DISTANCE IN FUZZY DIGRAPHS

KR. Balasubramanian ${ }^{1}$, N. Arul Pandiyan ${ }^{2}$
Assistant Professor ${ }^{1}$, Research Scholar ${ }^{2}$
${ }^{1,2}$ Department of Mathematics, H. H. The Rajah's College, Pudukkottai, Tamil Nadu, India.

Abstract

In this Paper, we introduce a concept of Distance in fuzzy digraphs, which is a metric in fuzzy digraphs. Based on this metric the concepts of eccentricity, radius, diameter and centered fuzzy digraphs are studied. Also obtained the some properties of Eccentric nodes, peripheral nodes and central nodes. Two other distance in fuzzy digraphs are the maximum distance $\mathrm{md}_{\mathrm{D}}(\mathrm{u}, \mathrm{v})$ and the sum distance in fuzzy digraph $\operatorname{sd}_{\mathrm{D}}(\mathrm{u}, \mathrm{v})$. Several results and problems concerning these metrices are described.

Keywords: Fuzzy digraph, maximum distance, sum distance.

1. INTRODUCTION

In 1965 Lofti.A.Zadeh [13] introduced a mathematical frame work to explain the concept of uncertainty in real life through the partication of a seminal paper. The Theory of fuzzy graph was developed by Rosenfeld (1975) in the year 1975. In a fuzzy digraph $\quad \mathrm{G}_{\mathrm{D}}:\left(V, \sigma_{D}, \mu_{D},\right), d_{D}(u, v)$ is a metric on V_{D}. F.Hasary et al. in [1] propose the concept of the dissimillarity characteristic of Husimi trees. F.Buckley [2] analysed the concept of Distance in graphs. H. Bielax et al. in [4] identified the vertices in graphs. G.Chartrand et. al.in [9] analyzed the concept of the maximum distance in digraphs. S Tian et.al.in [10] analyzed the concept of Appendage numbers of digraph. S. Tian et.al.in [12] proposed the concept of sum distance in digraphs.

In this paper, we review the concept of fuzzy diagraphs and also we present the brief idea of distance in fuzzy diagraph and its classification. Also we discuss some of the concepts involving maximum distance in fuzzy digraph and the sum distance in fuzzy digraph is defined and proved that it is a metric. Based on this metric eccentricity, radius diameter, center in fuzzy digraph are defined in the distance in fuzzy diagraphs.

2. PRELIMINARIES

Definition: 2.1

A fuzzy graph $G=(V, \sigma, \mu)$ where v is the vertices, σ is a fuzzy subset of v and μ is a membership value on σ such that $\mu(u, v) \leq \sigma(u) \wedge \sigma(v)$ for every $u, v \in V$.

Definition:2.2

A fuzzy diagraph $G_{D}=\left(\sigma_{D}, \mu_{D}\right)$ is a pair of functions $\sigma_{D}: V \rightarrow[0,1]$ and $\mu_{D}: V X V \rightarrow[0,1]$ where $\mu_{D} \leq \sigma_{D}(u) \wedge \sigma_{D}(v)$ for $u, v \in v$ and μ_{D} is a set of fuzzy directed edges called the fuzzy arcs.

Definition: 2.3

Let G_{D} be a strong fuzzy diagraph, The distance $\vec{d}_{\mathrm{D}}(u, v)$ from a vertex u to vertex v in G_{D} is the length of a shortest u-v path.

The distance is not a metric. $\quad \vec{d}_{\mathrm{D}}\left[\sigma_{D}(u), \sigma_{D}(v)\right]=\max _{u, v \in V}[\mu(u, v)]$

Definition:2.4

For vertices $\sigma_{D}(u)$ and $\sigma_{D}(v)$ in a strong fuzzy diagraph G_{D}. The maximum distance between $\sigma_{D}(u)$ and $\sigma_{D}(v)$ was defined by a fuzzy graph as the length of the shortest path between them.

$$
m \vec{d}_{\mathrm{D}}\left[\sigma_{D}(u), \sigma_{D}(v)\right]=\max \left[\mu_{D}(u, v)\right] \forall u, v \in v
$$

Definition:2.5

The sum distance $s d_{D}\left[\sigma_{D}\left(u, \sigma_{D}(v)\right]\right.$ between two nodes $\sigma_{D}(u)$ and $\sigma_{D}(v)$ in a fuzzy diagraph G_{D} as the length of the shortest path them. $S \vec{d}_{\mathrm{D}}\left[\sigma_{D}(u), \sigma_{D}(v)\right]=\min \left[\mu_{D}(u, v)\right] \forall u, v \in V$.

3. DISTANCE IN FUZZY DIGRAPH

Definition: 3.1

Let G_{D} be a strong fuzzy diagraph. The distance $\vec{d}_{\mathrm{D}}(u, v)$ from a vertex u to vertex v in G_{D} is the length of a shortest path u-v.

$$
\vec{d}_{\mathrm{D}}\left[\sigma_{D}(u), \sigma_{D}(v)\right]=\max _{u, v \in v .}\left[\mu_{D}(u, v)\right]
$$

Definition:3.2

Let $G_{D}=\left(V, \sigma_{D}, \mu_{D}\right)$ be a connected fuzzy diagraph and $e\left(v_{D}\right)$ of a vertex v_{D} in a fuzzy diagraph G_{D} is the distance v to a vertex farthest from v .

$$
e\left(v_{D}\right)=\max _{u, v \in v\left(G_{D}\right)}\left(\vec{d}_{\mathrm{D}}(u, v)\right)
$$

Definition: 3.3

The radius rad G_{D} of G_{D} is the minimum eccentricity among the vertices of G_{D}.
$\operatorname{rad} G_{D}=\min _{v \in v\left(G_{D}\right)} e\left(v_{D}\right)$.

Definition: 3.4

The diameter of a fuzzy diagraph G_{D} is denoted by diam $G_{D}=\max _{\left(v \in v\left(G_{D}\right)\right.} e\left(v_{D}\right)$.

Remark

If $\mu(u, v)=1 \forall(u, v) \in \mu_{D}$ then $\vec{d}_{\mathrm{D}}(u, v)$ is the length of the shortest path as in crisp graph.

Definition:3.5

The fuzzy sub diagraph induced by $c\left(G_{D}\right)$ denoted by $<c\left(G_{D}\right)=H:\left(v, \tau_{D}, v_{D}\right)$ is called the center of G_{D}. A connected fuzzy diagraph G is self centered if each node is a central node, ie) $G_{D} \cong H_{D}$. A node u is a peripheral node if $e(u)=d\left(G_{D}\right)$.

Example : 3.6

In figure $\vec{d}_{\mathrm{D}}(u, v)=0.3, \vec{d}_{\mathrm{D}}(v, w)=0.2, \vec{d}_{\mathrm{D}}(v, x)=0.2, \vec{d}_{\mathrm{D}}(w, x)=0.3$,
$\vec{d}_{\mathrm{D}}(y, v)=0.5, \vec{d}_{\mathrm{D}}(x, u)=0.4, \vec{d}_{\mathrm{D}}(y, u)=0.1, \vec{d}_{\mathrm{D}}(x, y)=0.5$.
Therefore $e\left(G_{D}\right)=\vec{d}_{\mathrm{D}}(x, y)=0.5$ and $\operatorname{rad}\left(G_{D}\right)=\vec{d}_{\mathrm{D}}(y, u)=0.1$,
$\operatorname{diam}\left(G_{D}\right)=\vec{d}_{\mathrm{D}}(x, y)=0.5$.
The central nodes are w and x . The peripheral nodes are u and v.

Theorem : 3.1

For any connected fuzzy diagraph $G_{D}, \operatorname{rad}\left(G_{D}\right) \leq \operatorname{diam}\left(G_{D}\right) \leq 2 \operatorname{rad}\left(G_{D}\right)$.
Proof :
The inequality rad $\left(G_{D}\right) \leq \operatorname{diam}\left(G_{D}\right)$ is direct consequence of the definition. Since the smallest eccentricity. Cannot exceed of the largest eccentricity.

$$
\operatorname{rad}\left(G_{D}\right) \leq \operatorname{diam}\left(G_{D}\right)
$$

Then $2^{\text {nd }}$ inequality vertices $\mathrm{u} \& \mathrm{v}$ in fuzzy diagraph $G_{D}:\left(V, \sigma_{D}, \mu_{D}\right)$.

$$
\vec{d}_{\mathrm{D}}(u, v)=\operatorname{diam}\left(G_{D}\right)
$$

Furthermore,
Let w be a central vertex of G_{D}

$$
\begin{aligned}
e_{D}(w) & =\operatorname{rad}\left(G_{D}\right) \\
\vec{d}_{\mathrm{D}}(u, v) & \leq \vec{d}_{\mathrm{D}}(u, w)+\vec{d}_{\mathrm{D}}(w, v) \\
& \leq \operatorname{rad}\left(G_{D}\right)+\operatorname{rad}\left(G_{D}\right) \\
& \leq 2 \operatorname{rad}\left(G_{D}\right) \\
\vec{d}_{\mathrm{D}}(u, v) & \leq 2 \operatorname{rad}\left(G_{D}\right)
\end{aligned}
$$

$$
\operatorname{rad}\left(G_{D}\right) \leq \operatorname{diam}\left(G_{D}\right) \leq 2 \operatorname{rad}\left(G_{D}\right)
$$

Theorem: 3.2

If $G_{D}:\left(V, \sigma_{D}, \mu_{D}\right)$ is a self centered fuzzy digraph, then each node of G_{D} is eccentric.

Proof

Assume G_{D} is self centered and let u be any node of G_{D}.
Let v be an eccentric node of u . ie, $\mathrm{u}^{*}=\mathrm{v}$ Then $e(u)=\vec{d}_{\mathrm{D}}(u, v)$.
Since G_{D} is self centered we have $e(v)=e(u)$

$$
e(u)=\vec{d}_{\mathrm{D}}(u, v)=e(v)
$$

Which shows u is an eccentric node of v, i.e, $v^{*}=u$.
Hence the proof.

Proposition: 3.3

For any two real numbers a, b such that $o \leq a \leq b \leq 2 a$. There exist a fuzzy digraph G_{D} such that $r\left(G_{D}\right)=a$ and $d\left(G_{D}\right)=b$.

Proof

$\vec{d}_{\mathrm{D}}(u, v)=a$
$\vec{d}_{\mathrm{D}}(u, w)=a$
$\vec{d}_{\mathrm{D}}(v, w)=b$
Then, $e(u)=a, e(v)=b$
and $e(w)=b$
$\therefore r(G)=a$ and $d(G)=b$.
Theorem: 3.4
For every two node u and v in a connected fuzzy digraph $G_{D}:\left(V, \sigma_{D}, \mu_{D}\right), \quad$ ie $(u)-e(v) 1 \leq \vec{d}_{\mathrm{D}}(u, v)$.
Proof
Assume without loss of generality $e(u) \geq e(v)$.
Let x be a node farthest from u .
i.e, $e(u)=\overrightarrow{d_{D}}(u, x) \leq d_{D}(u, v)+d_{D}(v, x)$.

By triangle inequality
$e(u)=\vec{d}_{\mathrm{D}}(u, v)+e(v)$
Since $e(v) \geq \vec{d}_{\mathrm{D}}(v, x)$
i.e, $o \leq e(u)-e(v) \leq \vec{d}_{\mathrm{D}}(u, v)$

$$
|e(u)-e(v)| \leq \vec{d}_{\mathrm{D}}(u, v)
$$

Theorem: 3.5

The center of every connected fuzzy digraph $G_{D}:\left(V, \sigma_{D}, \mu_{D}\right)$, lies in a block of G^{*}.

Proof

Let $G_{D}:\left(V, \sigma_{D}, \mu_{D}\right)$ be a connected fuzzy digraph. Assume that the center of G_{D} does not lie in a block of $G_{D} *$. Then there exist a node v such that v is a cut node of $G_{D} *$.

Let $G_{1 D}$ and $G_{2 D}$ contain at least one central node of G_{D}. Let u be a node of G_{D} such that $\vec{d}_{\mathrm{D}}(u, v)=e(v)$.
Let P_{1} be a strong $\mathrm{u}-\mathrm{v}$ path such that $\vec{d}_{\mathrm{D}}(u, v)=L\left(\mathrm{P}_{1}\right)$. length of P_{1}.
Then one of $G_{1 D}$ and $G_{2 D}$ contains no node in the path P_{1} says $G_{2 D}$ contain no node of P_{1}.
Let w be a central node of G_{D} that belongs to $G_{2 D}$ and let be P_{2} a strong v-w path such that $\vec{d}_{\mathrm{D}}(v, w)=L\left(P_{2}\right)$. Length of P_{2}.
$\vec{d}_{\mathrm{D}}(u, w)=L\left(P_{1}\right)+L\left(P_{2}\right)$.
Hence we have $e(w)>e(v)$ which contradicts w is a central node of G_{D}. Hence the center of every connected fuzzy digraph $G_{D}:\left(V, \sigma_{D}, \mu_{D}\right)$ lies in a block of G^{*}.

4. MAXIMUM DISTANCE IN FUZZY DIGRAPHS

Definition: 4.1

Let $\sigma_{D}\left(v_{i}\right)$ and $\sigma_{D}\left(v_{j}\right)$ be a strong fuzzy digraph G_{D}. The maximum distance between $\sigma_{D}\left(v_{i}\right)$ and $\sigma_{D}\left(v_{j}\right)$ was defined by a fuzzy graph as the length of the shortest path between them. $m \vec{d}_{\mathrm{D}}\left[\sigma_{D}\left(v_{i}\right) \sigma_{D}\left(v_{j}\right)\right]=\max \left[\mu_{D}\left(v_{i}, v_{j}\right)\right]$

Definition: 4.2

Let $G_{D}:\left(V, \sigma_{D}, \mu_{D}\right)$ be a connected fuzzy digraph and let u be a node of G_{D}.
The m -eccentricity me $\left(G_{D}\right)$ of u is the maximum to a node. Farthest from u .
$\operatorname{me}\left(G_{D}\right)=\max \left[\overrightarrow{d_{D}}(u, v)\right]$

Definition: 4.3

The m-radius $\operatorname{mr}\left(G_{D}\right)$ is the minimum m - eccentricity of the nodes.
$\operatorname{mr}\left(G_{D}\right)=\min \left[\mathrm{e}\left(\mathrm{u}_{\mathrm{d}}\right)\right]$

Definition: 4.4

The m-diameter $\operatorname{md}\left(G_{D}\right)$ is the maximum eccentricity of nodes.
$\operatorname{md}\left(G_{D}\right)=\max \left[\operatorname{me}\left(G_{D}\right)\right]$

Definition: 4.5

The fuzzy sub digraph by $\operatorname{mc}\left(G_{D}\right)$ denoted by $\mathrm{m}\left\langle C\left(G_{D}\right)\right\rangle=\mathrm{H}_{\mathrm{D}}:\left(\mathrm{V} \tau_{\mathrm{p}} \gamma_{\mathrm{D}}\right)$ is called the $\mathrm{m}-$ center of G_{D}.
Definition: 4.6
A node G_{D} is a peripheral node if $\operatorname{me}\left(u_{D}\right)=\operatorname{md}\left(G_{D}\right)$.

Example : 4.7

In figure $\mathrm{m} \vec{d}(\mathrm{u}, \mathrm{v})=0.8, \mathrm{~m} \vec{d}(\mathrm{u}, \mathrm{z})=0.9, \mathrm{~m} \vec{d}(\mathrm{v}, \mathrm{z})=0.6 \mathrm{~m} \vec{d}(\mathrm{v}, \mathrm{w})=0.9, \mathrm{~m} \vec{d}(\mathrm{w}, \mathrm{x})=0.4 \mathrm{~m} \vec{d}(\mathrm{x}, \mathrm{y})=0.3, \mathrm{~m} \vec{d}(\mathrm{u}, \mathrm{x})=0.9, \mathrm{~m} \vec{d}$ $(\mathrm{y}, \mathrm{w})=0.2, \mathrm{~m} \vec{d}(\mathrm{y}, \mathrm{v})=0.5$.

Therefore me $\left(G_{D}\right)=\mathrm{m} \vec{d}(\mathrm{v}, \mathrm{w})=\mathrm{m} \vec{d}(\mathrm{u}, \mathrm{x})=0.9$ and $\operatorname{mr}\left(\left(G_{D}\right)=\mathrm{m} \vec{d}(\mathrm{y}, \mathrm{w})=0.2\right.$.

Theorem : 4.1

For every strong fuzzy digraph $G_{D}\left(\mathrm{~V}, \sigma_{\mathrm{D}}, \mu_{\mathrm{D}}\right)$ the radius and diameter satisfy.
$\operatorname{mr}\left(G_{D}\right) \leq \operatorname{md}\left(G_{D}\right) \leq 2 \operatorname{mr}\left(G_{D}\right)$.

Proof:

$\operatorname{mr}\left(G_{D}\right) \leq \operatorname{md}\left(G_{D}\right)$ follows from the definition of radius and diameter.
Let w_{D} be a central node of G_{D}.
$\operatorname{me}\left(w_{D}\right)=\operatorname{mr}\left(G_{D}\right)$
Let u_{D} and v_{D} be two peripheral node of G_{D}.
$\operatorname{me}\left(u_{D}\right)=\operatorname{me}\left(v_{D}\right)=\operatorname{md}\left(G_{D}\right)$
$\vec{d}_{\mathrm{D}}(\mathrm{u}, \mathrm{v}) \leq \vec{d}_{\mathrm{D}}(\mathrm{u}, \mathrm{w})+\vec{d}_{\mathrm{D}}(\mathrm{w}, \mathrm{v})$
$\operatorname{md}\left(G_{D}\right) \leq \operatorname{mr}\left(G_{D}\right)+\operatorname{mr}\left(G_{D}\right)$

$$
\leq 2 \operatorname{mr}\left(\mathrm{G}_{\mathrm{D}}\right)
$$

$\operatorname{mr}\left(\mathrm{G}_{\mathrm{D}}\right) \leq \operatorname{md}\left(\mathrm{G}_{\mathrm{D}}\right) \leq 2 \operatorname{mr}\left(\mathrm{G}_{\mathrm{D}}\right)$.

Theorem : 4.2

For every asymmetric fuzzy digraph $G_{D}\left(V, \sigma_{D}, \mu_{D}\right)$ There exists a strong asymmetric fuzzy digraph.
$H_{D}:\left(V, \tau_{D}, \gamma_{D}\right)$ such that $\mathrm{mc}\left(\mathrm{H}_{\mathrm{D}}\right) \cong \mathrm{G}_{\mathrm{D}}$. Furthermore there exists such a fuzzy digraph H_{D} whose order exceeds that of G_{D} at most 4 .

Proof

The result will allow us to show that the upper bound $\mathrm{mA}\left(\mathrm{G}_{\mathrm{D}}\right) \leq 4$ cannot be improved in general for a vertex V in a fuzzy digraph G_{D}.

The out neighborhood $N^{+}(V)$ is the set of vertices G_{D} adjacent from V, while the in neighborhood $N^{-}(V)$ is the set of vertices adjacent to V .

Theorem: 4.3

Let G_{D} be an asymmetric fuzzy digraph with $m A\left(G_{D}\right)=2$ and Let H_{D} be an asymmetric fuzzy digraph of minimum order with $\mathrm{m}\left(\mathrm{CH}_{\mathrm{D}}\right) \cong \mathrm{G}_{\mathrm{D}}$. If $\vec{d} \mathrm{H}_{\mathrm{D}}\left(\mathrm{v}, \mathrm{w}_{\mathrm{D}}\right)=\mathrm{m}$ diamH D_{D} then $\forall x \in N^{+}(\mathrm{V})$ any $y \in N^{-}(\mathrm{V})$ any shortest x -y path lies entirely in G_{D}.

Proof

Observe that mdiam $\mathrm{H}_{\mathrm{D}}=\max \left\{\operatorname{me}\left(\mathrm{H}_{\mathrm{D}}\right)\right\}=m \vec{d}_{\mathrm{D}}(\mathrm{y}, \mathrm{z}) x \in V\left(\mathrm{H}_{\mathrm{D}}\right)$.
Where $\mathrm{y}, \mathrm{z} \in \mathrm{V}\left(\mathrm{H}_{\mathrm{D}}\right)-\mathrm{V}\left(\mathrm{G}_{\mathrm{D}}\right)$.
Since $m A\left(G_{D}\right)=2$ and $m \vec{d}_{D}(v, w)=m \operatorname{diam}\left(H_{D}\right)$.
It follows the $\mathrm{V}\left(\mathrm{H}_{\mathrm{D}}\right)=\mathrm{V}\left(\mathrm{G}_{\mathrm{D}}\right) \cup\{\mathrm{v}, \mathrm{w}\}$ and $\operatorname{meH}_{\mathrm{D}}(\mathrm{u})=\operatorname{mrad} \mathrm{H}_{\mathrm{D}} \leq \operatorname{mdiam} \mathrm{H}_{\mathrm{D}} \forall \mathrm{u} \in\left(\mathrm{V}\left(\mathrm{G}_{\mathrm{D}}\right)\right.$.
Suppose to the contrary that \exists vertices $\mathrm{x} \in N^{+}(\mathrm{V})$ and $\mathrm{y} \in N^{-}\left(\mathrm{w}_{\mathrm{D}}\right)$ such that a shortest x-y path P contains V or W_{D}.
If V_{D} lies on P then

$$
\vec{d}_{\mathrm{D}}(\mathrm{x}, \mathrm{y})=\vec{d}_{\mathrm{D}}(\mathrm{x}, \mathrm{y})+\vec{d}_{\mathrm{D}}(\mathrm{v}, \mathrm{y})\left[(\mathrm{y}, \mathrm{w}) \in \mathrm{E}\left(\mathrm{G}_{\mathrm{D}}\right) ;(\mathrm{v}, \mathrm{x}) \in \mathrm{E}\left(\mathrm{G}_{\mathrm{D}}\right)\right]
$$

It follows that,

$$
\begin{aligned}
& \vec{d}_{\mathrm{D}}(\mathrm{y}, \mathrm{w})=1 \text { and } \\
& \vec{d}_{\mathrm{D}}(\mathrm{x}, \mathrm{y})>1 \\
& \text { mdiam } \mathrm{H}_{\mathrm{D}}=\vec{d}_{\mathrm{D}}(\mathrm{v}, \mathrm{w}) \leq \vec{d}_{\mathrm{D}}(\mathrm{v}, \mathrm{y})+\vec{d}_{\mathrm{D}}(\mathrm{y}, \mathrm{w}) \\
& \leq \vec{d}_{\mathrm{D}}(\mathrm{x}, \mathrm{v})+\vec{d}_{\mathrm{D}}(\mathrm{v}, \mathrm{y}) \\
& \leq \vec{d} \mathrm{H}_{\mathrm{D}}(\mathrm{x}, \mathrm{y}) \\
& \leq m \vec{d}_{\mathrm{D}} \text { (x,y) } \\
& \leq m e H_{D} \text { (x). }
\end{aligned}
$$

Which contradicts the fact that me $e_{D}(x)<$ mdiam H_{D} this proof is similar if w_{D} lies on a shortest x, y path in H_{D}.

Theorem : 4.4

An asymmetric fuzzy digraph $\mathrm{G}_{\mathrm{D}}:\left(\mathrm{V}, \sigma_{\mathrm{D}}, \mu_{\mathrm{D}}\right)$ isomorphic to the m-periphery of some strong asymmetric fuzzy digraph H_{D}. iff
i) Every vertex of G_{D} has m- eccentricity 2 or.
ii) No vertex of G_{D} has m- eccentricity 2 .

Proof:

The m-distance $m \vec{d}_{D}(v)$ of vertex V_{D} in a strong fuzzy digraph G_{D} is defined as, $\mathrm{m} \vec{d}_{\mathrm{D}}(\mathrm{v})=\max \left\{\mathrm{m} \vec{d}_{\mathrm{D}}(\mathrm{v}, \mathrm{u})\right\}$.
$u_{D} \in V\left(G_{D}\right)$
The m-median $m M\left(G_{D}\right)$ of G_{D} is the sub fuzzy digraph induced by those vertices having minimum m-distance.
The m-distance $m \vec{d}_{D}\left(H_{1 D}, H_{2 D}\right)$ between two sub fuzzy digraph $H_{1 D}$ and $H_{2 D}$ in a fuzzy digraph H_{D} is defined by \vec{d}_{D} $\left(\mathrm{H}_{1 \mathrm{D}}, \mathrm{H}_{2 \mathrm{D}}\right)=\min \left\{\mathrm{m} \vec{d}_{\mathrm{D}}(\mathrm{u}, \mathrm{v})\right\} u \in \mathrm{H}_{1 \mathrm{D}}$ and $\mathrm{V} \in$ H2D. .

5. SUM DISTANCE IN FUZZY DUGRAPHS

Definition: 5.1

The sum distance $\mathrm{S} \vec{d}_{\mathrm{D}}\left[\left(\sigma_{D}\left(\mathrm{~V}_{\mathrm{i}}\right),\left(\sigma_{D}\left(\mathrm{~V}_{\mathrm{j}}\right)\right]\right.\right.$ between two nodes $\sigma_{D}\left(\mathrm{~V}_{\mathrm{i}}\right)$ and $\sigma_{D}\left(\mathrm{~V}_{\mathrm{j}}\right)$ in a fuzzy digraph G_{D} as the length of the shortest path between then,

$$
\mathrm{S} \vec{d}_{\mathrm{D}}\left[\left(\sigma_{D}\left(\mathrm{~V}_{\mathrm{i}}\right),\left(\sigma_{D}\left(\mathrm{~V}_{\mathrm{j}}\right)\right]=\operatorname{Min}\left\{\mu_{\mathrm{D}}\left(\mathrm{~V}_{\mathrm{i}}, \mathrm{~V}_{\mathrm{j}}\right)\right\}\right.\right.
$$

Definition: 5.2

The S - eccentricity $S\left(e\left(G_{D}\right)\right)$ of G_{D} is the sum distance to a node farthest from u_{D}.
$\operatorname{Se}\left(G_{D}\right)=\operatorname{Max}\left[\vec{d}_{S D}(u, v): V \in V_{D}\right]$.
Definition : 5.3
The S - radius $r\left(G_{D}\right)$ is the minimum eccentricity of the nodes $\operatorname{Sr}\left(G_{D}\right)=\min \operatorname{Se}\left(G_{D}\right)$.
The S - diameter $D\left(G_{D}\right)$ is the maximum eccentricity of the nodes.
$\operatorname{Sd}\left(G_{D}\right)=\max \operatorname{Se}\left(G_{D}\right)$

Definition: 5.4

The fuzzy sub digraph induced by $C\left(G_{D}\right)$ denoted by $<C\left(G_{D}\right)>H_{D}:\left(V, \tau_{\mathrm{D}}, \gamma_{\mathrm{D}}\right)$ is called the center of G_{D}.
A node u_{D} is a peripheral node if $\operatorname{Se}\left(u_{D}\right)=d\left(G_{D}\right)$.

Example: 5.5

In figure $S \vec{d}_{D}(u, v)=0.5, S \vec{d}_{D}(u, x)=0.2, S \vec{d}_{D}(v, x)=0.3, S \vec{d}_{D}(u, x)=0.2, S \vec{d}_{D}(w, x)=0.3, S \vec{d}_{D}(v, w)=0.1, S \vec{d}_{D}(x, y)=0.4, S \vec{d}_{D}$ $(y, u)=0.2, S \vec{d}_{D}(v, y)=0.5$. Therefore $e(u)=0.5, e(v)=0.4, e(w)=0.3, e(x)=0.4, e(y)=0.2 . \operatorname{Se}\left(G_{D}\right)=\operatorname{S} \vec{d}_{D}(u, v)=0.5 . \operatorname{Sr}\left(G_{D}\right)=e(y)=$ 0.2 .

Theorem: 5.1

For every strong fuzzy digraph $\mathrm{G}_{\mathrm{D}}:\left(\mathrm{V}, \sigma_{\mathrm{D}}, m_{\mathrm{D}}\right)$ the radius and diameter satisfy.
$\operatorname{Sr}\left(\mathrm{G}_{\mathrm{D}}\right) \leq \mathrm{Sd}\left(\mathrm{G}_{\mathrm{D}}\right) \leq 2 \operatorname{Sr}\left(\mathrm{G}_{\mathrm{D}}\right)$.
Proof
$\operatorname{Sr}\left(G_{D}\right) \leq \operatorname{Sd}\left(G_{D}\right)$ follows from the Definition: of radius and diameter.
Let w_{D} be a central node of G_{D}.
$\operatorname{Se}\left(w_{D}\right)=\operatorname{Sr}\left(G_{D}\right)$
Let u_{D} and v be two peripheral node of G_{D}.
$\operatorname{Se}\left(u_{D}\right)=\operatorname{Se}\left(V_{D}\right)=\operatorname{Sd}\left(G_{D}\right)$
$\vec{d}_{\mathrm{SD}}(\mathrm{u}, \mathrm{v}) \leq \vec{d}_{\mathrm{SD}}(\mathrm{u}, \mathrm{w})+\vec{d}_{\mathrm{SD}}(\mathrm{w}, \mathrm{v})$
$S \vec{d}\left(\mathrm{G}_{\mathrm{D}}\right) \leq \operatorname{Sr}\left(\mathrm{G}_{\mathrm{D}}\right)+\operatorname{Sr}\left(\mathrm{G}_{\mathrm{D}}\right)$
$\leq 2 \operatorname{Sr}\left(\mathrm{G}_{\mathrm{D}}\right)$
$\operatorname{Sr}(\mathrm{G}) \leq \operatorname{Sd}\left(\mathrm{G}_{\mathrm{D}}\right) \leq 2 \operatorname{Sr}\left(\mathrm{G}_{\mathrm{D}}\right)$.

Theorem: 5.2

For every asymmetric fuzzy digraph $\mathrm{G}_{\mathrm{D}}:\left(\mathrm{V}, \sigma_{\mathrm{D}}, \mu_{\mathrm{D}}\right)$. There exists a strong asymmetric fuzzy digraph $\mathrm{H}_{\mathrm{D}}:\left(\mathrm{V}, \tau_{\mathrm{D}}, \gamma_{\mathrm{D}}\right)$ such that $\mathrm{SC}\left(\mathrm{H}_{\mathrm{D}}\right) \cong \mathrm{G}_{\mathrm{D}}$. Furthermore there exists such a fuzzy digraph H_{D} whose order exceeds that of G_{D} by at most 6 .

Proof

For an asymmetric fuzzy digraph G_{D} : $\left(\mathrm{V}, \sigma_{\mathrm{D}}, \mu_{\mathrm{D}}\right)$ we define the sum appendage number $\mathrm{A}\left(\mathrm{G}_{\mathrm{D}}\right)$ of G_{D} is the minimum number of vertices that must added to G_{D} to produce a strong asymmetric fuzzy digraph H_{D}.

Whose S-center is isomorphic to G_{D}.
$S A\left(G_{D}\right) \leq 6$ for every asymmetric fuzzy digraph G_{D}.

Theorem: 5.3

An asymmetric fuzzy digraph $\mathrm{G}_{\mathrm{D}}:\left(\mathrm{V}, \sigma_{\mathrm{D}}, \mu_{\mathrm{D}}\right)$ is isomorphic to the S-periphery of some strong asymmetric fuzzy digraph $\mathrm{H}_{\mathrm{D}}:\left(\mathrm{V}, \tau_{\mathrm{D}}, \gamma_{\mathrm{D}}\right)$ iff,
i) Every vertex G has S- eccentricity 3 or
ii) No vertex of G has S- eccentricity 3

Proof

The S - periphery $\mathrm{SP}\left(\mathrm{G}_{\mathrm{D}}\right)$ of a strong asymmetric fuzzy digraph G_{D} is the sub fuzzy digraph induced by those vertices of maximum e- eccentricity.

It should not be noted there exists an asymmetric fuzzy digraph that is isomorphic to the s-periphery of some strong asymmetric fuzzy digraph but not to the m- periphery of strong asymmetric fuzzy digraph.

CONCLUSION

Thus, we have discussed the concept on distance is digraphs. The idea of distance in fuzzy digraph is introduced the concepts of eccentricity, radius, diameter etc., with examples. Discussed some of the properties on maximum distance in fuzzy digraphs and the sum distance in fuzzy digraphs.

REFERENCES

[1]. Harary, F and Norman, R.Z. 1953. The dissimilarity characteristic of Husimi trees, Ann. of Math. 58, 134-141, [2]. Buckley, F and Harary, F. 1990. Distance in Graphs, Addison- Wesley, Redwood City, CA.
[3]. Buckley, F. Miller, Z. and Slater, P.J. 1981. On graphs containing a given graph as center, J. Graph Theory 5, 427 434.
[4]. Bielak, H. and Syslo, M.M. 1983. Peripheral vertices in graphs, Studia Sci. Math. Hungar. 18, 269-275.
[5]. Slater, P. 1980. Medians of arbitrary graphs, J.Graph Theory 4, 389-292.
[6]. Hendray, G.R.T. 1985. On graphs with prescribed median I, J.Graph Theory 9, 477-481.
[7]. Holbert, K.S. 1989. A note on graphs with distant center and median, In Recent Studies in Graph Theory, (Edited by V.R. Kulli), pp.155-158, Vishwa International, Gulbarga, India.
[8]. Novotny, K. and Tian, S. 1991. On graphs with intersecting center and median, In Advances in Graphs Theory, (Edited by V.R. Kulli), pp.297-300, Vishwa International, Gulbarga, India.
[9]. Chartrand, G. and Tian, S. 1991. Maximum distance in digraphs, In Groph Theory, Combinatorics, Algorithms and Applications, (Edited by Y. Alavi, F.R.K Chung, R.L.Graham and D.F. Hsu), pp.525-539, SIAM Publications, Philadelphia, PA.
[10]. Tian, S. Appendage numbers of digraphs, (submitted).
[11]. Chartand, G. and Tian, S. 1991. Oriented graphs with prescribed m-center and m-median, Czech, Math. J.41, 716723).
[12]. Tian, S. 1990. Sum distance in digraphs, Congress. Number. 78,179-192.
[13]. Lofti. A. Zadeh. 1965. Fuzzy set inform Control.
[14]. Rosenfeld, A. 1995. Fuzzy graphs in: L.A Zadel, K.S.Fu M.Shirmura (Eds). Fuzzy sets and Their Applications, Academic press, New yark, 77-95.

