
© 2018 JETIR September 2018, Volume 5, Issue 9 www.jetir.org (ISSN-2349-5162)

JETIR1809170 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 143

DESIGN OF PIPELINED RISC MIPS PROCESSOR

(16-BIT) USING VLSI TECHNOLOGY

1Nyamatulla M Patel, 2Pramod V Patil, 3Gazalatabassum M Alan, 4Priyanka B Done

1Assistant Professor, 2Assistant Professor, 3 Student, 4Student
1Department of Electronics and Communication Engineering

1Hirasugar Institute of Technology, Nidasoshi-591236, Belagavi, Karnataka, India

Abstract: The main aim of this paper is to design and implement RISC MIPS processor using VLSI technology. The project

involves simulation and synthesis. The processor is designed with Verilog HDL, synthesized using XILINX-13.1. A Reduced

Instruction Set compiler (RISC) is a microprocessor that had been designed to perform a small set of instructions, with the aim of

increasing the overall speed of the processor. The idea of this project was to create a RISC MIPS processor as a building block in

Verilog HDL. Each block is separated by pipeline to speed up the processor. High level of complexity is easier to implement the

function in software. The objective of project is to increase the speed and reduce the power consumption. Single cycle execution

method applied to complete one instruction through all stages.

Index Terms: RISC, MIPS, Pipelined Processor, Verilog HDL

I. INTRODUCTION

Reduced Instruction Set Computers (RISCs) are now used for all types of computational tasks such as DSP, DIP etc. A

RISC is a microprocessor that is designed to perform a smaller number of types of computer instruction so that it can operate at a

higher speed. John von Neumann designed a Reduced Instruction Set Computer (RISC) includes separate data memory and

program memory to execute a set of instructions. The aim of project is to implement the five pipelined stage processor using

RISC and MIPS architecture. Using single cycle, processor executes instructions and increases the overall speed and reduces the

power consumption. In this work, analyze MIPS instruction format, instruction execution path through all stages, control unit

performance for each instruction. Project designed with RISC philosophy, for load and store separate instructions used. To avoid

access of memory repeatedly, separate register bank is designed. The project is build using Verilog HDL. The code is synthesized

and simulated using XILINX-13.1.

II. OBJECTIVES

 To increase instruction execution speed and to reduce the power consumption of RISC processor.

 To apply single cycle execution method to complete one instruction through all stages.

 III. MOTIVATION

Reduced Instruction Set Computer is a type of microprocessor. RISC processors are also used in supercomputers such as ‘k’

computer and especially representing a major force in the UNIX workstation market as well as embedded processors. It reduces

the transistor count of a MIPS processing unit by scaling down the bus and register width.

IV. LITERATURE SURVEY

Table1 Comparison of different technologies used for RISC implementation.

SL. No Author Title Technology Limitations

1. N.Alekya,

P.Ganesh

Kumar

Design of 32-Bit RISC CPU

Based on MIPS

MIPS VHDL language is used to implement the 32bit

processor.

2. Galani Tina G.

Riya Saini and

R.D.Daruwala

Design and

Implementation of 32 – bit

RISC Processor using Xilinx

Spartan 2E A 32 bit RISC processor build using Xilinx

virtex4 Tool for embedded and portable

applications required minimum area and

minimum delay.

3. Navneetkaur,

Adesh Kumar,

Lipika Gupta

VHDL Design and Synthesis

of 64 bit RISC Processor

System on Chip (SOC)

Spartan 2 Four stage Pipelines used. 8bit and 16 bit

instruction set is used to access logical, arithmetic

and memory, jump instructions.

4. R. Uma Design and Performance

analysis of 8-bit RISC

Processor

Xlinix Tool For sign multiplication Booth Multiplier is used

http://www.jetir.org/

© 2018 JETIR September 2018, Volume 5, Issue 9 www.jetir.org (ISSN-2349-5162)

JETIR1809170 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 144

V. SYSTEM MODELING

Figure 1 illustrates the procedure to design a system. With the help of XILINX 13.1, all stages of processor are developed as a

separate module using Verilog language. Bit file generation is important criteria to dump into any FPGA.

Figure 1: Generation of bit stream for FPGA

Construct five pipeline stages

The project includes instruction fetch stage (IF), decode stage (ID), execution stage (EX), data memory (MEM), write back (WB)

stages. For jump instruction separate block is designed. Pipeline consists of the overlapping of set of instructions. Pipeline reduces

the execution time of instructions. The processor executes an instruction in single cycle. Each instruction passes through all stages

or passes according to instruction. Program counter loaded with the address it acts as a pointer to the program memory.

Figure 2: Five Stage Pipeline

Instruction Fetch

The program memory loaded with Instructions. The instruction fetched from memory. Each time program counter has the address

of memory location. All fetched instructions passed to decoder stage through latch.

Instruction Decode

The Instruction Decode stage decodes the instruction. The six bit op-code is passed to the control unit to generate the signals

according to instruction code. The data passed through decoder latch for execution as per signals generated by control unit. Sign

extension unit used to extend the value according to control signals. If instruction is load or store type, immediate [15-0] bits

extend to 32 bit for ALU. In decode stage Register Bank performs as cache memory to store the data for fast calculation.

Execute Stage

In Execute stage, the instructions are executed. All arithmetic and logical operations perform by ALU. Type of operations are

addition, subtraction, AND, OR etc.

 Design Entry in Verilog to create
modules

Functional simulation of each
module

 Design of a Stage

 Design all five stages

Synthesize and optimize the
Design

 Mapping the design Translate the Design

 Generating bit file

 FPGA

Placing
and

Routing

http://www.jetir.org/

© 2018 JETIR September 2018, Volume 5, Issue 9 www.jetir.org (ISSN-2349-5162)

JETIR1809170 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 145

Memory Access

Data memory is storage device accessed as per the load and store instruction. For load instruction, Data is loaded to register bank

from memory. For store instruction, current data stores in the data memory.

Write back stage

The result writes back to the register file. All instructions passed via Write back stage. Except nops and store type of instruction.

Advantages:

 Easier to implement.

 Faster clock speed.

 Power consumed per instruction execution is less.

 Simpler hardware.

 Shorter design cycle.

 Fewer transistors count for RISC cores.

Applications:

 Used in video processing, telecommunication and image.

 Used in digital signal processing.

 Used in high performance applications like servers (mobile).

 Used in embedded applications where ultra low power consumption is needed.

 Used in virtualization and memory management.

VI. RESULTS AND DISCUSSIONS

Manual Calculation:

 Manual Calculation for 16 bit ALU:

Consider two inputs at port1 and port2 of 16 bits each and Op-code of 3 bits.

 Port1= 1111111100000000

 Port2= 0000000011111111

Table 2 Manual Calculation of 16 Bit ALU

Opcode Opcode

Description

Result

000 Addition 1111111111111111

001 Subtraction 1111111000000001

010 AND 0000000000000000

011 OR 1111111111111111

100 EX-OR 1111111111111111

101 NOT(port1)

0000000011111111

110 Shift Left

(Port1)

1111111000000000

111 Shift

Right(Port1)

0111111110000000

Manual Calculation for 16 bit Adder:

Let us consider two inputs A and B of 16 bits each and one input C of one bit.

A=1010101010101010

B=1111000011110000

C=0

Sum[i]= A[i]^B[i]^C[i]

Cout= (A[i]&B[i]) | (B[i]&C[i]) | (C[i]&A[i])

Cp=sum[0]^sum[1]^sum[2]^sum[3]^sum[4]^sum[5]^sum[6]^sum[7]^sum[8]^sum[9]^sum[10]^sum[11]^sum[12]^sum[13]^

sum[14]^sum[15]

Thus output is

Cp=1, Sum=0101100111011001, Cout=0000011100000111

http://www.jetir.org/

© 2018 JETIR September 2018, Volume 5, Issue 9 www.jetir.org (ISSN-2349-5162)

JETIR1809170 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 146

Table 3 Manual Calculation of 16 Bit Adder

A[i] B[i] Sum[i] Cout

0 0 0 0

1 0 1 0

0 0 0 0

1 0 1 0

0 1 1 0

1 1 0 1

0 1 0 1

1 1 1 1

0 0 1 0

1 0 1 0

0 0 0 0

1 0 1 0

0 1 1 0
1 1 0 1

0 1 0 1

1 1 1 1

Manual Calculation for 16 Bit Logic Unit:

Consider two inputs ain & bin each of 16 bits and 2 bit selection line sel.

Five 16 bit Outputs and_out, or_out, xor_out, xnor_out and res_out

For sel=00 res_out=and_out

 sel=01 res_out=or_out

 sel=10 res_out=xor_out

 sel=11 res_out=xnor_out

Table 4 Manual Calculation of 16 Bit Logic Unit

ain[i] bin[i] and_out or_out xor_out xnor_ou

t

0 0 0 0 0 1

1 0 0 1 1 0

0 1 0 1 1 0

1 1 1 1 0 1

0 0 0 0 0 1

1 0 0 1 1 0

0 1 0 1 1 0

1 1 1 1 0 1

0 0 0 0 0 1

1 0 0 1 1 0

0 1 0 1 1 0

1 1 1 1 0 1

0 0 0 0 0 1

1 0 0 1 1 0

0 1 0 1 1 0

1 1 1 1 0 1

http://www.jetir.org/

© 2018 JETIR September 2018, Volume 5, Issue 9 www.jetir.org (ISSN-2349-5162)

JETIR1809170 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 147

RISC Processor (16-Bit ALU)

 Figure 3: Top Module of 16-Bit ALU Figure 4: RTL Schematic View of 16-Bit ALU

Figure 5: Technological Schematic View of 16-Bit ALU Figure 6: Simulation Results of 16-Bit ALU

Table 5 Timing Report of 16-Bit ALU

16-Bit Adder:

 Figure 7: Top Module of 16-Bit Adder Figure 8: RTL Schematic View of 16-Bit Adder

http://www.jetir.org/

© 2018 JETIR September 2018, Volume 5, Issue 9 www.jetir.org (ISSN-2349-5162)

JETIR1809170 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 148

Figure 9: Technological Schematic View 16-Bit Adder Figure 10: Simulation Results of 16-Bit Adder

Table 6 Timing Report of 16-Bit Adder

 16-Bit Logic Unit:

Figure 11: Top Module of 16-Bit Logic Unit Figure 12: RTL Schematic View of 16-Bit Logic Unit

Figure 13: Technological Schematic View of 16-Bit Logic Unit Figure 14: Simulation Results of 16-Bit Logic Unit

http://www.jetir.org/

© 2018 JETIR September 2018, Volume 5, Issue 9 www.jetir.org (ISSN-2349-5162)

JETIR1809170 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 149

Table 7 Timing Report of 16-Bit Logic Unit

16-Bit Control Unit:

 Figure 15: Top Module of 16-Bit Control Unit Figure 16: RTL Schematic view of 16-Bit Control Unit

Figure 17: Technological Schematic View of 16-Bit Control Unit Figure 18: Simulation Results 16-Bit Control Unit

Table 8 Timing Report of 16-Bit Control Unit

http://www.jetir.org/

© 2018 JETIR September 2018, Volume 5, Issue 9 www.jetir.org (ISSN-2349-5162)

JETIR1809170 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 150

16-Bit Data Path:

 Figure 19: Top Module of 16-Bit Data Path Figure 20: RTL Schematic View of 16-Bit Data Path

Figure 21: Technological Schematic View of 16-Bit Data Path Figure 22: Simulation Results of 16-Bit Data Path

 Table 9 Timing Report of 16-Bit Data-path

http://www.jetir.org/

© 2018 JETIR September 2018, Volume 5, Issue 9 www.jetir.org (ISSN-2349-5162)

JETIR1809170 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 151

Program execution on FPGA kit:

 Figure 23: Execution of 16-Bit ALU Figure 24: Execution of 16-Bit Adder

 Figure 25: Execution of 16-Bit Logic Unit Figure 26: Execution of 16-Bit Control Unit

Comparison of RISC with pipeline and RISC without pipeline:

Table 10 Comparison of time delay and power dissipation for RISC processor and proposed RISC processor

Design Type

No. of bits

 Time delay(ns)

Power dissipation (mWatt)

RISC Processor

16 bit

22.323ns

0.87

Implemented RISC Processor

16 bit

16.732ns

0.098

Future Scope and Conclusion:

The RISC MIPS architecture of pipelined 16 bit is executed successfully and got the correct results. The project has

reduced the power consumption considerably, and increased the speed of execution. The program has given correct results for

number of times. The project code is much efficient in terms of number of bits and in reducing the amount complexity

accomplished. This project can be further modified to obtain the results for the numbers with the numbers of bits greater than 32

bit and 64 bit and memory management.

http://www.jetir.org/

© 2018 JETIR September 2018, Volume 5, Issue 9 www.jetir.org (ISSN-2349-5162)

JETIR1809170 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 152

References:

1] Galani Tina G., Riya Saini and R. D. Daruwala, Design and Implementation of 32-bit RISC Processor using Xilinx, IJITEE Volume-5, Issue-1, August 2013.

2] J. Poornima, G. V. Ganesh, M. jyothi, M. Sahithi, A. Jhansi Rani B.RaghuKant,” Design and Implementation of Pipelined 32-bit Advanced RISC Processor for
Various D. S. P Applications”, (IJCSIT)International Journal of Computer Sceince and Information Technologies, Vol. 3(1) 2012, 3208-3213.

3] Marri Mounika, Aleti Shankar, Design and Implementation of 32-bit RISC (MIOS) Processor, International Journal of Engineering Trends and
Technology(IJETT) Volume-4 Issue 10-Oct 2013.

4] N-Alekya, P. Ganesh Kumar, Design of 32-bit RISC CPU Based on MIPS, JGRCS Volume 2, No 9, September 2011.

5] Navneet Kaur, Adesh Kumar, Lipika Gupta, VHDL Design and synthesis of 64-bit RISC Processor System on Chip (SoC), IOSR Journal of VLSI and Signal

Processing(IOSR_JVSP) Volume-3, Issue 5 (Nov-Dec 2013), PP 31-41 e-ISSN:2319-4200, p-ISSN No:2319-4197.

6] Preetam Bhosale, Hari Krishna Murti, FPGA Implementation of Low Power Pipelined 32-bit RISC Processor, IJITEE Volume-1, Issue-3, August 2012.

7] R. Uma, Design and Performance Analysis of 8-bit RISC Processor using Xilinx Tool, International Journal of Engineering Research and Applications (IJERA)

ISSN: 2248-9622, Vol 2, Issue 2, Mar-Apr 2012, pp. .053-058.

http://www.jetir.org/

