
© 2018 JETIR September 2018, Volume 5, Issue 9 www.jetir.org (ISSN-2349-5162)

JETIR1809167 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 117

Implementation of Fast Binary Counters Based on

Symmetric Stacking

1M.Divya, 2M.Poornima
1M.tech student (VLSID), Department of ECE, VEMU Institute of Technology, P.Kothakota

2 Associate Professor, Department of ECE, VEMU Institute of Technology, P.Kothakota

Abstract-

In this brief, a new binary counter design is proposed.

Wallace tree multipliers provide a power-efficient strategy

for high speed multiplication. The use of high speed 7:3

counters in the Wallace tree reduction can further improve

the multiplier speed. And also we implement 128bit Vedic

Wallace multiplier provide high speed and consumes less

power and more efficiently. Hence in proposed method we

develop 8X8 Wallace tree multiplier stacker and Vedic

Wallace 128X128 bit stacker. These proposed methods

have better performance improvement than 6 TO 3 Bit

stacker and 7 TO 3 bit stacker. In existing method, It uses

3-bit stacking circuits, which group all of the “1” bits

together, followed by a novel symmetric method to

combine pairs of 3-bit stacks into 6-bit stacks. The bit

stacks are then converted to binary counts, producing 6:3

counter circuits with no xor gates on the critical path. This

avoidance of xor gates results in faster designs with

efficient power and area utilization. In VLSI simulations,

the proposed counters are 30% faster than existing

parallel counters and also consume less power than other

higher order counters. Additionally, using the proposed

counter-based Wallace tree multiplier architectures

reduces latency and power consumption for 128-bit

multipliers.

Index terms – Counter, high speed, low power, multiplier,

VLSI, Wallace tree.

I. INTRODUCTION

High speed, efficient addition of multiple operands is an

essential operation in any computational unit. The speed and

power efficiency of multiplier circuits is of critical

importance in the overall performance of microprocessors.

Multiplier circuits are an essential part

of an arithmetic logic unit, or a digital signal processor

system for performing filtering and convolution. The binary

multiplication of integers or fixed-point numbers results in

partial products that must be added to produce the final

product. The addition of these partial products dominates

the latency and power consumption of the multiplier. In

order to combine the partial products efficiently, column

compression is commonly used. Many methods have been

presented to optimize the performance of the partial product

summation, such as the well-known row compression

techniques in the Wallace tree [1] or Dadda tree [2], or the

improved architecture in [3]. These methods involve using

full adders functioning as counters to reduce groups of 3 bits

of the same weight to 2 bits of different weight in parallel

using a carry-save adder tree. Through several layers of

reduction, the number of summands is reduced to two,

which are then added using a conventional adder circuit. To

achieve higher efficiency, larger numbers of bits of equal

weight can be considered. The basic method when dealing

with larger numbers of bits is the same: bits in one column

are counted, producing fewer bits of different weights. For

example, a 7:3 counter circuit accepts 7 bits of equal weight

and counts the number of “1” bits. This count is then output

using 3 bits of increasing weight.

Fig. 1. A 7:3 counter and a 6:3 counter built from full

and half adders.

 The 7:3 and 6:3 counter circuits can be constructed using

full and half adders, as shown in Fig. 1. Much of the delay

in these counter circuits is due to the chains of XOR gates

on the critical path. Therefore, much faster parallel counter

architecture has been presented. A parallel 7:3 counter was

presented in [4] and used to design a high speed counter-

based Wallace tree multiplier in [5]. Additionally, counter

designs as in [6] and [7] use multiplexers to reduce the

number of XOR gates on the critical path. Some of these

muxes can be implemented with transmission gate logic to

produce even faster designs.

In this brief, we present a counting method that

uses bit stacking circuits followed by a novel method of

combining two small stacks to form larger stacks. A 6:3

counter built using this method uses no XOR gates or

multiplexers on its critical path. VLSI simulation results

show that our 6:3 counter is at least 30% faster than existing

counter designs while also using less power. Simulations

were also run on full multiplier circuits for various sizes.

http://www.jetir.org/

© 2018 JETIR September 2018, Volume 5, Issue 9 www.jetir.org (ISSN-2349-5162)

JETIR1809167 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 118

The same counter-based Wallace multiplier design was used

for each simulation, while the internal counter was varied.

Use of the proposed counter improves multiplier efficiency

for larger circuits, yielding 64- and 128-bit multipliers that

are both faster and consume less power than other counter

based Wallace (CBW) designs.

This paper is organized in six sections. After this

introduction, in Section II, Symmetric bit stacking

discussed, Section III existing method discussed of the

paper. Finally, Sections IV about the proposed method

explained, as well as the novel feature of the proposed

method and V provides the simulation results and the

conclusions, respectively

II. SYMMETRIC BIT STACKING

The proposed 6:3 counter is realized by first

stacking all of the input bits such that all of the “1” bits are

grouped together. After stacking the input bits, this stack

can be converted into a binary count to output the 6-bit

count. Small 3-bit stacking circuits are first used to form 3-

bit stacks. These 3-bit stacks are then combined to make a

6-bit stack using a symmetric technique that adds one extra

layer of logic.

A. Three-Bit Stacking Circuit

Given inputs X0, X1, and X2, a 3-bit stacker circuit

will have three outputs Y0, Y1, and Y2 such that the number

of “1” bits in the outputs is the same as the number of “1”

bits in the inputs, but the “1” bits are grouped together to the

left followed by the “0” bits. It is

Clear that the outputs are then formed by

 Y0 = X0 + X1 + X2…………. (1)

 Y1 = X0X1 + X0X2 + X1X2 …. (2)

 Y2 = X0X1X2………………….. (3)

Namely, the first output will be “1” if any of the

inputs is one, the second output will be “1” if any two of the

inputs are one, and the last output will be one if all three of

the inputs are “1.” The Y1 output is a majority function and

can be implemented using one complex CMOS gate. The 3-

bit stacking circuit is shown in Fig. 2.

Fig. 2. Three-bit stacker circuit.

B. Merging Stacks

We wish to form a 6-bit stacking circuit using the

3-bit stacking circuits discussed. Given six inputs X0, . . . ,

X5, we first divide them into two groups of 3 bits which are

stacked using 3-bit stacking circuits. Let X0, X1, and X2 be

stacked into signals named H0, H1, and H2 and X3, X4, and

X5 be stacked into I0, I, and I2. First, we reverse the outputs

of the first stacker and consider the six bits H2, H1, H0, I0,

I1, and I2. See the top of Fig. 3 for an example of this

process. We notice that within these six bits, there is a train

of “1” bits surrounded by “0” bits. To form a proper stack,

this train of “1” bits must start from the leftmost bit.

In order to form the proper 6-bit stack, two more 3-

bit vectors of bits are formed called J0, J1, J2 and K0, K1,

K2. The idea is to fill the J vector with ones first, before

filling the K vector. So we let

 J0 = H2 + I0……….. (4)

 J1 = H1 + I1……….. (5)

 J2 = H0 + I2……… (6)

In this way, the first three “1” bits of the train are

guaranteed to fill into the J bits although they may not be

properly stacked. Now to ensure no bits are counted twice,

the K bits are formed using the same inputs but with the

AND gates instead

 K0 = H2 I0 …….. (7)

 K1 = H1 I1……. (8)

 K2 = H0 I2…… (9)

If the train of “1”s is no more than three places

long, then all of the K bits will be “0” as the AND gate

inputs are three positions apart. If the train is longer than

three places long, then some of the AND gates will have

both inputs as “1”s as the AND gate inputs are three

positions apart. The number of AND gates that will have

this property will be three less than the length of the train of

“1”s. We notice that now J0 J1 J2 and K0K1K2 still contain

the same number of “1” bits as the input in total but now J

bits will be filled with ones before any of the K bits. We

must now stack J0 J1 J2 and K0K1K2 using two more 3-bit

stacking circuits. The outputs of these two circuits can then

be concatenated to form the stack outputs Y5. Y0.

http://www.jetir.org/

© 2018 JETIR September 2018, Volume 5, Issue 9 www.jetir.org (ISSN-2349-5162)

JETIR1809167 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 119

Fig. 3. Six-bit stacking example.

An example of this process is shown for an input

vector containing four “1” bits in Fig. 3. In this example,

first the H and I vectors are formed by stacking groups of

three input bits. Then, the H vector is reversed, forming a

continuous train of four “1” bits surrounded by zero bits.

Corresponding bits are OR-ed to form the J vector which is

full of “1” bits. Corresponding bits are AND-ed to form the

K vector which finds exactly one overlap. Then, the J and K

vectors are restacked to form the final 6-bit stack.

III.EXISTING SYSTEM

A.6:3 Counter based design

For a faster, more efficient count, we can use

intermediate values H, I and K to quickly compute each

output bit without needing the bottom layer of stackers. Call

the output bits C2, C1, and S in which C2, C1, S is the

binary representation of the number of “1” input bits.

To compute S, we note that we can easily

determine the parity of the outputs from the first layer of 3-

bit stackers. Even parity occurs in the H if zero or two “1”

bits appear in X0, X1, and X2.

Thus, He and Ie, which indicate even parity in the

H and I bits, are given by

He = H0 + H1H2 (10)

Ie = I0 + I1 I2. (11)

As S indicates odd parity over all of the input bits,

and because the sum of two numbers with different parities

is odd, we can compute B0 as

S = He ⊕ Ie. (12)

Fig. 4. A 6:3 counter based on symmetric stacking

Although this does incur one XOR gate delay, it is not on

the critical path. To compute C1, we note C1 = 1 when the

count is 2, 3, or 6. Therefore, there are two cases. First, we

need to check if we have at least two but no more than three

total inputs. We can use the intermediate H, I, and K vectors

for this. To check for at least two inputs we need to see

stacks of length two from either top level stacker, or two

stacks of length one, which yields H1 + I1 + H0 I0. Second,

we need to check if we have all six inputs as “1.” We can

check this by checking that all three of both the H and I bits

are set. As these are bit stacks, we simply check the

rightmost bit in the stack for this case, which yields H2 I2.

Altogether, this yield

C1 = (H1 + I1 + H0 I0) (K0 + K￣1 + K2) + H2 I2. (13)

We can easily calculate C2 as it should be set whenever we

have at least 4-bit set

C2 = K0 + K1 + K2.

B.7:3 Counter based design

The symmetric stacking method can be used to

create a 7:3 counter as well. The 7:3 counters are desirable

as they provide a higher compression ratio. The design of

the 7:3 counter involves computing outputs for C1 and C2

assuming both X6 = 0 (which matches the 6:3 counter) and

assuming X6 = 1. We compute the S output by adding one

additional XOR gate.

If X6 = 1, then C1 = 1 if the count of X0, . . . , X5 is

at least 1 but less than 3 or 5, which can be computed as C1

= (H0 + I0)J0 J1 J2 + H2 I1 + H1 I2. (15) Also, C2 = 1 if

the count of X0, . . . , X5 is at least 3 C2 = J0 J1 J2. Both

versions of C1 and C2 are computed and a mux is used to

select the correct version based on X6. has muxes on the

critical path. The 7:3 counter designs is shown in Fig. 5.

http://www.jetir.org/

© 2018 JETIR September 2018, Volume 5, Issue 9 www.jetir.org (ISSN-2349-5162)

JETIR1809167 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 120

Fig. 5. A 7:3 counter based on symmetric stacking

IV. PROPOSED SYSTEM

A. Wallace tree multiplier

This section discusses the design of counter based

Wallace (CBW) multiplier. The proposed algorithm uses a

readjusted form of partial product tree which is rearranged

as reverse pyramid [4]. Then the reduction is performed

using the 7:3, 6:3, 5:3, and 4:3 counters along with the FAs

and HAs. The CBW can perform the tree reduction in fewer

stages as compared to the traditional Wallace multipliers

[1]. Now, we will develop the equations to compute the

maximum rows in each stage of CBW multiplier and total

stages required for reduction process for N×N multiplier.

The first stage of an N × N multiplier has N rows. We

need to find the maximum rows in subsequent stages until

we are left with only two rows. Let us assume that the

maximum rows in stagei−1 are 16 and the number of rows

in each column are same. In order to perform the reduction

at column c, two 7:3 compressors are used which will

operate on 14 rows. The remaining two rows are reduced by

using a 2:2 compressor.

This will reduce the rows in column c from sixteen to three.

Similarly, the columns c − 1 and c − 2 are reduced by using

two 7:3 and one 2:2 compressor. The three compressors

used at column c−1 will produce three Cout1 bits which are

added to the column c of the stagei. This will increase the

rows in column c of stagei from 3 to 6. The two 7:3

compressors at column c − 2 will produce two Cout2 bits

which are also added to the column c of stagei. Hence, the

rows in column c of stagei will increase from 6 to 8.

It can be seen from the above example that the 2:2

compressor at column c−2 does not produce a Cout2 bit so

it has no effect on column c. The compression is performed

mainly by using 7:3 compressors, the other compressors are

used only if the rows in a column are not exact multiple of

seven. There will be one unprocessed row if the rows in

column c are equal to (n × 7) + 1, where n is any positive

integer.

Based on the observations of above example, we

can obtain the rows in stagei by adding

1) The number of traditional and proposed compressors

at column c and c − 1 of stagei−1.

2) The number of proposed compressors (7:3, 6:3, 5:3,

and 4:3) at column c − 2 of stagei−1.

3) The unprocessed row at column c of stagei−1.

The dot notation [11] is used to represent the partial

product tree of the CBW multiplier discussed in this section

as shown in Fig. 5. The right most column is called column

0. The counters in each column are represented by the boxes

around the dot products. The box enclosing seven, six, five,

four, three, and two dots represents 7:3, 6:3, 5:3, 4:3, 3:2,

and 2:2 counters, respectively. The stages are separated by a

thick horizontal line. The architecture of CBW multiplier is

based on the intelligent use of high speed counters. The Fig.

6 shows the dot diagram of a 16 ×16 CBW multiplier.

Fig. 6: Dot Diagram of CBW Multiplier

http://www.jetir.org/

© 2018 JETIR September 2018, Volume 5, Issue 9 www.jetir.org (ISSN-2349-5162)

JETIR1809167 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 121

B. Vedic Wallace tree multiplier

Multiplication methods are extensively discussed in

Vedic mathematics. Various tricks and short cuts are

suggested by VM to optimize the process. These methods

are based on concept of 1 Multiplication using deficits and

excess 2 Changing the base to simplify the operation.

Various methods of multiplication proposed in VM a)

UrdhvaTiryagBhyam - vertically and crosswise b) Nikhilam

navatashcharamam Dashatah: All from nine and last from

ten

Urdhva – Triyakbhyam is the general formula applicable to

all cases of multiplication and also in the division of a large

number by another large number. It means vertically and

crosswise. We discuss multiplication of two, 4 digit

numbers with this method [8-9]. Ex.1. the product of 1111

and 1111 using Triyakbhyam (vertically and crosswise) is

given below

Methodology of Parallel Calculation

V. SIMULATION RESULTS

1. EXISTING SYSTEM

A. 6 TO 3 STACKER 3 BIT

 RTL For Counter 6 To 3- Stacker 3- Bit

http://www.jetir.org/

© 2018 JETIR September 2018, Volume 5, Issue 9 www.jetir.org (ISSN-2349-5162)

JETIR1809167 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 122

 Technology Schematic for Counter 6to3-Stacker

 Simulation Results of Counter 6 To 3 Stacker-

3-Bit

 B. COUNTER 7 T0 3

 RTL For Counter 7 To 3

 Technology Schemetic For Counter 7 To 3

 Simulation Results of Counter 7 To 3 Stacker-

3-Bit

2. PROPOSED METHOD

A. WALLACE MULTIPLIER STACKER

 RTL for 8x8 Wallace Tree Multiplier

http://www.jetir.org/

© 2018 JETIR September 2018, Volume 5, Issue 9 www.jetir.org (ISSN-2349-5162)

JETIR1809167 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 123

 Technology Schematic for 8x8 Wallace Tree

Multiplier

 Simulation Results Schematic for 8x8 Wallace

Tree Multiplier

B. VEDIC WALLACE 128 BIT STACKER

 RTL for Vedic Wallace 128X128 bit stacker

 Simulation Results for Vedic Wallace 128X128 bit

stacker

VI. CONCLUSION

In this paper, we proposed a generic algorithm that can be

used to construct the Counter Based Wallace (CBW)

multiplier of any size. Here we have developed 8X8

Wallace tree multiplier stacker and also a highly efficient

method of multiplication – “Urdhva Tiryakbhyam Sutra”

based on Vedic mathematics. It is a method for hierarchical

multiplier design which clearly indicates the computational

advantages offered by Vedic methods.

Wallace tree multipliers provide a power-efficient

strategy for high speed multiplication. The use of high speed

7:3 counters in the Wallace tree reduction can further

improve the multiplier speed. And also we implement

128bit Vedic Wallace multiplier provide high speed and

consumes less power and more efficiently. Hence in

proposed method we have developed 8X8 Wallace tree

multiplier stacker and Vedic Wallace 128X128 bit stacker.

REFERENCESS

[1] C. S. Wallace, “A suggestion for a fast multiplier,” IEEE

Transactions on Electronic Computers, vol. EC-13, no. 1,

pp. 14–17, February 1964.

http://www.jetir.org/

© 2018 JETIR September 2018, Volume 5, Issue 9 www.jetir.org (ISSN-2349-5162)

JETIR1809167 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 124

[2] J. Fadavi-Ardekani, “M*n booth encoded multiplier

generator using optimized wallace trees,” IEEE

Transactions on Very Large Scale

Integration (VLSI) Systems, vol. 1, no. 2, pp. 120–125,

1993.

[3] H. Eriksson, P. Larsson-Edefors, M. Sheeran, M.

Sjalander, D. Johansson,

and M. Scholin, “Multiplier reduction tree with logarithmic

logic depth and regular connectivity,” in Proc.IEEE Int.

Symp. Circuits and Systems, 2006. ISCAS, Island of Kos,

May 2006, pp. 5–8.

[4] R. S. Waters and E. E. Swartzlander, “A reduced

complexity Wallace multiplier reduction,” IEEE

Transactions on Computers, vol. 59, no. 8, pp. 1134–1137,

August 2010.

[5] C. C. Foster and F. Stockton, “Counting responders in an

associative memory,” Computers, IEEE Transactions on,

vol. C-20, no. 12, pp. 1580–1583, Dec 1971.

[6] E. Swartzlander, “Parallel counters,” Computers, IEEE

Transactions on, vol. C-22, no. 11, pp. 1021–1024, Nov

1973.

[7] C. Vinoth, V. Bhaaskaran, B. Brindha, S.

Sakthikumaran, V. Kavinilavu, B. Bhaskar, M.

Kanagasabapathy, and B. Sharath, “A novel low power

and high speed wallace tree multiplier for risc processor,” in

Electronics Computer Technology (ICECT), 2011 3rd

International Conference on, vol. 1, April 2011, pp. 330–

334.

[8] K. Prasad and K. Parhi, “Low-power 4-2 and 5-2

compressors,” in Signals, Systems and Computers, 2001.

Conference Record of the Thirty- Fifth Asilomar Conference

on, vol. 1, Nov 2001, pp. 129–133 vol.1.

[9] C.-H. Chang, J. Gu, and M. Zhang, “Ultra low-voltage

low-power cmos 4-2 and 5-2 compressors for fast arithmetic

circuits,” Circuits and Systems I: Regular Papers, IEEE

Transactions on, vol. 51, no. 10, pp.

1985–1997, Oct 2004.

[10] M. Mehta, V. Parmar, and E. Swartzlander, “High-

speed multiplier design using multi-input counter and

compressor circuits,” in Computer Arithmetic, 1991.

Proceedings., 10th IEEE Symposium on, Jun 1991, pp.

43–50.

[11] L. Dadda, “Some schemes for parallel multipliers,”

Alta Frequenza, vol. 34, pp. 349–356, 1965.

[12] P. M. Kogge and H. S. Stone, “A parallel algorithm for

the efficient solution of a general class of recurrence

equations,” IEEE Transactions on Computers, vol. C-22,

no. 8, pp. 786–793, August 1973.

[13] J. Sklansky, “Conditional-sum addition logic,” IRE

Transactions on Electronic Computers, vol. EC-9, no. 2, pp.

226–231, 1960.

[14] R. P. Brent and H. T. Kung, “A regular layout for

parallel adders,” IEEE Transactions on Computers, vol. C-

31, no. 3, pp. 260–264, March 1982.

ABOUT AUTHORS

1. Miss M.Divya received B.Tech

degree from VEMU Institute of

Technology, P.Kothakota, Chittoor

Dist, A.P. Currently She is Pursuing

M.Tech degree (VLSID) in

Department of ECE in VEMU

Institute of Technology

P.Kothakota, Chittoor Dist, A.P, and

India.

 Her interested areas are VLSI, FPGA etc.

2. Mrs M.Poornima received B.Tech

degree from SKIT, Srikalhasti,

Chittoor Dist, A.P, and India. and

M.tech degree received from

JNTUA ,Anantapuramu, Anantapur

Dist, A.P, and India.

 Her interested areas are Digital Image Processing.

http://www.jetir.org/

