EXTENDED RESULTS ON (G,D)-NONBONDAGE NUMBER OF A GRAPH

¹S. KALAVATHI , ²K. PALANI

¹Research Scholar Register Number 11503 Department of Mathematics Manonmaniam Sundaranar University Abishekapatti, Tirunelveli-627 012 Tamil Nadu, India ²Associate Professor Department of Mathematics A.P.C Mahalaxmi College for Women, Thoothukudi. Affiliated with Manonmaniam Sundaranar University Abishekapatti, Tirunelveli-627 012 Tamil Nadu, India

ABSTRACT: The (G,D)-Nonbondage number of a graph G denoted by $b_n\gamma_G(G)$ is defined as the maximum cardinality among all sets of edges $X \subseteq E(G)$ such that $\gamma_G(G - X) = \gamma_G(G)$. If $b_n\gamma_G(G)$ does not exist, we define $b_n\gamma_G(G) = 0$. In this paper, we shall give some extended results on (G, D)-Nonbondage number of a graph.

Keywords: Domination, Geodomination, (G, D)-number, (G, D)-Bondage number and (G, D)-Nonbondage number. AMS Subject Classification: 05C69

1. Introduction: Throughout this paper, we consider G as a finite undirected graph with no loops and multiple edges. The concept of domination in graphs was introduced by Ore [8]. Let G = (V, E) be any graph. A dominating set of a graph G is a set D of vertices of G such that every vertex in V–D is adjacent to atleast one vertex in D and the minimum cardinality among all dominating sets is called the domination number $\gamma(G)$. The concept of geodominating (or geodetic) set was introduced by Buckley and Harary in [1] and Chartrand, Zhang and Harary in [2, 3, 4]. Let u, $v \in V(G)$. A u-v geodesic is a u-v path of length d(u, v). A vertex $x \in V(G)$ is said to lie on a u-v geodesic P if x is a vertex of P including the vertices u and v. A set S of vertices of G is a geodomination(or geodetic) number of G and is denoted as g(G)[1, 2, 3, 4]. The concept of (G, D)-set was introduced by Palani and Nagarajan [9]. A (G, D)-set of G is a subset S of V(G) which is both a dominating and geodetic set of G. A (G, D)-set S of G is said to be a minimal (G, D)-set of G if no proper subset of S is a (G, D)-set of G. The minimum cardinality of all (G, D)-sets of G is called the (G, D)-number of G and it is denoted by $\gamma_G(G)$. Any (G, D)-set of G of cardinality γ_G is called a γ_G -set of G [9, 10, 11].

Fink et al. [5] introduced the bondage number of a graph in 1990. The bondage number b(G) of a graph G is the cardinality of a smallest set of edges whose removal from G results in a graph with domination number greater than $\gamma(G)$.

In [7], Kulli and Janakiram introduced the concept of the nonbondage number as follows: The nonbondage number $b_n(G)$ of G is the maximum cardinality of all sets of edges $X \subseteq E$ for which $\gamma(G - X) = \gamma(G)$ for an edge set X, then X is called the nonbondage set and the maximum one the maximum nonbondage set. If $b_n(G)$ does not exist, we define $b_n(G) = 0$.

Let G = (V, E) be any graph and $v \in V(G)$. The neighbourhood of v, written as $N_G(v)$ or N(v) is defined by $N(v) = \{x \in V(G) : x \text{ is} adjacent to v\}$. The *degree of* a vertex v in a graph G is defined to be the number of edges incident with v and is denoted by *deg v*. A vertex of degree zero is an isolated vertex and a vertex of degree one is a *pendant vertex* (or end vertex). Any vertex which is adjacent to a pendant vertex is called a support. A graph G is *complete* if every pair of distinct vertices of G are adjacent in G. A complete graph on p vertices denoted by K_p . A *clique* of a graph is a maximal complete subgraph. A graph H is called a *subgraph* of G if $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$. A subgraph H of a graph G is a *proper subgraph* of G if either $V(H) \neq V(G)$ or $E(H) \neq E(G)$. A *spanning subgraph* of G is a subgraph H of G with V(G) = V(H). A graph G is called *acyclic* if it has no cycles. A connected acyclic graph is called a *tree*.

Definition 1.1:[6] The (G, D)-bondage number of a graph G denoted by $b\gamma_G(G)$ is the least positive integer k such that there exists $F \subseteq E(G)$ with |F| = k and $\gamma_G(G - F) > \gamma_G(G)$. If no such k exists, it is defined to be ∞ .

Remark 1.2:[6] (i) (G, D)-number is defined for connected graphs with at least two vertices [9]. So, let us assume that (G, D)-number of a disconnected graph is the sum of (G,D)-number of its components.

(ii) Also, assume that (G, D)-number of a graph with less than two vertices, that is, graph is a single vertex is 1.

Definition 1.3:[6] The (G, D)-nonbondage number of a graph G denoted by $b_n \gamma_G(G)$ is defined as the maximum cardinality among all sets of edges $X \subseteq E(G)$ such that $\gamma_G(G - X) = \gamma_G(G)$.

2. MAIN RESULTS

Proposition 2.1: Let D(r,s) be the double star obtained from K_2 by joining r pendant edges to one end and s pendant edges to the other end of K_2 . Then, $b_n \gamma_G(D(r,s)) = r + s - 2$.

Proof: Let u and v be the vertices of K_2 . Then, r and s end vertices adjacent to u and v respectively, in D(r,s). Remove r-1 pendant edges incident with u and s-1 pendant edges incident with v. The value of γ_G does not change. Obviously, removal of more edges results in the increase of γ_G -value. Therefore, $b_n \gamma_G (D(r,s)) = r + s - 2$.

Theorem 2.2: Let *T* be a tree with *l* end vertices and *k* support vertices such that l + k = p. Let *L* and *K* denote the set of all end and support vertices of *T* respectively. If $\gamma_G(T) = l$ and each support vertex is adjacent to at least two end vertices, then $b_n \gamma_G(T) = k - 1 + \sum_{v \in K} (deg_T v - 2)$.

Proof: Let *K* be the set of all support vertices of *T*. Suppose *S* is a (G, D)-set of *T*. Clearly, no support vertex of *T* belongs to *S*. Since |K|=k, the number of edges between the support vertices is exactly k-1.

Step 1: Remove the k - 1 edges between the support vertices from *T*

Let the new graph be T'. Clearly, $T' \cong G_1 \cup G_2 \cup ... \cup G_k$, where each G_i is a star of order at least 3.

Therefore, $\gamma_G(T') = \gamma_G[G_1 \cup G_2 \cup ... \cup G_K]$

$$= \gamma_G(G_1) + \gamma_G(G_2) + \dots + \gamma_G(G_k)$$

= l.

Step 2: From *T'*, remove $deg_{T'}v - 2$ pendant edges incident with each support vertex *v*

Let the resultant graph be T'' and in T'', let G'_i denote the resultant of G_i . Since each $G_i(1 \le i \le k)$ is a star, $\gamma_G(G_i) = \gamma_G(G'_i)$. Therefore, $\gamma_G(T'') = \gamma_G(G'_1) + \gamma_G(G'_2) + \dots + \gamma_G(G'_k)$

$$= \gamma_G(G_1) + \gamma_G(G_2) + \dots + \gamma_G(G_k)$$

$$= \iota$$

 $= \gamma_G(T).$

Clearly, T'' is obtained by removing $k - 1 + \sum_{v \in K} (\deg_T v - 2)$ edges from the graph *T*. Also, removal of atleast one more edge from *T* increases the γ_G -value. Therefore, $b_n \gamma_G(T) = k - 1 + \sum_{v \in K} (\deg_T v - 2)$.

Theorem 2.3: Given a positive integer $k \ge 1$, there exists a graph G with $b_n \gamma_G(G) = k$.

Proof: Consider the graph *G* in Figure 2.1.

Figure (2.1)

Clearly, $\{a, d, v_i: 1 \le i \le k\}$, $\{a, d, u_i: 1 \le i \le k\}$ and $\{a, d, w_i: 1 \le i \le k\}$ are some minimum (G, D)-sets of G and so, $\gamma_G(G) = k + 2$. Now, we remove the set of edges $X = \{au_i: 1 \le i \le k\}$ or $Y = \{dw_i: 1 \le i \le k\}$ from G. Then, $\{a, d, u_i: 1 \le i \le k\}$ and $\{a, d, w_i: 1 \le i \le k\}$ are the minimum (G,D)-sets of G - X and G - Y respectively. Thus, $\gamma_G(G - X) = \gamma_G(G - Y) = k + 2 = \gamma_G(G)$. Also, removal of any k + 1 edges of G increases the γ_G -value of G. Therefore, $b_n \gamma_G(G) = |X| = |Y| = k$.

Theorem 2.4: For any graph G, $b\gamma_G(G) \le b_n\gamma_G(G) + 1$ and the bound is sharp.

Proof: Let X be a $b_n \gamma_G$ -set of G. Then, $X \cup \{e\}$ is a $b \gamma_G$ -set of G.

So, $b\gamma_G(G) \le |X \cup \{e\}| = |X| + 1 = b_n \gamma_G(G) + 1$.

If $\cong C_4$, $b\gamma_G(G) = 2$, $b_n\gamma_G(G) = 1$ and so the bound is sharp.

Definition 2.5: An edge *e* of *G* is (G, D)-critical if $\gamma_G(G - e) > \gamma_G(G)$.

Definition 2.6: A graph *G* is called an edge (G, D)- critical (or edge γ_G – critical) graph if

 $\gamma_G(G - e) > \gamma_G(G)$ for every edge $e \in E(G)$.

Definition 2.7: An edge *e* of *G* is (G, D)-durable if $\gamma_G(G - e) = \gamma_G(G)$.

Definition 2.8: A graph *G* is called an edge (G, D)-durable (or edge γ_G -durable) graph if

 $\gamma_G(G - e) = \gamma_G(G)$ for every edge $e \in E(G)$.

Example 2.9: (i) In a star graph, every edge is γ_G -durable. So, star graph is a γ_G -durable graph.

(ii) P_2 is a γ_G - durable graph.

(iii) P_3 is a γ_G - critical graph.

Theorem 2.10: If for any edge *e* in *G*, there exists a $b_n \gamma_G$ - set containing *e*, then *e* is γ_G - durable.

Proof: Let $e \in E(G)$ such that there exists a $b_n \gamma_G$ - set S containing *e*. Then, $\gamma_G(G - S) = \gamma_G(G)$. Therefore, $\gamma_G(G - e) = \gamma_G(G)$ and so, *e* is γ_G - durable.

Corollary 2.11: If $b\gamma_G(G) = \infty$, then *G* is γ_G - durable.

Proof: Since $b\gamma_G(G) = \infty$, every edge of G belonging to $b_n\gamma_G$ - set of G. By Theorem 2.10, every edge of G is γ_G - durable and hence, G is γ_G - durable.

Theorem 2.12: If $X \subseteq E(G)$ is a nonbondage (G, D)-set of G, then every edge in G - X is γ_G -critical with respect to G - X.

Proof: Let X be a $b_n \gamma_G$ -set of G. Then, $\gamma_G(G - X) = \gamma_G(G)$. If there exists an edge $e \in G - X$ such that e is not γ_G -critical, then $\gamma_G[(G - X) - \{e\}] = \gamma_G(G - X) = \gamma_G(G)$. So that,

 $\gamma_G[G - (X \cup \{e\})] = \gamma_G(G)$. Which is a contradiction to the maximality of X.

Remark 2.13: Converse of the above theorem is not true. Consider the graph G given in Figure 2.2.

Figure (2.2)

Let $X = \{v_1v_2, v_1v_4\}$. Every edge in G - X i respect to G - X but X is not a $b_n\gamma_G$ -set of G.

Observation 2.14: Let G be a non-complete, γ_G graph. If H is a spanning subgraph of G obtained by removing at least one γ_G -critical edge from G, then $\gamma_G(G) < \gamma_G(H)$.

Theorem 2.15: Let G be a graph without cliques of order greater than or equal to 3. Suppose H is a spanning subgraph of G. Then, $\gamma_G(G) \leq \gamma_G(H)$.

Proof: Suppose H is a spanning subgraph of G. Then, V(G) = V(H) and $E(H) \subset E(G)$. Take E' = E(G) - E(H).

Case 1: |E'| = 0

Then, H = G. Therefore, $\gamma_G(H) = \gamma_G(G)$.

Case 2: |E'| = 1

Let $E' = \{x\}.$

Subcase (2a): *x* is γ_G -critical

Then, $\gamma_G(G) < \gamma_G(H)$.

Subcase (2b): *x* is γ_G -durable

Then, $\gamma_G(G - x) = \gamma_G(G)$ and so, $\gamma_G(H) = \gamma_G(G)$.

Case 3: |E'| > 1

Subcase (3a): E' is a $b_n \gamma_G$ -set

Then, $\gamma_G(G - E') = \gamma_G(G)$ and so, $\gamma_G(H) = \gamma_G(G)$.

Subcase (3b): E' is a $b\gamma_G$ -set

Then, $\gamma_G(G - E') > \gamma_G(G)$ and so, $\gamma_G(H) > \gamma_G(G)$.

Subcase (3c): Every element of E' is γ_G -durable

Suppose |E'| = |E| - 1. Let $E' = \{x_1, x_2, \dots, x_{q-1}\}.$

Then, $\gamma_G(G - x_1) = \gamma_G(G - x_2) = \cdots = \gamma_G(G - x_{q-1}) = \gamma_G(G)$. If we remove q - 1 edges from G, then E(H) = 1 and V(H) = V(G). Therefore, $\gamma_G(H) = |V(H)| = |V(G)| \ge \gamma_G(G)$ and so, $\gamma_G(G) \le \gamma_G(H)$.

Subcase (3d): Every element of E' is γ_G -critical

Suppose $|E'| = |E| - 1 = |\{x_1, x_2, ..., x_{q-1}\}|$ as before. Then, by Observation 2.14,

 $\gamma_G(G - x_i) > \gamma_G(G)$ for all i = 1, 2, ..., q - 1 and so, $\gamma_G(G - E') > \gamma_G(G)$.

Thus, $\gamma_G(G) < \gamma_G(H)$.

Subcase (3e): $E' = W \cup Z$, W is the set of γ_G -durable edges and Z is the set of γ_G -critical edges

Since *E*' contains at least one γ_G -critical edge, by Observation 2.14, $\gamma_G(G) < \gamma_G(H)$. From the above cases, $\gamma_G(G) \le \gamma_G(H)$.

References:

[1] Buckley F and Harary F, 1990, Distance in graphs, Addison Wesley, Redwood City, CA.

- [2] Chartrand G, Harary F and Zhang P, 2000, Geodetic sets in graphs, Discussiones Mathematicae Graph theory, 20, 129-138e.
- [3] Chartrand G, Harary F and Zhang P, 2002, On the Geodetic number of a graph, Networks, Volume 39(1), 1-6.
- [4] Chartrand G, Zhang P and Harary F, 1998, Extremal problems in Geodetic graph Theory, Congressus Numerantium 131, 55-66.
- [5] Fink J F, Jacobson M S, Kinch I F and Roberts J, 1990, The bondage number of a graph, Discrete Math., 86(1-3), 47-57.

[6] Kalavathi S and Palani K, 2018, (G, D)-Bondage and (G, D)-Nonbondage Number of a graph, International Journal of Mathematics Trends and Technology, Volume 57(1), 67-72.

[7] Kulli V R and Janakiram B, The nonbondage number of a graph, 1996, Graph Theory Notes of New York, New York Academy of Sciences, 30, 14-16.

[8] Ore O, 1962, Theory of graphs, American Mathematical Society Colloq. Publications, 38(American Mathematical Society, RI).

[9] Palani K and Nagarajan A, (G, D)-Number of a graph, 2011, International Journal of Mathematics Research, Volume 3, Number 3, 285-299.

[10] Palani K and Kalavathi S, (G, D)-Number of some special graphs, 2014 International Journal of Engineering and Mathematical Sciences, January-June 2014, Volume 5(1), pp.7-15.

[11] Palani K, Nagarajan A and Mahadevan G, 2010, Results connecting domination, geodetic and (G,D)-number of graph, International Journal of Combinatorial graph theory and applications, Volume 3(1), pp.51 -59.

