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Abstract: Heat transfer is a subject of widespread 

interest to the engineering students and technicians 

engaged in the design, construction, and operation 

of equipment required to exchange heat in 

scientific and industrial technology. In many 

situations of practical importance, heat is generated 

at a uniform rate itself within the conducting 

medium and is lost from its surface to the 

surroundings. The heat generated has to be 

controlled, otherwise, the rise in temperature 

resulting from heat produced within the conducting 

medium results in the failure of the medium. The 

distribution of temperature within the uniform 

conducting bar and the heat that removed by the 

uniform conducting bar from the heat source 

maintained at a higher temperature and lost it to the 

surroundings assume significant importance in the 

design and construction of thermal systems. In this 

paper, we will discuss the distribution of 

temperature and the heat flow along the length of a 

uniform conducting bar connected between two 

heat sources maintained at different temperatures 

by solving the differential equation describing the 

distribution of temperature along uniform 

conducting bar via Laplace transform method.  
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Introduction: 

Heat transfer is a subject of widespread interest to 

the engineering students and technicians engaged 

in the design, construction and operation of 

equipment required to exchange heat in scientific 

and industrial technology. Heat is one of the forms 

of energy which transfers by virtue of temperature 

gradient from a region at a higher temperature to 

another region at a lower temperature i.e. it flows 

in the direction of decreasing temperature, with a 

negative temperature gradient. There are three 

modes which transfer heat from one region of the 

medium to another namely- conduction, 

convection and radiation. The first two modes of 

heat transfer are dominant in many practical fields 

while the radiation mode of heat transfer is 

significant at high temperatures. In conduction 

mode, heat energy transfers from a region of the 

medium at a higher temperature to another region 

at a lower temperature without any macroscopic 

motion in the medium. Fourier’s law is the basic 

law of conduction of heat and is expressed in 

differential form as 𝐻 =  −𝑘𝑎
𝑑𝑇

𝑑𝑦
 , where k is the 

thermal conductivity of the material of the uniform 

conducting bar, a is the area of the cross-section of 

the conducting medium, H is the rate of conduction 

of heat in the direction of flow of heat and 
𝑑𝑇

𝑑𝑦
  is the 

temperature gradient. The negative sign indicates 

that the heat is flowing in a direction of decrease of 

temperature. In convection mode, heat energy 

transfers from one region of medium to another 

with the macroscopic motion in the medium.  In 

many situations of practical importance, heat is 

generated at a uniform rate itself within the 

conducting medium. For example, electrical 

energy is converted into thermal energy in the 

current carrying conductor by resistance heating in 

the conductor, energy is liberated due to 

exothermic reactions occurring within the medium 

and so on.  The rate of heat generated has to be 

controlled, otherwise, the rise in temperature 

resulting from it lead to the failure of the 

conducting medium. The distribution of 

temperature within the uniform conducting bar and 

the heat loss by it to its surroundings assume 

significant importance in the design and 

construction of thermal systems. The temperature 

distribution and the heat flow along the uniform 

conducting bar connected between two heat 

sources at different temperatures can be derived by 

solving the differential equation representing the 
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distribution of temperature along the uniform 

conducting bar via the Matrix method. 

Eigen values and Eigen vectors: 

If B is any square matrix of order n with 

elements 𝑏𝑖𝑗, we can obtain a column matrix Y and 

a constant ⋋ such that BY = ⋋Y or BY - ⋋I Y = 0 

or |𝐵 − ⋋ 𝐼|Y = 0 

This matrix equation represents n homogeneous 

linear equations: 

(𝑏11 −⋋) 𝑦1 +  𝑏12 𝑦2 +  𝑏13 𝑦3 + ⋯ +  𝑏1𝑛 𝑦𝑛 =
 0  

𝑏21 𝑦1 +  (𝑏22 −⋋) 𝑦2 +  𝑏23 𝑦3 + ⋯ +  𝑏2𝑛 𝑦𝑛 =
 0  
………………………………………………

𝑏𝑛1 𝑦1 +  𝑏𝑛2 𝑦2 +  𝑏𝑛3 𝑦3 + ⋯ +  (𝑏𝑛𝑛 −⋋
) 𝑦𝑛 =  0, which will have a non – trivial solution 

only if the determinant of the coefficients vanishes 

i.e.  

|

(𝑏11 −⋋) 𝑏12 … … … . 𝑏1𝑛

𝑏21

… … … .
(𝑏22 −⋋). . .

… … … .
… . 𝑏2𝑛

… … …
𝑏𝑛1 𝑏𝑛2 … … … . (𝑏𝑛𝑛 −⋋)

|= 0 

 

When we expand the determinant we will get nth 

degree equation in ⋋, which is known as the 

characteristic equation of the matrix B. The roots 

of the characteristic equation of matrix B i.e. 

⋋𝑖 (𝑤ℎ𝑒𝑟𝑒 𝑖 = 1, 2, 3, … . . 𝑛) are called Eigen 

values or latent roots. Corresponding to each Eigen 

value, the characteristic equation of matrix B will 

have a non-zero solution Y = [

 𝑦1
 𝑦2

…
 𝑦𝑛

] (a column 

matrix), which is known as Eigen vector. 

 

Formulation: 

Governing differential equation: 

To derive the differential equation describing the 

distribution of temperature along the uniform 

conducting bar, we consider a conducting bar 

having length L, uniform area of cross-section ‘a’ 

and perimeter ‘P’ connected between two heat 

sources 𝑅1  and 𝑅2 at points y = 0  and y = L. The 

heat sources are maintained at fixed temperatures 

𝑇1 and 𝑇2 respectively. If the temperature of the 

surroundings of the uniform conducting bar is 

denoted by 𝑇𝑠 and is kept constant, then the 

convective heat will flow from the bar to the 

surroundings which lead to a heat loss from the 

uniform conducting bar to its surroundings. 

 
Let us consider an infinitesimal section of 

thickness ∆𝑦 of the uniform conducting bar, 

located at a distance of y from the source 𝑅1 at 

higher temperature as shown in figure 1. 

Heat conducted into the element at plane y is 

given by 

(𝐻𝑦)𝑖𝑛   =  − k a [𝐷𝑦𝑇(𝑦)] 𝑦   ………. (1) 

 𝐷𝑦 ≡  
𝑑

𝑑𝑦
 

Where T(y) is the temperature of the uniform 

conducting bar and is a function of variable y. It is 

assumed to be constant for the infinitesimal section 

of the uniform conducting bar. 

Heat conducted out of the element at plane (y +∆𝑦) 

is given by 

(𝐻𝑦+∆𝑦)𝑜𝑢𝑡  =  − k a [𝐷𝑦𝑇(𝑦)] 𝑦+∆𝑦  

Or  

(𝐻𝑦+∆𝑦)𝑜𝑢𝑡 =  − 𝑘𝑎𝐷𝑦{𝑇(𝑦) +  [𝐷𝑦𝑇(𝑦)] ∆𝑦} 

                                                           .... (2) 

Heat convected of the element of length ∆𝑦 

between the planes at y and y +∆𝑦 is given by        

           H convected = 𝜎 P ∆𝑦[𝑇(𝑦) − 𝑇𝑠] …. (3) 

Where k is the thermal conductivity of the material 

of uniform conducting bar and 𝜎 is the coefficient 

of heat transfer by convection and P is the 

perimeter of the uniform conducting bar.  

Making use of steady state heat balance, we can 

write 

 (𝐻𝑦)𝑖𝑛 =  (𝐻𝑦+∆𝑦)𝑜𝑢𝑡 + H convected…….. (4) 

Using equations (1), (2) and (3) in equation (4), we 

get 

− 𝑘𝑎[𝐷𝑦𝑇(𝑦)] =  − k a𝐷𝑦{𝑇(𝑦) +

 [𝐷𝑦𝑇(𝑦)] ∆𝑦} + 𝜎 P ∆𝑦[𝑇(𝑦) − 𝑇𝑠] 
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Or − 𝑘𝑎[𝐷𝑦𝑇(𝑦)] =

 − k a[𝐷𝑦𝑇(𝑦)]−  𝑘𝑎[𝐷𝑦
2𝑇(𝑦)] ∆𝑦 + 𝜎 P 

∆𝑦[𝑇(𝑦) − 𝑇𝑠] 

Or 

 − 𝑘𝑎[𝐷𝑦
2𝑇(𝑦)] ∆𝑦 + 𝜎 P ∆𝑦[𝑇(𝑦) − 𝑇𝑠] = 0 

Upon simplifying the above equation, we get  

𝐷𝑦
2𝑇(𝑦) - 

𝜎𝑃

𝑘𝑎
 [𝑇(𝑦) − 𝑇𝑠] = 0 ……… (5) 

To simplify the equation (5), let us substitute 

                (
𝜎𝑃

𝑘𝑎
)

1
2 = 𝛽……. (6) 

And define  𝑇(𝑦) − 𝑇𝑠 = 𝜏(𝑦) …. (7) 

Where 𝜏(𝑦) is called excess temperature at length 

y of the bar.  

Then 𝐷𝑦  [𝑇(𝑦) − 𝑇𝑠] = 𝐷𝑦𝜏(𝑦). 

As 𝑇𝑠 is constant, therefore, we can write 

𝐷𝑦
2𝑇(𝑦)=𝐷𝑦

2𝜏(𝑦), 

Therefore, equation (5) can be rewritten as 

𝐷𝑦
2𝜏(𝑦) - 𝛽2 𝜏(𝑦) = 0 ……….. (8) 

Equations (5) and (8) are the general form of 

energy equations for one-dimensional heat loss 

from the uniform conducting bar. 

In equation (6), 𝛽 is constant provided that 𝜎 is 

constant over the entire surface of uniform 

conducting bar and k is constant within the range 

of temperature considered. 

Solution of the differential equation: 

To solve equation (8) by matrix method, we need 

to write the necessary boundary conditions as 

given below: 

At y = 0, 𝑇  = 𝑇1 and at y = L, 𝑇  = 𝑇2 

In terms of excess temperature (𝜏), we can write, at 

y = 0, 𝑇 −  𝑇𝑠 = 𝑇1- 𝑇𝑠 or 𝜏  = 𝜏1 and at y = L, 𝑇 −
 𝑇𝑠  = 𝑇2 −  𝑇𝑠 or 𝜏  =  𝜏2 

Let us substitute  

𝜏(𝑦) =  𝜃1(𝑦)   

And 𝐷𝑦𝜃1(𝑦) = 𝜃2(𝑦)... (9) 

We can rewrite equation (8) as 

𝐷𝑦𝜃2(𝑦) - 𝛽2𝜃1(𝑦)  = 0 

Or 𝐷𝑦𝜃2(𝑦) = 𝛽2𝜃1(𝑦) … … . (10) 

Differential equations (9) and (10) can be written 

in single matrix form as 

𝐷𝑦 [
𝜃1(𝑦)
𝜃2(𝑦)

]= [
0 1

𝛽2 0
] [

𝜃1(𝑦)
𝜃2(𝑦)

] 

The characteristic equation of [
0 1

𝛽2 0
] is 

|
0 − ⋋ 1

𝛽2 0 − ⋋
| = 0 

Solving the determinant, we get 

⋋2 - 𝛽2 = 0 

Or ⋋ = ±𝛽 

Now the Eigen vector for ⋋ = 𝛽  is given by 

       [
0 − 𝛽 1

𝛽2 0 −  𝛽
] [

𝑦1

𝑦2
] =  [

0
0

] 

Applying elementary transformation R2 → R2 + 𝛽 

R1, we can write 

[
−𝛽 1

0 0
]  [

𝑦1

𝑦2
] =  [

0
0

] 

This results   

−𝛽𝑦1 +  𝑦2 = 0 

Or [
𝑦1

𝑦2
]   =  [

1
𝛽

] 

And the Eigen vector for ⋋ = −𝛽  is given by        

 [
0 + 𝛽 1

𝛽2 0 +  𝛽
] [

𝑦1

𝑦2
]  =  [

0
0

] 

Applying elementary transformation R2 → R2 - 𝛽 

R1, we can write 

[
𝛽 1
0 0

]  [
𝑦1

𝑦2
] =  [

0
0

] 

This results  

𝛽𝑦1 + 𝑦2 = 0 

Or    [
𝑦1

𝑦2
] =  [

1
−𝛽

] 

The matrix of Eigen vectors is [
1 1
𝛽 −𝛽

]. 

Let P =[
1 1
𝛽 −𝛽

], then the inverse matrix of P is 

given by P-1 =[

1

2

1

2𝛽

1

2

−1

2𝛽

]. 

Now we have to find 𝑃𝑒⋋𝑦𝑃−1.  

𝑃𝑒⋋𝑦𝑃−1 = [
1 1
𝛽 −𝛽

] [𝑒𝛽𝑦 0
0 𝑒−𝛽𝑦

] [

1

2

1

2𝛽

1

2

−1

2𝛽

] 

= [
𝑒𝛽𝑦 𝑒−𝛽𝑦

𝛽𝑒𝛽𝑦 −𝛽𝑒−𝛽𝑦] [

1

2

1

2𝛽

1

2

−1

2𝛽

] 

= [

1

2
(𝑒𝛽𝑦 + 𝑒−𝛽𝑦)

1

2𝛽
(𝑒𝛽𝑦 − 𝑒−𝛽𝑦)

𝛽

2
(𝑒𝛽𝑦 − 𝑒−𝛽𝑦)

1

2
(𝑒𝛽𝑦 + 𝑒−𝛽𝑦)

] 

= [
𝑐𝑜𝑠ℎ𝛽𝑦

1

𝛽
𝑠𝑖𝑛ℎ𝛽𝑦

𝛽𝑠𝑖𝑛ℎ𝛽𝑦 𝑐𝑜𝑠ℎ𝛽𝑦
] 

Applying initial condition i.e. 𝜃1(0) = 𝜏(0) =  𝜏1   

and since 𝜃2(0) = 𝐷𝑦𝜏(0) is a constant, therefore 

substituting 𝜃2(0) = 𝐷𝑦𝜏(0) = C (a constant), we 

can write 

[
𝜃1(𝑦)
𝜃2(𝑦)

] = [
𝑐𝑜𝑠ℎ𝛽𝑦

1

𝛽
𝑠𝑖𝑛ℎ𝛽𝑦

𝛽𝑠𝑖𝑛ℎ𝛽𝑦 𝑐𝑜𝑠ℎ𝛽𝑦

] [
𝜏1

𝐶
] 

Or [
𝜃1(𝑦)
𝜃2(𝑦)

] =  [
𝜏1 cos ℎ𝛽𝑦 +

𝐶

𝛽
𝑠𝑖𝑛ℎ𝛽𝑦

𝜏1𝛽𝑠𝑖𝑛ℎ𝛽𝑦 + 𝐶𝑐𝑜𝑠ℎ𝛽𝑦
] 
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This equation results  

 𝜃1(𝑦) = 𝜏1 cos ℎ𝛽𝑦 +
𝐶

𝛽
𝑠𝑖𝑛ℎ𝛽𝑦 

Or  𝜏(𝑦) = 𝜏1 cos ℎ𝛽𝑦 +
𝐶

𝛽
𝑠𝑖𝑛ℎ𝛽𝑦….. (11) 

And  𝜃2(𝑦) = 𝜏1𝛽𝑠𝑖𝑛ℎ𝛽𝑦 + 𝐶𝑐𝑜𝑠ℎ𝛽𝑦 

Or 𝐷𝑦𝜏(𝑦) =  𝜏1𝛽𝑠𝑖𝑛ℎ𝛽𝑦 + 𝐶𝑐𝑜𝑠ℎ𝛽𝑦 

                                             ………… (12) 

Determination of the constant 𝑪: 

To find the value of constant 𝐶, applying boundary 

condition: at y = L, 𝜏(𝑦)  =𝜏2, equation (11) 

provides, 

𝜏2= 
𝐶

𝛽
sin ℎ𝛽𝐿 + 𝜏1 cos ℎ𝛽𝐿 

Upon rearranging and simplification of above 

equation, we get 

𝐶 =  
𝛽[𝜏2− 𝜏1 cos ℎ𝛽𝐿]

sin ℎ𝛽𝐿
…… (13) 

Substitute the value of 𝐶 from equation (13) in 

equation (12), we get 

𝜏(y) =
𝜏2− 𝜏1 cos ℎ𝛽𝐿

sin ℎ𝛽𝐿
 sin ℎ𝛽𝑦 + 𝜏1 cos ℎ𝛽𝑦 

Or  𝜏(y) =

𝜏2 sin ℎ𝛽𝑦− 𝜏1 cos ℎ𝛽𝐿 sin ℎ𝛽𝑦
+ 𝜏1 cos ℎ𝛽𝑦 sin ℎ𝛽𝐿

sin ℎ𝛽𝐿
 

Or  𝜏(y) = 
𝜏2 sin ℎ𝛽𝑦+ 𝜏1 sin ℎ𝛽(𝐿−𝑦)

sin ℎ𝛽𝐿
 

Or 𝜏(y) = 
 𝜏1 sin ℎ𝛽(𝐿−𝑦)+ 𝜏2 sin ℎ𝛽𝑦

sin ℎ𝛽𝐿
…. (14a) 

Using equation (7), we can write 

 𝑇(𝑦) − 𝑇𝑠 = 

 (𝑇1− 𝑇𝑠 )sin ℎ𝛽(𝐿−𝑦)

+(𝑇2− 𝑇𝑠 ) sin ℎ𝛽𝑦

sin ℎ𝛽𝐿
 

Or 𝑇(𝑦) = 𝑇𝑠 + 

 (𝑇1− 𝑇𝑠 )sin ℎ𝛽(𝐿−𝑦)

+(𝑇2− 𝑇𝑠 ) sin ℎ𝛽𝑦

sin ℎ𝛽𝐿
 

Put the value of 𝛽 from equation (6), we get 

 

Or 𝑇(y) = 𝑇𝑠 +   

 (𝑇1− 𝑇𝑠 )sin ℎ√
𝜎𝑃

𝑘𝑎
(𝐿−𝑦)

+(𝑇2− 𝑇𝑠 ) sin ℎ√
𝜎𝑃

𝑘𝑎
𝑦

sin ℎ√
𝜎𝑃

𝑘𝑎
𝐿

 

                                                    …….. (14b) 

 Equation (14) provides the distribution of 

temperature along the uniform conducting bar 

connected between two heat sources at different 

fixed temperatures 𝑇1 and 𝑇2(𝑇1 > 𝑇2) and reveals 

that the temperature of the uniform conducting bar 

decreases along its length with the increase in 

distance from the heat source 𝑅1 at a higher 

temperature 𝑇1.  

The most important parameter is the total amount 

of heat that can be removed by the uniform 

conducting bar from the heat source at a higher 

temperature 𝑇1 and lost by it to the surroundings. 

The total heat (H) emitted from the surface of the 

uniform conducting bar to its surroundings can be 

calculated by integrating the expression for heat 

convected from the surface of an infinitesimal 

section of the uniform conducting bar to its 

surroundings i.e.  

     H = ∫ 𝜎 P 𝑑𝑦(𝑇(𝑦) − 𝑇𝑠)
𝐿

0
 

Or H = ∫ 𝜎 P 𝜏(y)𝑑𝑦
𝐿

0
 

Or H = ∫ 𝜎 P 
 𝜏1 sin ℎ𝛽(𝐿−𝑦)+ 𝜏2 sin ℎ𝛽𝑦

sin ℎ𝛽𝐿
𝑑𝑦

𝐿

0
 

On solving the integration and applying the limits, 

we get 

H = 𝜎 P 
 (𝜏1+ 𝜏2) (cos ℎ𝛽𝐿−1)

𝛽 sin ℎ𝛽𝐿
………. (15) 

Put the value of 𝛽 from equation (6) in equation 

(15), we get 

       H =𝜎 P 
 (𝜏1+ 𝜏2) [cos ℎ√

𝜎𝑃

𝑘𝑎
𝐿−1]

√
𝜎𝑃

𝑘𝑎
sin ℎ√

𝜎𝑃

𝑘𝑎
𝐿

 

Or H =√𝜎𝑃𝑘𝑎 
 (𝜏1+ 𝜏2) (cos ℎ√

𝜎𝑃

𝑘𝑎
𝐿−1)

sin ℎ√
𝜎𝑃

𝑘𝑎
𝐿

 

Or H = √𝜎𝑃𝑘𝑎 
 (𝑇1+𝑇2−2 𝑇𝑠) [cos ℎ√

𝜎𝑃

𝑘𝑎
𝐿−1]

sin ℎ√
𝜎𝑃

𝑘𝑎
𝐿

 

                                                           ..... (16) 

This equation (16) provides the total amount of 

heat emitted from the surface of the uniform 

conducting bar to its surroundings and reveals that 

the heat flow rate can be increased by increasing 

the surface of the bar across which the convection 

of heat occurs.      

Conclusion: In this paper, we have derived the 

distribution of temperature along the length of the 

uniform conducting bar connected between two 

heat sources maintained at different temperatures 

and the total amount of heat emitted from the 

surface of uniform conducting bar to its 

surroundings by solving the differential equation 

describing the distribution of temperature along the 

conducting bar via matrix method. We concluded 

that the temperature of the uniform conducting bar 

decreases with increase in distance from the heat 

source at a higher temperature. We also concluded 

that the total amount of heat emitted from the bar 

to its surroundings can be increased by increasing 

the surface of the bar across which the convection 

of heat occurs.      
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