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Abstract-  

In this brief, a new binary counter design is proposed. 

Wallace tree multipliers provide a power-efficient strategy 

for high speed multiplication. The use of high speed 7:3 

counters in the Wallace tree reduction can further improve 

the multiplier speed. And also we implement 128bit Vedic 

Wallace multiplier provide high speed and consumes less 

power and more efficiently. Hence in proposed method we 

develop 8X8 Wallace tree multiplier stacker and Vedic 

Wallace 128X128 bit stacker. These proposed methods 

have better performance improvement than 6 TO 3 Bit 

stacker and 7 TO 3 bit stacker. In existing method, It uses 

3-bit stacking circuits, which group all of the “1” bits 

together, followed by a novel symmetric method to 

combine pairs of 3-bit stacks into 6-bit stacks. The bit 

stacks are then converted to binary counts, producing 6:3 

counter circuits with no xor gates on the critical path. This 

avoidance of xor gates results in faster designs with 

efficient power and area utilization. In VLSI simulations, 

the proposed counters are 30% faster than existing 

parallel counters and also consume less power than other 

higher order counters. Additionally, using the proposed 

counter-based Wallace tree multiplier architectures 

reduces latency and power consumption for 128-bit 

multipliers. 

 

Index terms – Counter, high speed, low power, multiplier, 

VLSI, Wallace tree. 

 

I. INTRODUCTION 

High speed, efficient addition of multiple operands is an 

essential operation in any computational unit. The speed and 

power efficiency of multiplier circuits is of critical 

importance in the overall performance of microprocessors. 

Multiplier circuits are an essential part 

of an arithmetic logic unit, or a digital signal processor 

system for performing filtering and convolution. The binary 

multiplication of integers or fixed-point numbers results in 

partial products that must be added to produce the final 

product. The addition of these partial products dominates 

the latency and power consumption of the multiplier. In 

order to combine the partial products efficiently, column 

compression is commonly used. Many methods have been 

presented to optimize the performance of the partial product 

summation, such as the well-known row compression 

techniques in the Wallace tree [1] or Dadda tree [2], or the 

improved architecture in [3]. These methods involve using 

full adders functioning as counters to reduce groups of 3 bits 

of the same weight to 2 bits of different weight in parallel 

using a carry-save adder tree. Through several layers of 

reduction, the number of summands is reduced to two, 

which are then added using a conventional adder circuit. To 

achieve higher efficiency, larger numbers of bits of equal 

weight can be considered. The basic method when dealing 

with larger numbers  of bits is the same: bits in one column 

are counted, producing fewer bits of different weights. For 

example, a 7:3 counter circuit accepts 7 bits of equal weight 

and counts the number of “1” bits. This count is then output 

using 3 bits of increasing weight.  

 
 

Fig. 1. A 7:3 counter and a 6:3 counter built from full 

and half adders. 

 The 7:3 and 6:3 counter circuits can be constructed using 

full and half adders, as shown in Fig. 1. Much of the delay 

in these counter circuits is due to the chains of XOR gates 

on the critical path. Therefore, much faster parallel counter 

architecture has been presented. A parallel 7:3 counter was 

presented in [4] and used to design a high speed counter-

based Wallace tree multiplier in [5]. Additionally, counter 

designs as in [6] and [7] use multiplexers to reduce the 

number of XOR gates on the critical path. Some of these 

muxes can be implemented with transmission gate logic to 

produce even faster designs. 

In this brief, we present a counting method that 

uses bit stacking circuits followed by a novel method of 

combining two small stacks to form larger stacks. A 6:3 

counter built using this method uses no XOR gates or 

multiplexers on its critical path. VLSI simulation results 

show that our 6:3 counter is at least 30% faster than existing 

counter designs while also using less power. Simulations 

were also run on full multiplier circuits for various sizes. 
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The same counter-based Wallace multiplier design was used 

for each simulation, while the internal counter was varied. 

Use of the proposed counter improves multiplier efficiency 

for larger circuits, yielding 64- and 128-bit multipliers that 

are both faster and consume less power than other counter 

based Wallace (CBW) designs. 

This paper is organized in six sections. After this 

introduction, in Section II, Symmetric bit stacking 

discussed, Section III existing method discussed of the 

paper. Finally, Sections IV about the proposed method 

explained, as well as the novel feature of the proposed 

method and V provides the simulation results and the 

conclusions, respectively 

 

II. SYMMETRIC BIT STACKING 

The proposed 6:3 counter is realized by first 

stacking all of the input bits such that all of the “1” bits are 

grouped together. After stacking the input bits, this stack 

can be converted into a binary count to output the 6-bit 

count. Small 3-bit stacking circuits are first used to form 3-

bit stacks. These 3-bit stacks are then combined to make a 

6-bit stack using a symmetric technique that adds one extra 

layer of logic. 

A. Three-Bit Stacking Circuit 

Given inputs X0, X1, and X2, a 3-bit stacker circuit 

will have three outputs Y0, Y1, and Y2 such that the number 

of “1” bits in the outputs is the same as the number of “1” 

bits in the inputs, but the “1” bits are grouped together to the 

left followed by the “0” bits. It is 

Clear that the outputs are then formed by 

                              Y0 = X0 + X1 + X2………….  (1) 

                              Y1 = X0X1 + X0X2 + X1X2 …. (2) 

              Y2 = X0X1X2………………….. (3) 

Namely, the first output will be “1” if any of the 

inputs is one, the second output will be “1” if any two of the 

inputs are one, and the last output will be one if all three of 

the inputs are “1.” The Y1 output is a majority function and 

can be implemented using one complex CMOS gate. The 3-

bit stacking circuit is shown in Fig. 2. 

 
 

Fig. 2. Three-bit stacker circuit. 

 

B. Merging Stacks 

 

We wish to form a 6-bit stacking circuit using the 

3-bit stacking circuits discussed. Given six inputs X0, . . . , 

X5, we first divide them into two groups of 3 bits which are 

stacked using 3-bit stacking circuits. Let X0, X1, and X2 be 

stacked into signals named H0, H1, and H2 and X3, X4, and 

X5 be stacked into I0, I, and I2. First, we reverse the outputs 

of the first stacker and consider the six bits H2, H1, H0, I0, 

I1, and I2. See the top of Fig. 3 for an example of this 

process. We notice that within these six bits, there is a train 

of “1” bits surrounded by “0” bits. To form a proper stack, 

this train of “1” bits must start from the leftmost bit. 

In order to form the proper 6-bit stack, two more 3-

bit vectors of bits are formed called J0, J1, J2 and K0, K1, 

K2. The idea is to fill the J vector with ones first, before 

filling the K vector. So we let 

                                    

                                    J0 = H2 + I0……….. (4) 

                                   J1 = H1 + I1……….. (5) 

                  J2 = H0 + I2……… (6) 

 

In this way, the first three “1” bits of the train are 

guaranteed to fill into the J bits although they may not be 

properly stacked. Now to ensure no bits are counted twice, 

the K bits are formed using the same inputs but with the 

AND gates instead 

                                 K0 = H2 I0 …….. (7) 

                                 K1 = H1 I1……. (8) 

                 K2 = H0 I2…… (9) 

If the train of “1”s is no more than three places 

long, then all of the K bits will be “0” as the AND gate 

inputs are three positions apart. If the train is longer than 

three places long, then some of the AND gates will have 

both inputs as “1”s as the AND gate inputs are three 

positions apart. The number of AND gates that will have 

this property will be three less than the length of the train of 

“1”s. We notice that now J0 J1 J2 and K0K1K2 still contain 

the same number of “1” bits as the input in total but now J 

bits will be filled with ones before any of the K bits. We 

must now stack J0 J1 J2 and K0K1K2 using two more 3-bit 

stacking circuits. The outputs of these two circuits can then 

be concatenated to form the stack outputs Y5. Y0. 
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Fig. 3. Six-bit stacking example. 

 

An example of this process is shown for an input 

vector containing four “1” bits in Fig. 3. In this example, 

first the H and I vectors are formed by stacking groups of 

three input bits. Then, the H vector is reversed, forming a 

continuous train of four “1” bits surrounded by zero bits. 

Corresponding bits are OR-ed to form the J vector which is 

full of “1” bits. Corresponding bits are AND-ed to form the 

K vector which finds exactly one overlap. Then, the J and K 

vectors are restacked to form the final 6-bit stack. 

III.EXISTING SYSTEM 

A.6:3 Counter based design 

For a faster, more efficient count, we can use 

intermediate values H, I and K to quickly compute each 

output bit without needing the bottom layer of stackers. Call 

the output bits C2, C1, and S in which C2, C1, S is the 

binary representation of the number of “1” input bits. 

To compute S, we note that we can easily 

determine the parity of the outputs from the first layer of 3-

bit stackers. Even parity occurs in the H if zero or two “1” 

bits appear in X0, X1, and X2. 

Thus, He and Ie, which indicate even parity in the 

H and I bits, are given by 

He = H0 + H1H2 (10) 

Ie = I0 + I1 I2. (11) 

As S indicates odd parity over all of the input bits, 

and because the sum of two numbers with different parities 

is odd, we can compute B0 as 

S = He ⊕ Ie. (12) 

 

 

 
 

Fig. 4. A 6:3 counter based on symmetric stacking 

 

Although this does incur one XOR gate delay, it is not on 

the critical path. To compute C1, we note C1 = 1 when the 

count is 2, 3, or 6. Therefore, there are two cases. First, we 

need to check if we have at least two but no more than three 

total inputs. We can use the intermediate H, I, and K vectors 

for this. To check for at least two inputs we need to see 

stacks of length two from either top level stacker, or two 

stacks of length one, which yields H1 + I1 + H0 I0. Second, 

we need to check if we have all six inputs as “1.” We can 

check this by checking that all three of both the H and I bits 

are set. As these are bit stacks, we simply check the 

rightmost bit in the stack for this case, which yields H2 I2. 

Altogether, this yield 

C1 = (H1 + I1 + H0 I0) (K0 + K￣1 + K2) + H2 I2. (13) 

We can easily calculate C2 as it should be set whenever we 

have at least 4-bit set 

C2 = K0 + K1 + K2. 

B.7:3 Counter based design 

The symmetric stacking method can be used to 

create a 7:3 counter as well. The 7:3 counters are desirable 

as they provide a higher compression ratio. The design of 

the 7:3 counter involves computing outputs for C1 and C2 

assuming both X6 = 0 (which matches the 6:3 counter) and 

assuming X6 = 1. We compute the S output by adding one 

additional XOR gate. 

If X6 = 1, then C1 = 1 if the count of X0, . . . , X5 is 

at least 1 but less than 3 or 5, which can be computed as C1 

= (H0 + I0)J0 J1 J2 + H2 I1 + H1 I2. (15) Also, C2 = 1 if 

the count of X0, . . . , X5 is at least 3 C2 = J0 J1 J2.  Both 

versions of C1 and C2 are computed and a mux is used to 

select the correct version based on X6. has muxes on the 

critical path. The 7:3 counter designs is shown in Fig. 5. 
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Fig. 5. A 7:3 counter based on symmetric stacking 

 

IV. PROPOSED SYSTEM 

 

A. Wallace tree multiplier 

 

This section discusses the design of counter based 

Wallace (CBW) multiplier. The proposed algorithm uses a 

readjusted form of partial product tree which is rearranged 

as reverse pyramid [4]. Then the reduction is performed 

using the 7:3, 6:3, 5:3, and 4:3 counters along with the FAs 

and HAs. The CBW can perform the tree reduction in fewer 

stages as compared to the traditional Wallace multipliers 

[1]. Now, we will develop the equations to compute the 

maximum rows in each stage of CBW multiplier and total 

stages required for reduction process for N×N multiplier. 

The first stage of an N × N multiplier has N rows. We 

need to find the maximum rows in subsequent stages until 

we are left with only two rows. Let us assume that the 

maximum rows in stagei−1 are 16 and the number of rows 

in each column are same. In order to perform the reduction 

at column c, two 7:3 compressors are used which will 

operate on 14 rows. The remaining two rows are reduced by 

using a 2:2 compressor. 

This will reduce the rows in column c from sixteen to three. 

Similarly, the columns c − 1 and c − 2 are reduced by using 

two 7:3 and one 2:2 compressor. The three compressors 

used at column c−1 will produce three Cout1 bits which are 

added to the column c of the stagei. This will increase the 

rows in column c of stagei from 3 to 6. The two 7:3 

compressors at column c − 2 will produce two Cout2 bits 

which are also added to the column c of stagei. Hence, the 

rows in column c of stagei will increase from 6 to 8. 

It can be seen from the above example that the 2:2 

compressor at column c−2 does not produce a Cout2 bit so 

it has no effect on column c. The compression is performed 

mainly by using 7:3 compressors, the other compressors are 

used only if the rows in a column are not exact multiple of 

seven. There will be one unprocessed row if the rows in 

column c are equal to (n × 7) + 1, where n is any positive 

integer. 

Based on the observations of above example, we 

can obtain the rows in stagei by adding 

1) The number of traditional and proposed compressors 

at column c and c − 1 of stagei−1. 

2) The number of proposed compressors (7:3, 6:3, 5:3, 

and 4:3) at column c − 2 of stagei−1. 

3) The unprocessed row at column c of stagei−1. 

The dot notation [11] is used to represent the partial 

product tree of the CBW multiplier discussed in this section 

as shown in Fig. 5. The right most column is called column 

0. The counters in each column are represented by the boxes 

around the dot products. The box enclosing seven, six, five, 

four, three, and two dots represents 7:3, 6:3, 5:3, 4:3, 3:2, 

and 2:2 counters, respectively. The stages are separated by a 

thick horizontal line. The architecture of CBW multiplier is 

based on the intelligent use of high speed counters. The Fig. 

6 shows the dot diagram of a 16 ×16 CBW multiplier. 

 
 

Fig. 6: Dot Diagram of CBW Multiplier 
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B. Vedic Wallace tree  multiplier 

 

Multiplication methods are extensively discussed in 

Vedic mathematics. Various tricks and short cuts are 

suggested by VM to optimize the process. These methods 

are based on concept of 1 Multiplication using deficits and 

excess 2 Changing the base to simplify the operation. 

Various methods of multiplication proposed in VM a) 

UrdhvaTiryagBhyam - vertically and crosswise b) Nikhilam 

navatashcharamam Dashatah: All from nine and last from 

ten 

Urdhva – Triyakbhyam is the general formula applicable to 

all cases of multiplication and also in the division of a large 

number by another large number. It means vertically and 

crosswise. We discuss multiplication of two, 4 digit 

numbers with this method [8-9]. Ex.1. the product of 1111 

and 1111 using Triyakbhyam (vertically and crosswise) is 

given below 

Methodology of Parallel Calculation 

 
V. SIMULATION RESULTS 

 

1. EXISTING SYSTEM 

 

A. 6 TO 3 STACKER 3 BIT 

 

 RTL  For Counter 6 To 3- Stacker 3- Bit 
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 Technology Schematic for Counter 6to3-Stacker 

 

 

 

 Simulation Results of Counter 6 To 3 Stacker- 

3-Bit 

 

 
 

  B. COUNTER 7 T0 3 

 

 RTL For Counter 7 To 3 

 

 

 

 

 Technology Schemetic For Counter 7 To 3  

 

 

 

 Simulation Results of Counter 7 To 3 Stacker- 

3-Bit 

 

 

 

 

2. PROPOSED METHOD 

 

A. WALLACE MULTIPLIER STACKER 

 

 RTL for 8x8 Wallace Tree Multiplier 
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 Technology Schematic for 8x8 Wallace Tree 

Multiplier 

 

 

 

 Simulation Results Schematic for 8x8 Wallace 

Tree Multiplier 

 

 
 

 

 

B. VEDIC WALLACE 128 BIT STACKER 

 

 RTL for Vedic Wallace 128X128 bit stacker 

 

 

 

 Simulation Results for Vedic Wallace 128X128 bit 

stacker 

 

 

 

 

 

VI. CONCLUSION 

In this paper, we proposed a generic algorithm that can be 

used to construct the Counter Based Wallace (CBW) 

multiplier of any size. Here we have developed 8X8 

Wallace tree multiplier stacker and also a highly efficient 

method of multiplication – “Urdhva Tiryakbhyam Sutra” 

based on Vedic mathematics. It is a method for hierarchical 

multiplier design which clearly indicates the computational 

advantages offered by Vedic methods. 

Wallace tree multipliers provide a power-efficient 

strategy for high speed multiplication. The use of high speed 

7:3 counters in the Wallace tree reduction can further 

improve the multiplier speed. And also we implement 

128bit Vedic Wallace multiplier provide high speed and 

consumes less power and more efficiently. Hence in 

proposed method we have developed 8X8 Wallace tree 

multiplier stacker and Vedic Wallace 128X128 bit stacker. 
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