DESIGN OF PIPELINED RISC MIPS PROCESSOR (16-BIT) USING VLSI TECHNOLOGY

¹Nyamatulla M Patel, ²Pramod V Patil, ³Gazalatabassum M Alan, ⁴Priyanka B Done
¹Assistant Professor, ²Assistant Professor, ³ Student, ⁴Student
¹Department of Electronics and Communication Engineering
¹Hirasugar Institute of Technology, Nidasoshi-591236, Belagavi, Karnataka, India

Abstract: The main aim of this paper is to design and implement RISC MIPS processor using VLSI technology. The project involves simulation and synthesis. The processor is designed with Verilog HDL, synthesized using XILINX-13.1. A Reduced Instruction Set compiler (RISC) is a microprocessor that had been designed to perform a small set of instructions, with the aim of increasing the overall speed of the processor. The idea of this project was to create a RISC MIPS processor as a building block in Verilog HDL. Each block is separated by pipeline to speed up the processor. High level of complexity is easier to implement the function in software. The objective of project is to increase the speed and reduce the power consumption. Single cycle execution method applied to complete one instruction through all stages.

Index Terms: RISC, MIPS, Pipelined Processor, Verilog HDL

I. INTRODUCTION

Reduced Instruction Set Computers (RISCs) are now used for all types of computational tasks such as DSP, DIP etc. A RISC is a microprocessor that is designed to perform a smaller number of types of computer instruction so that it can operate at a higher speed. John von Neumann designed a Reduced Instruction Set Computer (RISC) includes separate data memory and program memory to execute a set of instructions. The aim of project is to implement the five pipelined stage processor using RISC and MIPS architecture. Using single cycle, processor executes instructions and increases the overall speed and reduces the power consumption. In this work, analyze MIPS instruction format, instruction execution path through all stages, control unit performance for each instruction. Project designed with RISC philosophy, for load and store separate instructions used. To avoid access of memory repeatedly, separate register bank is designed. The project is build using Verilog HDL. The code is synthesized and simulated using XILINX-13.1.

II. OBJECTIVES

- To increase instruction execution speed and to reduce the power consumption of RISC processor.
- To apply single cycle execution method to complete one instruction through all stages.

III. MOTIVATION

Reduced Instruction Set Computer is a type of microprocessor. RISC processors are also used in supercomputers such as 'k' computer and especially representing a major force in the UNIX workstation market as well as embedded processors. It reduces the transistor count of a MIPS processing unit by scaling down the bus and register width.

IV. LITERATURE SURVEY

SL. No	Author	Title	Technology	Limitations
1.	N.Alekya,	Design of 32-Bit RISC CPU	MIPS	VHDL language is used to implement the 32bit
	P.Ganesh	Based on MIPS		processor.
	Kumar			
2.	Galani Tina G.	Design and	Spartan 2E	A 32 bit RISC processor build using Xilinx
	Riya Saini and	Implementation of 32 – bit		virtex4 Tool for embedded and portable
	R.D.Daruwala	RISC Processor using Xilinx		applications required minimum area and
				minimum delay.
3.	Navneetkaur,	VHDL Design and Synthesis	Spartan 2	Four stage Pipelines used. 8bit and 16 bit
	Adesh Kumar,	of 64 bit RISC Processor		instruction set is used to access logical, arithmetic
	Lipika Gupta	System on Chip (SOC)		and memory, jump instructions.
4.	R. Uma	Design and Performance	Xlinix Tool	For sign multiplication Booth Multiplier is used
		analysis of 8-bit RISC		
		Processor		

Table1 Comparison of different technologies used for RISC implementation.

V. SYSTEM MODELING

Figure 1 illustrates the procedure to design a system. With the help of XILINX 13.1, all stages of processor are developed as a separate module using Verilog language. Bit file generation is important criteria to dump into any FPGA.

Figure 1: Generation of bit stream for FPGA

Construct five pipeline stages

The project includes instruction fetch stage (IF), decode stage (ID), execution stage (EX), data memory (MEM), write back (WB) stages. For jump instruction separate block is designed. Pipeline consists of the overlapping of set of instructions. Pipeline reduces the execution time of instructions. The processor executes an instruction in single cycle. Each instruction passes through all stages or passes according to instruction. Program counter loaded with the address it acts as a pointer to the program memory.

Figure 2: Five Stage Pipeline

Instruction Fetch

The program memory loaded with Instructions. The instruction fetched from memory. Each time program counter has the address of memory location. All fetched instructions passed to decoder stage through latch.

Instruction Decode

The Instruction Decode stage decodes the instruction. The six bit op-code is passed to the control unit to generate the signals according to instruction code. The data passed through decoder latch for execution as per signals generated by control unit. Sign extension unit used to extend the value according to control signals. If instruction is load or store type, immediate [15-0] bits extend to 32 bit for ALU. In decode stage Register Bank performs as cache memory to store the data for fast calculation. **Execute Stage**

In Execute stage, the instructions are executed. All arithmetic and logical operations perform by ALU. Type of operations are addition, subtraction, AND, OR etc.

Memory Access

Data memory is storage device accessed as per the load and store instruction. For load instruction, Data is loaded to register bank from memory. For store instruction, current data stores in the data memory.

Write back stage

The result writes back to the register file. All instructions passed via Write back stage. Except nops and store type of instruction.

Advantages:

- Easier to implement.
- Faster clock speed.
- > Power consumed per instruction execution is less.
- Simpler hardware.
- Shorter design cycle.
- Fewer transistors count for RISC cores.

Applications:

- Used in video processing, telecommunication and image.
- Used in digital signal processing.
- Used in high performance applications like servers (mobile).
- > Used in embedded applications where ultra low power consumption is needed.
- > Used in virtualization and memory management.

VI. RESULTS AND DISCUSSIONS

Manual Calculation:

Manual Calculation for 16 bit ALU: Consider two inputs at port1 and port2 of 16 bits each and Op-code of 3 bits. Port1= 111111100000000 Port2= 0000000011111111

Table 2 Manual Calculation of 16 Bit ALU

Opcode	Opcode	Result
	Description	
000	Addition	1111111111111111
001	Subtraction	111111100000001
010	AND	000000000000000
011	OR	111111111111111
100	EX-OR	111111111111111
101	NOT(port1)	000000011111111
110	Shift Left	111111100000000
	(Port1)	
111	Shift	0111111110000000
	Right(Port1)	

Manual Calculation for 16 bit Adder:

Let us consider two inputs A and B of 16 bits each and one input C of one bit. A=1010101010101010 B=1111000011110000 C=0 $Sum[i]= A[i]^B[i]^C[i]$ Cout= (A[i]&B[i]) | (B[i]&C[i]) | (C[i]&A[i]) $Cp=sum[0]^sum[1]^sum[2]^sum[3]^sum[4]^sum[5]^sum[6]^sum[7]^sum[8]^sum[9]^sum[10]^sum[11]^sum[12]^sum[13]^sum[14]^sum[15]$

Thus output is

Cp=1, Sum=0101100111011001, Cout=0000011100000111

A[i]	B[i]	Sum[i]	Cout
0	0	0	0
1	0	1	0
0	0	0	0
1	0	1	0
0	1	1	0
1	1	0	1
0	1	0	1
1	1	1	1
0	0	1	0
1	0	1	0
0	0	0	0
1	0	1	0
0	1	1	0
1	1	0	1
0	1	0	1
1	1	1	1

Table 3 Manual Calculation of 16 Bit Adder

Manual Calculation for 16 Bit Logic Unit:

Consider two inputs ain & bin each of 16 bits and 2 bit selection line sel. Five 16 bit Outputs and_out, or_out, xor_out, xnor_out and res_out

- For sel=00 res_out=and_out
 - sel=01 res_out=or_out
 - sel=10 res_out=xor_out
 - sel=11 res_out=xnor_out

Table 4 Manual Calculation of 16 Bit Logic Unit

ain[i]	bin[i]	and_out	or_out	xor_out	xnor_ou
					t
0	0	0	0	0	1
1	0	0	1	1	0
0	1	0	1	1	0
1	1	1	1	0	1
0	0	0	0	0	1
1	0	0	1	1	0
0	1	0	1	1	0
1	1	1	1	0	1
0	0	0	0	0	1
1	0	0	1	1	0
0	1	0	1	1	0
1	1	1	1	0	1
0	0	0	0	0	1
1	0	0	1	1	0
0	1	0	1	1	0
1	1	1	1	0	1

RISC Processor (16-Bit ALU)

Figure 3: Top Module of 16-Bit ALU

Figure 5: Technological Schematic View of 16-Bit ALU

			elefőb 1		
	Hoonger_PORTINE_PORTINE_equal_5_1	MmuscRq_teas_columnt_te	Mmuc_n 00301	Medd_H00231	Neus ALUDUTI
	Mange_PORT(13_PORT2(13_epail_3_)	Menz SNQ, La, BLS, 300 (MUX, La)	Mmuc_100301	Next rittal	
					Menaz ALLIDUT1
		الدين المرواق و 100 مالي المروا مرواق و 100 مالي مالي		Nut_GRO_L_CNO_L_CUTI	Minuz_canyl
		ار 2 کال و (۵۸۵ و (۵۸۵ کال		Net GIO J. SNO. J. Mark OUTI	Mmuz_carry1
					i i
				-ñ.	
				хят_ано	
1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4					
15-41000_00000000000000000000000000000					
alulõb				Mmut120 211	
			alu 165		

Figure 4: RTL Schematic View of 16-Bit ALU

Name	Value	 2,999,995 ps	2,999,996 ps	2,999,997 ps	2,999,998 ps	2,999,999 ps
PORT1[15:0]	1111111111111		1111	11111111111		
PORT2[15:0]	000000000000000000000000000000000000000		0000	0000000000		
🕨 <table-of-contents> ALUCON[2:0]</table-of-contents>	010			010		
🌆 carry	0					
ALUOUT[15:0]	0000000000000		0000	0000000000		
퉵 temp	0					

Figure 6: Simulation Results of 16-Bit ALU

Adder:

Device Utilization Summary (estimated values)					
Logic Utilization Used Available Utilization					
Number of Slice LUTs	66	178800		0%	
Number of fully used LUT-FF pairs	0	66		0%	
Number of bonded IOBs	52	600		8%	
16-Bit					

Figure 7: Top Module of 16-Bit Adder

Table 5 Timing Report of 16-Bit ALU

Figure 8: RTL Schematic View of 16-Bit Adder

Name	Value		50 us	55 us	60 us	65 us	70 us
🖓 pc_sei	1						
🔓 pc wrt	1						
🔓 addr_sel	1						
1 ir_wrt	1						
1 rega_sel	1						
The reg wrt	1						
opa_set	1						
1 re	1						
1 we	0						
Like rat	•						
🕨 📑 data self1:01	11			1			
opb sel[1:0]	11			1			
alu sel[2:0]	111	101	X	110	-x	111	
l clk	0						
► Sirout(3:01	1111		aana ana ana ay ahaan	11	a a a a a a a a a a a a a a a a a a a		
outA[15:0]	00111100001			001111000	0111100		
offsetdata[15:0]	00000000000			00000000	00001111		
▶ ■ memout[15:0]	00000000000			00000000	00000110		
▶ ■ opa[15:0]	11100011100			11100011	0001110		
▶ ■ Ra[15:0]	00001111111			00001111	1100000		
🕨 📑 adata[15:0]	00111100001			00111100	0111100		
▶ ■ Rb[15:0]	00000000111			00000000	11111111		
▶ 📑 bdata[15:0]	00000000111			00000000	1110000		
▶ 式 opb[15:0]	000000000000			00000000	0011000		
▶ 📑 zero[15:0]	00000000000			0000000	0000000		
💽 🛁 one[15:0]	00000000000			00000000	0000001		

Figure 9: Technological Schematic View 16-Bit Adder

Table 6 Timing Report of 16-Bit Adder					
Device Utilization Summary (estimated values)					
Logic Utilization	Used	1	Available	Utilization	
Number of Slice LUTs		28	178800		0%
Number of fully used LUT-FF pairs		0	28		0%
umber of bonded IOBs 51 600					8%

16-Bit Logic Unit:

Figure 11: Top Module of 16-Bit Logic Unit

Figure 13: Technological Schematic View of 16-Bit Logic Unit

bgic_unt:1

Figure 12: RTL Schematic View of 16-Bit Logic Unit

Name	Value	4,999,995 ps 4,999,996 ps 4,999,997 ps 4,999,998 ps 4,999,999 ps
🕨 📲 ain[15:0]	10101010101	10101010101010
🕨 📑 bin[15:0]	11001100110	110011001100
🕨 <table-of-contents> sel[1:0]</table-of-contents>	11	11
▶ 👫 res_out[15:0]	10011001100	100110011001
Mand_out[15:0]	10001000100	1000 1000 1000 1000
▶ 號 or_out[15:0]	11101110111	111011101110
▶ 🐝 xor_out[15:0]	01100110011	011001100110
▶ 號 xnor_out[15:0]	10011001100	100110011001

Figure 14: Simulation Results of 16-Bit Logic Unit

Table 7 Timing Report of 16-Bit Logic Unit

Device Utilization Summary (estimated values)					
Logic Utilization	Used	Available	Utilization		
Number of Slice LUTs	16	178800		0%	
Number of fully used LUT-FF pairs	0	16		0%	
Number of bonded IOBs	50	600		8%	

16-Bit Control Unit:

Figure 15: Top Module of 16-Bit Control Unit

<u>Ö</u>	
<u></u>	
#±	
+.Bi	
a <u>.ē.</u>	
4. <u>6</u> .	
+ <u>-£-</u>	
1- <u>1</u> -	
- <u>.</u>	

Figure 17: Technological Schematic View of 16-Bit Control Unit

				-
		والمتخصر		
				0
الككر الأككر كمعير				
		1 *		- U
				- 1
				- <u>-</u>
		T T		
			202	-0
		25. 2		-
		25 8		
				-
		D D		
				
		1		
				_
	6			

Figure 16: RTL Schematic view of 16-Bit Control Unit

Figure 18: Simulation Results 16-Bit Control Unit

Table 8	Timing	Report	of 16-	Bit G	Control	Unit
I doite o	1	report	01 10	DIC	control	Cint

Device Utilization Summary							
Slice Logic Utilization	Used	Available	Utilization	Note(s)			
Number of Slice Registers	17	357,600	1%				
Number used as Flip Flops	15						
Number used as Latches	2						
Number used as Latch-thrus	0						
Number used as AND/OR logics	0						
Number of Slice LUTs	28	178,800	1%				
Number used as logic	28	178,800	1%				
Number using O6 output only	22						
Number using O5 output only	0						
Number using O5 and O6	6						
Number used as ROM	0						
Number used as Memory	0	55,600	0%				
Number used exclusively as route-thrus	0						
Number of occupied Slices	13	44,700	1%				
Number of LUT Flip Flop pairs used	29						
Number with an unused Flip Flop	13	29	44%				
Number with an unused LUT	1	29	3%				
Number of fully used LUT-FF pairs	15	29	51%				
Number of upique control sets	6						

JETIR1809170 Journal of Emerging Technologies and Innovative Research (JETIR) <u>www.jetir.org</u> 149

16-Bit Data Path:

Figure 19: Top Module of 16-Bit Data Path

Figure 21: Technological Schematic View of 16-Bit Data Path

Figure 20: RTL Schematic View of 16-Bit Data Path

									7
N	me		Value		50 us	155 us	160 us	165 us	70 us
144	16	nr sel	value 1						
		pc_set	1						
	10	addr sel	1						
	10	ir wrt	1						
	u,	rega_sel	1						
	19	reg_wrt	1						
	1	opa_sel	1						
	19	re	1						
	1,	we	0						
	η.	rst	0						
٠	Ĩ	data_sel[1:0]	11			1			
٠		opb_sel[1:0]	11			1			
٨	1	alu_sel[2:0]	111	101		110		111	
	z	rik	0		(main para para para para pa		ngan ngana jana jana jana ja		
٠	Ō	Irout[3:0]	1111			11	.1		
٠	n	outA[15:0]	00111100001			00111100	0111100		
٠	0	offsetdata[15:0	00000000000			0000000	00001111		
۵	0	memout[15:0]	00000000000			0000000	00000110		
٠	0	opa[15:0]	11100011100			1110001	10001110		
		Ra[15:0]	00001111111			0000111	11100000		
		adata[15:0]	00111100001			00111100	00111100		
	Ó	Rb[15:0]	00000000111			0000000	1111111		
۲	0	bdata[15:0]	00000000111			0000000	11110000		
٠	6	opb[15:0]	00000000000			0000000	000011000		
	6	zero[15:0]	00000000000			0000000	0000000		
	-	one[15:0]	00000000000			0000000	00000001		

Figure 22: Simulation Results of 16-Bit Data Path

Device Utilization Summary (estimated values)						
Logic Utilization	Used	Available	Utilization			
Number of Slice Registers	116	357600		0%		
Number of Slice LUTs	264	178800		0%		
Number of fully used LUT-FF pairs	96	284		33%		
Number of bonded IOBs	38	600		6%		
Number of BUFG/BUFGCTRLs	2	32		6%		

Table 9 Timing Report of 16-Bit Data-path

Program execution on FPGA kit:

Figure 23: Execution of 16-Bit ALU

Figure 24: Execution of 16-Bit Adder

Figure 25: Execution of 16-Bit Logic Unit

Figure 26: Execution of 16-Bit Control Unit

Comparison of RISC with pipeline and RISC without pipeline:

Table 10 Comparison of time delay and power dissipation for RISC processor and proposed RISC processor

Design Type	No. of bits	Time delay(ns)	Power dissipation (mWatt)
RISC Processor	16 bit	22.323ns	0.87
Implemented RISC Processor	16 bit	16.732ns	0.098

Future Scope and Conclusion:

The RISC MIPS architecture of pipelined 16 bit is executed successfully and got the correct results. The project has reduced the power consumption considerably, and increased the speed of execution. The program has given correct results for number of times. The project code is much efficient in terms of number of bits and in reducing the amount complexity accomplished. This project can be further modified to obtain the results for the numbers with the numbers of bits greater than 32 bit and 64 bit and memory management.

References:

1] Galani Tina G., Riya Saini and R. D. Daruwala, Design and Implementation of 32-bit RISC Processor using Xilinx, IJITEE Volume-5, Issue-1, August 2013.

2] J. Poornima, G. V. Ganesh, M. jyothi, M. Sahithi, A. Jhansi Rani B.RaghuKant," Design and Implementation of Pipelined 32-bit Advanced RISC Processor for Various D. S. P Applications", (IJCSIT)International Journal of Computer Sceince and Information Technologies, Vol. 3(1) 2012, 3208-3213.

3] Marri Mounika, Aleti Shankar, Design and Implementation of 32-bit RISC (MIOS) Processor, International Journal of Engineering Trends and Technology(IJETT) Volume-4 Issue 10-Oct 2013.

4] N-Alekya, P. Ganesh Kumar, Design of 32-bit RISC CPU Based on MIPS, JGRCS Volume 2, No 9, September 2011.

5] Navneet Kaur, Adesh Kumar, Lipika Gupta, VHDL Design and synthesis of 64-bit RISC Processor System on Chip (SoC), IOSR Journal of VLSI and Signal Processing(IOSR_JVSP) Volume-3, Issue 5 (Nov-Dec 2013), PP 31-41 e-ISSN:2319-4200, p-ISSN No:2319-4197.

6] Preetam Bhosale, Hari Krishna Murti, FPGA Implementation of Low Power Pipelined 32-bit RISC Processor, IJITEE Volume-1, Issue-3, August 2012.

7] R. Uma, Design and Performance Analysis of 8-bit RISC Processor using Xilinx Tool, International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622, Vol 2, Issue 2, Mar-Apr 2012, pp. .053-058.

