
[1] Dwen, T., Chang, A., Liu, P. and Chen, H. 2009.

Optimum Tuning of Defence Settings for Common
Attacks on the Web Applications Security technology,
43rd Annual International CarnahanConference.

[2] Jovanovic, N., Kruegel, C., Kirda, E. 2006. Pixy: A Static

Analysis Tool for Detecting Web Application
Vulnerabilities Security and Privacy, IEEE Symposium.

[3] Website http://git.okt-srl.com/poste/0/43.

[4] Gupta, N., Kapoor,S. 2014. Extraction of Query

Interfaces for Domain Specific Hidden Web Crawler

International Journal of Computer Science and

Infomation Technologies, Vol5 (1).

[5] Buehrer, G.,Weide, B., Sivilotti, P. 2005. Using Parse

Tree Validation to Prevent SQL Injection Attacks
Proceedings of the 5th international workshop on
Software engineering and middleware.

[6] Wang, X., Wang, L., Wei, G., Zhang, D., Yang, Y. 2010.

Hidden Web Crawling for Sql Injection Detection
Broadband Network and Multimedia Technology (IC-
BNMT), 3rd IEEE International Conference

[7] Halfond, W., Viegas, J., Orso A. 2006. A Classification

of SQL Injection Attacks and Countermeasures In
Proceedings of the International Symposium on Secure
Software Engineering.

[8] Shar, L., Tan, H. 2013. Defeating SQL Injection

Computer (Volume:46 , Issue: 3) 69-77.

[9] Halfond, W., Orso, A. 2005. AMNESIA: Analysis and

Monitoring for NEutralizing SQLInjection Attacks
Proceedings of the 20th IEEE/ACM international
Conference on Automated software engineering.

[10] Website http://en. wikipedia.orglwiki/surface-web

[11] Gupta, S.,Bhatia, K. 2014. A Comparative study of

Hidden Web Crawler International Journal of Computer
Trends and Technology Volume 12 number 3.

[12] Testing website http://social.selfiecreation.com.

[13] Shehu, B., Xhuvani, A. 2014. A Literature Review and

Comparative Analyses on SQL Injection: Vulnerabilities,
Attacks and their Prevention and Detection Techniques
IJCSI International Journal of Computer Science Issues,
Vol. 11, Issue 4, No 1.

[14] OWASP Zed Attack Proxy website

https://www.owasp.org/index.php/OWASP_Zed_Attack
_project.

[15] Vega website https://subgraph.com/vega/.

[16] OWASP website

https://www.owasp.org/index.php/Top_10_2013_10.

[17] Ogheneovo, E.E., Asagba P. O. 2013. A Parse Tree

Model for Analyzing And Detecting SQL Injection
Vulnerabilities West African Journal of Industrial &
Academic Research Vol.6 No.1.

[18] Boyd, W. B., Keromytis D. A. 2004. SQLrand:

Preventing SQL Injection Attacks In Proceedings of the
2nd Applied Cryptography and Network Security
(ACNS) Conference, pages 292–302.

[19] Thomas, S., Williams, L. 2007. Using Automated Fix

Generation to Secure SQL Statements SESS '07
Proceedings of the Third International Workshop on
Software Engineering for Secure Systems

http://www.jetir.org/
https://www.owasp.org/index.php/Top_10_2013_10

