APPLICATIONS OF SLIGHTLY m-PRECONTINUOUS MULTIFUNCTIONS IN REAL LIFE

⁽¹⁾ S.Leema Mary, ⁽²⁾ V.Mahadevan

⁽¹⁾ Head & Associate Professor, Department of Mathematics, Government College of Engineering, Salem, India.

⁽²⁾ Assistant professor, Department of Mathematics, Government College of Engineering, Salem, India.

Abstract : In this paper, we introduce a new class of functions namely slightly m- precontinuous multifunction. Further we obtain characterizations and relationships between upper/lower slightly m- precontinuous multifunctions and other related multifunctions.

IndexTerms - Upper slightly precontinuous, lower slightly precontinuous, upper slightly m-precontinuous, lower slightly m-precontinuous, upper m-precontinuous, lower m-precontinuous.

1. INTRODUCTION

The notion of slightly continuous functions was introduced by R.C. Jain [2]. Nour [12] defined slightly semi-continuous functions as a weak form of slight continuous functions and obtained their properties. Further this concept is extended to develop the class of slightly m-continuous functions. Popa [14] and Smithson [23] studied the concept of weakly continuous multifunctions. In this paper, we introduce the notion of slightly m-precontinuous multifunction and investigate the relationships among m-precontinuity, weak m-precontinuity and slight m-precontinuity for multifunctions.

2. P RELIMINARIES

Throughout this paper, all spaces (X,τ) and (Y,σ) are always topological spaces. A subset A of a space X is said to be **regular open** (**resp.regular closed**), if A=Int(Cl(A))(resp. A=Cl (Int(A))), where Cl(A) and Int(A) denote the closure and interior of A. A subset A of a space X is called **preopen** if A \subset Int(Cl(A)). The complement of a preopen set is said to be **preclosed**. The family of all regular open (resp. regular closed, preopen, preclosed, clopen) sets of X is denoted by RO(X) (resp. RC(X), PO(X), PC(X), CO(X)). A subset A of a space X is said to be **semi-open** if A \subset Cl(Int(A)). The complement of a semi open set is called **semi-closed**. The union of all pre open sets of X contained in A is called the **pre-interior** of A and is denoted by pInt(A). A subset A of a space X is said to be **clopen** if it is both open and closed.

Throughout this paper, the spaces (X,τ) and (Y,σ) (or simply X and Y) denote topological spaces and $F:(X,\tau)\to(Y,\sigma)$ represents a multivalued function. For a multifunction $F:(X,\tau)\to(Y,\sigma)$, we shall denote the **upper** and **lower inverse** of a set B of a space Y by $F^+(B)$ and $F^-(B)$ respectively.

i.e. $F^+(B) = \{x \in X: F(x) \subset B\}, F^-(B) = \{x \in X: F(x) \cap B \neq \phi\}.$

Definition: 2.1[20]

A subfamily m_X of the power set P(X) of a nonempty set X is called a **minimal structure** (briefly m-structure) on X, if $\phi \in m_X$ and $X \in m_X$.

Definition: 2.2 [20]

By (X, m_X) , we denote a nonempty set X with a minimal structure m_X on X and call it an **m-space**. Each member of m_X is said to be **m_X-open** (or briefly m-open). The complement of an m_X -open set is said to be **m_X-closed** (or briefly m-closed).

Remark: 2.3 [20]

Let (X,τ) be a topological space. Then the families τ , SO(X), PO(X), α (X), β (X), are all m-structures on X.

Definition: 2.4 [20]

A function $f:(X,\tau) \rightarrow (Y,\sigma)$ is said to be **slightly continuous** if for each point $x \in X$ and each clopen set V containing f(x), there exists an open set U containing x such that $f(U) \subset V$.

Definition: 2.5 [20]

A topological space (X,τ) is said to be **extremally disconnected** (briefly E.D), if the closure of each open set of X is open in X. **SLIGHTLY m-PRECONTINUOUS MULTIFUNCTIONS**

Definition:3.1

A multifunction $F:(X,\tau) \rightarrow (Y,\sigma)$ is said to be

(a) **Upper slightly precontinuous** (resp. upper slightly continuous, upper slightly semi-continuous or upper faintly precontinuous, upper slightly β -continuous), if for each point $x \in X$ and each clopen set V of Y containing F(x), there exists an preopen (resp. open, semi-open, β -open) set U of X containing x such that $F(U) \subset V$.

(b) Lower slightly precontinuous (resp. lower slightly continuous, lower slightly semi-continuous or lower faintly precontinuous, lower slightly β -continuous), if for each point $x \in X$ and each clopen set V of Y such that $F(x) \cap V \neq \phi$, there exists an preopen (resp. open, semi-open, β -open) set U of X containing x such that $F(u) \cap V \neq \phi$, for each $u \in U$.

Definition: 3.2

A function $f:(X,m_X)\to(Y,\sigma)$, where (X,m_X) is a nonempty X with an minimal structure m_X and (Y,σ) is a topological space, is said to be **slightly m-pre continuous**, if for each $x \in X$ and each clopen set V of Y containing f(x), there exist a preopen set $U \in m_X$ containing x such that $f(U) \subset V$.

Definition: 3.3

A multifunction $F:(X,m_X) \rightarrow (Y,\sigma)$ is said to be

© 2018 JETIR September 2018, Volume 5, Issue 9

www.jetir.org (ISSN-2349-5162)

- (a) Upper m-precontinuous(resp. upper almost m-precontinuous, upper weakly m-precontinuous), if for each point $x \in X$ and each open set V of Y containing F(x), there exists a preopen set $U \in m_X$ containing x such that $F(U) \subset V($ resp. $F(U) \subset$ Int (Cl (V)), $F(U) \subset$ Cl(V)).
- (b) Lower m-precontinuous (lower almost m-precontinuous, lower weakly m-precontinuous), if for each point $x \in X$ and each open set V of Y such that $F(x) \cap V \neq \phi$, there exists a pre open set $U \in m_X$ containing x such that $F(u) \cap V \neq \phi$ (resp. $F(u) \cap Int(Cl(V)) \neq \phi$, $F(u) \cap Cl(V) \neq \phi$) for each $u \in U$.

Definition: 3.4

Let X be a nonempty set and m_X an m-structure on X. For a subset A of X, the m_X -preclosure of A and the m_X -preinterior of A are defined as follows.

1. m_X -pCl(A) = \cap {F:A \subset F, X-F \in m_X}.

2. m_X -pInt(A) = \cup {U:U \subset A, U \in m_X}.

Remark: 3.5

Let (X,τ) be a topological space and A be a subset of X. If $m_X = \tau(resp.SO(X), PO(X), \alpha(X))$, then we have

1. m_X -Cl(A) = Cl(A)(resp.sCl(A),pCl(A), α Cl(A)).

2. m_X -Int (A) = Int(A)(resp. sInt(A), pInt(A), α Int(A)).

Definition: 3.6

- A multifunction $F:(X,m_X) \rightarrow (Y,\sigma)$, is said to be
- (a) **Upper slightly m-precontinuous**, if for each point $x \in X$ and each colpen set V of Y containing F(x), there exist preopen set $U \in m_X$ containing x such that $F(U) \subset V$.
- (b) Lower slightly m-precontinuous, if for each point $x \in X$ and each colpen set V of Y such that $F(x) \cap V \neq \phi$ there exists a preopen set $U \in m_X$ containing x such that $F(u) \cap V \neq \phi$ for each $u \in U$

Theorem: 3.7

For a multifunction $F:(X, m_X) \rightarrow (Y, \sigma)$ the following are equivalent.

1) F is upper slightly m-precontinuous

- 2) $F^+(V) = m_X \text{-pInt}(F^+(V))$ for each $V \in CO(Y)$
- 3) $F(V) = m_X pCl(F(V))$ for each $V \in CO(Y)$

Proof:

 $(1)\Rightarrow(2)$: Let V be any clopen set of Y and $x\in F^+(V)$ then $F(x)\in V \rightarrow (1)$.By (1), there exists a preopen set $U\in m_X$ containing x such that $F(U) \subset V$. Thus $x\in U \subset F^+(V) \Rightarrow x\in m_X$ -pInt $(F^+(V)) \rightarrow (2)$.From eqn (1) & (2) we get, $F^+(V) \subset m_X$ -pInt $(F^+(V))$.i.e. m_X -pInt $(F^+(V)) \subset F^+(V)$, by lemma (3.1) of [20] $F^+(V) = m_X$ -pInt $(F^+(V))$ for each $V \in CO(Y)$.

(2) \Rightarrow (3): Let K be any clopen set of Y. Then Y-K is clopen in Y.By (2), $F^+(V) = m_X$ -pInt($F^+(V)$). By lemma (3.1) of [20] we have, X- $F^-(K) = F^+(Y-K) = m_X$ -pInt($F^+(Y-K)) = X-[m_X-pCl(F^-(K)]]$. Therefore $F^-(K) = m_X$ -pCl($F^-(K)$).

 $(3) \Rightarrow (2)$: Let B be any clopen set of Y. Then Y- B is clopen in Y.By (3) & lemma (3.1) of [20] we have, X-F⁺(B) = F⁻(Y-B) = m_X-pCl(F⁺(V)) = X-[m_X-pInt(F⁺(V)). Therefore F⁺(B) = m_X-pInt(F⁺(V)).

(2) \Rightarrow (1): Let $x \in X$ and V be any clopen set of Y containing F(x). Then $x \in F^+(V) = m_X$ -pInt($F^+(V)$), there exists a preopen set $U \in m_X$ containing x such that $x \in U \subset F^+(V)$. Therefore we have, $x \in U$ and $U \in m_X$ and $f(U) \subset V$. Hence F is upper slightly m-precontinuous.

Theorem: 3.8

For a multi function $F:(X, m_X) \rightarrow (Y, \sigma)$ the following are equivalent.

1) F is lower slightly m-precontinuous.

2) $F(V) = m_X$ -pInt((F(V)) for each $V \in CO(Y)$.

3) $F^+(V) = m_X - pCl(F^+(V))$ for each $V \in CO(Y)$

Proof:

(1) \Rightarrow (2): Let $V \in CO(Y)$ and $x \in F(V)$. Then $F(x) \cap V \neq \phi$.By (1), there exists a preopen set $U \in m_X$ containing x such that $F(u) \cap V \neq \phi$ for each $u \in U$. Therefore

we have, $U \subset F(V) \Rightarrow x \in U \subset m_X$ -pInt(F(V)) $\Rightarrow x \in m_X$ -pInt(F(V)) $\Rightarrow F(V) \subset m_X$ -pInt(F(V)) and by lemma (3.1) of [20] we have F (V) = m_X -pInt(F(V)).

(2) \Rightarrow (3): Let V \in CO(Y). Then Y-V \in CO(Y), by (2), we have, X- F⁺(V) = F⁻(V)=

 $F'(Y-V) = m_X - pInt(F'(Y-V)) = X - [m_X - pCl(F^+(V))]$. Hence $F^+(V) = m_X - pCl(F^+(V))$

(3) \Rightarrow (1): Let $x \in X$ and $V \in CO(Y)$ such that $F(x) \cap V \neq \phi$, then $x \in F(V)$ and

 $x \notin X$ - $F(V) = F^+(Y-V)$.By (3) we have, $x \notin m_X$ -pCl($F^+(V)$).By lemma (3.2) of [20], there exists preopen set $U \in m_X$ containing x such that $U \cap F^+(Y-V) = \phi$. Thus $U \subset \phi$.

F(V). Therefore $F(u) \cap V \neq \phi$ for each $u \in U$. Hence F is lower slightly m-precontinuous.

Theorem: 3.9

Let (Y,σ) be E.D. For a multifunction $F:(X, m_X) \rightarrow (Y,\sigma)$, the following are equivalent.

1) F is upper slightly m-precontinuous.

2) m_X -pCl(F(V)) $\subset F(Cl(V))$ for every open set V of (Y,σ)

3) $F^+(Int(C)) \subset m_X$ -pInt($F^+(C)$) for every closed set C of (Y,σ)

Proof:

(1) \Rightarrow (2): Let V be any open set of Y. Then Cl(V) \in CO(Y), by theorem (3.7), we have, $F(Cl(V)) = m_X - pCl(F(Cl(V)))$ and $F(V) \subset F(Cl(V))$, by lemma (3.1) of [20], we have, $m_X - pCl(F(V)) \subset m_X - pCl(F(Cl(V))) \Rightarrow m_X - pCl(F(V)) \subset F(Cl(V))$

(2) \Rightarrow (3): Let C be any closed set of (Y, σ) and V = Y-C. Then V is open in (Y, σ). By lemma (3.1) of [20], we have, X- [m_X-pInt(F⁺(C))] = m_X-pCl(x-F⁺(C)) = m_X-pCl(F⁻(Y-C)) = F⁻(Y-Int(C)). Therefore X-[m_X-pInt(F⁺(C))] = X-F⁺(Int(C)) \Rightarrow F⁺(Int(C)) = m_X-pInt(F⁺(C))

 $(3) \Rightarrow (1)$: Let $x \in X$ and let $V \in CO(Y)$ containing F(x). Then By (3) we have, $x \in F^+(V) = F^+(Int(V)) \subset m_X$ -pInt($F^+(V)$). There exists a preopen set $U \in m_X$ such that $x \in U \subset F^+(V)$. Thus $x \in U$, $U \in m_X$ and $F(U) \subset V$. Hence F is upper slightly m-precontinuous.

Theorem: 3.10

99

Let (Y,σ) be E .D. For a multifunction $F:(X, m_X) \rightarrow (Y,\sigma)$, the following are equivalent.

1) F is lower slightly m-precontinuous.

2) m_X -pCl($F^+(V)$) $\subset F^+(Cl(V))$ for every open set V of (Y,σ)

3) $F^{-}(Int(C)) \subset m_X$ -pInt($F^{-}(C)$) for every closed set C of (Y, σ)

Proof:

 $(1) \Rightarrow (2): Let V be any open set of Y. Then Cl(V) \in CO(Y).By theorem (3.8), F^{+}(Cl(V)) = m_{X}-pCl(F^{+}(Cl(V))) and F^{+}(V) \subset (F^{+}(Cl(V))).By lemma (3.1) of [20], we have m_{X}-pCl(F^{+}(V)) \subset m_{X}-pCl(F^{+}(Cl(V))) \Rightarrow m_{X}-pCl(F^{+}(V)) \subset F^{+}(Cl(V))$

(2) \Rightarrow (3): Let C be any closed set of (Y, σ) and V= Y-C, then V is open in (Y, σ)

By lemma (3.1) of [20], we have, X- $[m_X$ -pInt $(F(C))] = m_X$ -pCl $(X-(F(C))) = m_X$ -pCl $(F^+(Y-C)) \subset F^+(Cl(Y-C))$ (by given (2))= $F^+(Y-Int(C))$. Therefore X- $[m_X$ -pInt

 $(F^{-}(C)) = X - F^{-}(Int(C)) \Longrightarrow F^{-}(Int(C)) \subset m_{X} - pInt(F^{-}(C))$

 $(3) \Rightarrow (1)$: Let $x \in X$ and $V \in CO(Y)$ containing $F(x) \cap V \neq \phi$.Let V = Y-C is open in Y. Let $x \in F^+(C)$ and $x \notin X$ - $F^+(C) \notin F^-(Y$ -C).By (3) we have, $x \notin m_X$ -pInt ($F^-(Y$ -C)),by theorem (3.8) we have, $x \notin m_X$ -pCl($F^+(Y$ -C)).By lemma (3.2) of [20], there exists a preopen set $U \in m_X$ containing x such that $U \cap (F^+(Y-C)) = \phi$.Hence $U \subset$

F(V) and $F(x) \cap V \neq \phi$ for each $u \in U$. Hence F is lower slightly m-precontinuous.

Slight m-precontinuity and other forms m-precontinuity.

Theorem: 4.1

If multifunction $F:(X, m_X) \rightarrow (Y, \sigma)$ is upper weakly m-precontinuous, then it is upper slightly m-precontinuous.

Proof:

Let $x \in X$ and $V \in CO(Y)$ containing F(x). Since F is upper weakly m-precontinuous. There exists a preopen set $U \in m_X$ containing x such that $F(U) \subset Cl(V) = V$. Hence F is upper slightly m-precontinuous.

Theorem: 4.2

If a multi function $F:(X, m_X) \rightarrow (Y, \sigma)$ is lower weakly m-precontinuous then it is lower slightly m-precontinuous.

Proof:

Let $x \in X$ and $V \in CO(Y)$ such that $F(x) \cap V \neq \phi$. Since F is lower weakly m-precontinuous there exist a preopen set $U \in m_X$ containing x such that $F(U) \cap Cl(V) \neq \phi$, for each $u \in U \Rightarrow F(U) \cap (V) \neq \phi$, for each $u \in U$. Hence F is lower slightly m-precontinuous.

Lemma: 4.3

A multifunction $F:(X, m_X) \rightarrow (Y, \sigma)$ is upper almost m-precontinuous (resp.lower almost m-precontinuous) iff for each regular open set V containing F(x) (resp. meeting F(x)), there exist a preopen set $U \in m_X$ containing x such that $F(U) \subset V$ (resp. $F(u) \cap (V) \neq \phi$, for every $u \in U$)

Proof:

Let $x \in X$ and V be regular open set of Y containing F(x). Since F is upper almost m-precontinuous there exist a preopen set $U \in m_X$ containing x such that $F(U) \subset Int(Cl(V)) = V$. Hence for each regular open set V containing F(x), there exist a preopen set $U \in m_X$ containing x such that un $F(U) \subset V$. Conversely, there exist a preopen set $U \in m_X$ containing x such that $F(U) \subset V \subset Cl(V) \Rightarrow IntF(U) \subset Int(Cl(V)) \Rightarrow F(U) \subset Int(Cl(V))$. Hence F is upper almost m-precontinuous.

Theorem: 4.4

If a multi function $F:(X, m_X) \rightarrow (Y, \sigma)$ is upper slightly m- precontinuous and (Y, σ) is E.D, then F is upper almost m- precontinuous. **Proof:**

Let $x \in X$ and V be any regular open set of (Y,σ) containing F (x). Then By lemma 5.6 of [13] we have, $V \in CO(X)$. Since (Y,σ) is E.D and F is upper almost m- precontinuous, there exist a preopen set $U \in m_X$ containing x such that $F(U) \subset V$. By lemma (4.3), F is upper almost m- precontinuous.

Theorem: 4.5

If a multi function F: $(X, m_X) \rightarrow (Y, \sigma)$ is lower slightly m- precontinuous and (Y, σ) is E.D , then F is lower almost m-precontinuous.

Proof:

Let $x \in X$ and V be any regular open set of (Y,σ) containing F(x). Then By lemma 5.6 of [13] we have, $V \in CO(X)$. Since (Y,σ) is E.D. Since F is lower slightly m- precontinuous, there exist a pre open set $U \in m_X$ containing x such that $F(U) \cap V \neq \phi$ for each $u \in U$. By lemma (4.4), F is lower almost m- pre continuous.

References

- [1] **T.Banzaru**, More remarks on some forms of continuity for multifunctions, Bul.Stiint.Univ.Politeh.Timisser Mat.Fiz., 44(58) (1999), 34-39.
- [2] R.C.Jain, The role of regularly open sets in general topology Ph.D. Thesis. Meerut Univ., 1980.
- [3] A.S.Mashhour, I.A.Hasanein and S.N.EI-Deeb, a note on semi-continuity and precontinuity, Indian J.Pure Appl.Math. 13 (1982), 1119-1123.
- [4] A.S.Mashhour.M.E.Abd ELmonsef and S.N.EI-Deep, on precontinuous and weak precontinuous mappings, Proc.Math.Phys.Soc.Egypt 53(1982), 47-53.
- [5] A.S.Mashhour. M.E.A.EI-monsef, I.A.Hasanein, on pretopological spaces, Bull. Math. Soc.Sci. RSR.28 (1984), 39-45.
- [6] H.Maki, K.C.Rao and A.Nagoor Gani, On generalizing Semi-open sets and preopen sets. Pure Appl.Math. Sci. 49(1999), 17-29.
- [7] T.Noiri, Characterizations of extremally disconnected spaces, Indian J.Pure Appl.Math., 19 (1988), 325-329.
- [8] T.Noiri and V.Popa, On upper and lower weakly quasi continuous multifunctions, Rev.Roumaine Math.Pures Appl., 37(1992), 499-508.
- [9] T.Noiri and V.Popa, almost weakly continuous multifunctions, Demonstratio Math, 26(1993), 363-368.
- [10] A.A.Nasef and T.Noini, some weak forms of almost continuity, Acta. Math. Hungar, 74(1997), 211-219.
- [11] T.Noiri, On slightly β -continuous functions, internet, J.Math. Math. Sci., 28(2001), 469-478.
- [12] T.M.Nour, slightly semi-continuous function, Bull.Calcutta Math.Soc., 87 (1995), 187-190.

© 2018 JETIR September 2018, Volume 5, Issue 9

(5), 15 (1978), 379-388.

[13] M.C.Pal and P.Bhattacharyya, Faint precontinuous functions, Soochow J.Math., 21(1995), 273-289.

- [14] V.Popa, weakly continuous Multifunctions, Boll.Un.Math.Ital.
- [15] V.Popa, On some properties of weakly continuous multifunctions, Univ.Bacau, Stud.Cerc.Math., 1980, 121-127.
- [16] V.Popa and T.Noiri, Properties of upper and lower weakly quasi continuous Multifunctions, univ.Bacau,Stud.Cerc.St.Ser.Mat.Inform, 25 (1998), 24-30.
- [17] V.Popa and T.Noiri, Almost m-continuous functions, Math.Notal 40 (1999/2002), 75-94.
- [18] V.Popa and T.Noiri, On M-continuous functions, Anal.Univ."Dunarea de Jos" Galati, Ser.Math.Fiz.Mec.Teor.18 (23) (2000), 31-41.
- [19] V.Popa and T.Noiri, Slightly m-continuous functions, Radovi Math, 10 (2001), 1-14.
- [20] V.Popa and T.Noiri, Slightly m-continuous multifunctions, Bull Math, 1(2006).
- [21] V.Popa and J.Noiri On upper and lower weakly α-continuous Multifunctions, Novi sad J.Math., 32 (2002), 7-24.
- [22] V.Popa and T.Noiri, A unified theory of weak continuity for multifunctions,

