EXTENDED RESULTS ON (G,D)-NONBONDAGE NUMBER OF A GRAPH

${ }^{1}$ S. KALAVATHI , ${ }^{2}$ K. PALANI
${ }^{1}$ Research Scholar
Register Number 11503
Department of Mathematics
Manonmaniam Sundaranar University
Abishekapatti, Tirunelveli-627 012
Tamil Nadu, India
${ }^{2}$ Associate Professor
Department of Mathematics
A.P.C Mahalaxmi College for Women, Thoothukudi.
Affiliated with Manonmaniam Sundaranar University
Abishekapatti, Tirunelveli-627 012
Tamil Nadu, India

Abstract

The (G,D)-Nonbondage number of a graph G denoted by $b_{n} \gamma_{G}(G)$ is defined as the maximum cardinality among all sets of edges $X \subseteq E(G)$ such that $\gamma_{G}(G-X)=\gamma_{G}(G)$. If $b_{n} \gamma_{G}(G)$ does not exist, we define $b_{n} \gamma_{G}(G)=0$. In this paper, we shall give some extended results on (G, D)-Nonbondage number of a graph.

Keywords: Domination, Geodomination, (G, D)-number, (G, D)-Bondage number and (G, D)-Nonbondage number. AMS Subject Classification: 05C69

Abstract

1. Introduction: Throughout this paper, we consider G as a finite undirected graph with no loops and multiple edges. The concept of domination in graphs was introduced by Ore [8]. Let $G=(V, E)$ be any graph. A dominating set of a graph G is a set D of vertices of G such that every vertex in $\mathrm{V}-\mathrm{D}$ is adjacent to atleast one vertex in D and the minimum cardinality among all dominating sets is called the domination number $\gamma(\mathrm{G})$. The concept of geodominating (or geodetic) set was introduced by Buckley and Harary in [1] and Chartrand, Zhang and Harary in $[2,3,4]$. Let $u, v \in V(G)$. A u-v geodesic is a $u-v$ path of length $d(u, v)$. A vertex $\quad x \in V(G)$ is said to lie on a u-v geodesic P if x is a vertex of P including the vertices u and v. A set S of vertices of G is a geodominating(or geodetic) set if every vertex of G lies on an $\mathrm{x}-\mathrm{y}$ geodesic for some x , y in S . The minimum cardinality of a geodominating set is the geodomination(or geodetic) number of G and is denoted as $g(G)[1,2,3,4]$. The concept of (G, D)-set was introduced by Palani and Nagarajan [9]. A (G, D)-set of G is a subset S of $V(G)$ which is both a dominating and geodetic set of G. A (G, D)-set S of G is said to be a minimal (G, D)-set of G if no proper subset of S is a (G, D)-set of G. The minimum cardinality of all (G, D)-sets of G is called the (G, D)-number of G and it is denoted by $\gamma_{G}(G)$. Any (G, D)-set of G of cardinality γ_{G} is called a γ_{G}-set of $\mathrm{G}[9,10,11]$.

Fink et al. [5] introduced the bondage number of a graph in 1990. The bondage number $b(G)$ of a graph G is the cardinality of a smallest set of edges whose removal from G results in a graph with domination number greater than $\gamma(G)$.

In [7], Kulli and Janakiram introduced the concept of the nonbondage number as follows: The nonbondage number $b_{n}(G)$ of G is the maximum cardinality of all sets of edges $X \subseteq E$ for which $\gamma(G-X)=\gamma(G)$ for an edge set X, then X is called the nonbondage set and the maximum one the maximum nonbondage set. If $b_{n}(G)$ does not exist, we define $b_{n}(G)=0$.

Let $G=(V, E)$ be any graph and $v \in V(G)$. The neighbourhood of v, written as $N_{G}(v)$ or $N(v)$ is defined by $N(v)=\{x \in V(G): x$ is adjacent to v$\}$. The degree of a vertex v in a graph G is defined to be the number of edges incident with v and is denoted by deg v. A vertex of degree zero is an isolated vertex and a vertex of degree one is a pendant vertex (or end vertex). Any vertex which is adjacent to a pendant vertex is called a support. A graph G is complete if every pair of distinct vertices of G are adjacent in G. A complete graph on p vertices denoted by K_{p}. A clique of a graph is a maximal complete subgraph. A graph H is called a subgraph of G if $V(H) \subseteq V(G)$ and $E(H) \subseteq$ $E(G)$. A subgraph H of a graph G is a proper subgraph of G if either $V(H) \neq V(G)$ or $E(H) \neq E(G)$. A spanning subgraph of G is a subgraph H of G with $V(G)=V(H)$. A graph G is called acyclic if it has no cycles. A connected acyclic graph is called a tree.
Definition 1.1:[6] The (G, D)-bondage number of a graph G denoted by $b \gamma_{G}(G)$ is the least positive integer k such that there exists $F \subseteq E(G)$ with $|F|=k$ and $\gamma_{G}(G-F)>\gamma_{G}(G)$. If no such k exists, it is defined to be ∞.
Remark 1.2:[6] (i) (G, D)-number is defined for connected graphs with at least two vertices [9]. So, let us assume that (G, D)-number of a disconnected graph is the sum of (G,D)-number of its components.
(ii) Also, assume that (G, D)-number of a graph with less than two vertices, that is, graph is a single vertex is 1.

Definition 1.3:[6] The (G, D)-nonbondage number of a graph G denoted by $\mathrm{b}_{\mathrm{n}} \gamma_{G}(G)$ is defined as the maximum cardinality among all sets of edges $X \subseteq E(G)$ such that $\gamma_{G}(G-X)=\gamma_{G}(G)$.

2. MAIN RESULTS

Proposition 2.1: Let $\mathrm{D}(\mathrm{r}, \mathrm{s})$ be the double star obtained from K_{2} by joining r pendant edges to one end and s pendant edges to the other end of K_{2}. Then, $\mathrm{b}_{\mathrm{n}} \gamma_{G}(D(r, s))=r+s-2$.

Proof: Let u and v be the vertices of K_{2}. Then, r and s end vertices adjacent to u and v respectively, in $D(r, s)$. Remove $r-1$ pendant edges incident with u and $s-1$ pendant edges incident with v. The value of γ_{G} does not change. Obviously, removal of more edges results in the increase of γ_{G}-value. Therefore, $\mathrm{b}_{\mathrm{n}} \gamma_{G}(D(r, s))=r+s-2$.
Theorem 2.2: Let T be a tree with l end vertices and k support vertices such that $l+k=p$. Let L and K denote the set of all end and support vertices of T respectively. If $\gamma_{G}(T)=l$ and each support vertex is adjacent to at least two end vertices, then $b_{n} \gamma_{G}(T)=k-1+$ $\sum_{v \in K}\left(\operatorname{deg}_{T} v-2\right)$.
Proof: Let K be the set of all support vertices of T. Suppose S is a (G, D)-set of T. Clearly, no support vertex of T belongs to S. Since $|K|=k$, the number of edges between the support vertices is exactly $k-1$.
Step 1: Remove the $k-1$ edges between the support vertices from T
Let the new graph be T^{\prime}. Clearly, $T^{\prime} \cong G_{1} \cup G_{2} \cup \ldots \cup G_{k}$, where each G_{i} is a star of order atleast 3 .
Therefore, $\gamma_{G}\left(T^{\prime}\right)=\gamma_{G}\left[G_{1} \cup G_{2} \cup \ldots \cup G_{K}\right]$

$$
\begin{aligned}
& =\gamma_{G}\left(G_{1}\right)+\gamma_{G}\left(G_{2}\right)+\cdots+\gamma_{G}\left(G_{k}\right) \\
& =l .
\end{aligned}
$$

Step 2: From T^{\prime}, remove $\operatorname{deg}_{T^{\prime}} v-2$ pendant edges incident with each support vertex v
Let the resultant graph be $T^{\prime \prime}$ and in $T^{\prime \prime}$, let G_{i}^{\prime} denote the resultant of G_{i}. Since each $G_{i}(1 \leq i \leq k)$ is a star, $\gamma_{G}\left(G_{i}\right)=\gamma_{G}\left(G_{i}^{\prime}\right)$. Therefore,

$$
\begin{aligned}
\gamma_{G}\left(T^{\prime \prime}\right) & =\gamma_{G}\left(G_{1}^{\prime}\right)+\gamma_{G}\left(G_{2}^{\prime}\right)+\cdots+\gamma_{G}\left(G_{k}^{\prime}\right) \\
& =\gamma_{G}\left(G_{1}\right)+\gamma_{G}\left(G_{2}\right)+\cdots+\gamma_{G}\left(G_{k}\right) \\
& =l \\
& =\gamma_{G}(T) .
\end{aligned}
$$

Clearly, $T^{\prime \prime}$ is obtained by removing $k-1+\sum_{v \in K}\left(\operatorname{deg}_{T} v-2\right)$ edges from the graph T. Also, removal of atleast one more edge from T increases the γ_{G}-value. Therefore, $b_{n} \gamma_{G}(T)=k-1+\sum_{v \in K}\left(\operatorname{deg}_{T} v-2\right)$.
Theorem 2.3: Given a positive integer $k \geq 1$, there exists a graph G with $b_{n} \gamma_{G}(G)=k$.
Proof: Consider the graph G in Figure 2.1.

Figure (2.1)
Clearly, $\left\{a, d, v_{i}: 1 \leq i \leq k\right\},\left\{a, d, u_{i}: 1 \leq i \leq k\right\}$ and $\left\{a, d, w_{i}: 1 \leq i \leq k\right\}$ are some minimum (G, D)-sets of G and so, $\gamma_{G}(G)=k+2$.
Now, we remove the set of edges $X=\left\{a u_{i}: 1 \leq i \leq k\right\}$ or $Y=\left\{d w_{i}: 1 \leq i \leq k\right\}$ from G. Then, $\left\{a, d, u_{i}: 1 \leq i \leq k\right\}$ and $\left\{a, d, w_{i}: 1 \leq i \leq\right.$ $k\}$ are the minimum (G,D)-sets of $G-X$ and $G-Y$ respectively. Thus, $\gamma_{G}(G-X)=\gamma_{G}(G-Y)=k+2=\gamma_{G}(G)$.
Also, removal of any $k+1$ edges of G increases the γ_{G}-value of G.
Therefore, $b_{n} \gamma_{G}(G)=|X|=|Y|=k$.
Theorem 2.4: For any graph $\mathrm{G}, b \gamma_{G}(G) \leq b_{n} \gamma_{G}(G)+1$ and the bound is sharp.
Proof: Let X be a $b_{n} \gamma_{G}$-set of G. Then, $X \cup\{e\}$ is a $b \gamma_{G}$-set of G.
So, $b \gamma_{G}(G) \leq|X \cup\{e\}|=|X|+1=b_{n} \gamma_{G}(G)+1$.
If $\cong C_{4}, b \gamma_{G}(G)=2, b_{n} \gamma_{G}(G)=1$ and so the bound is sharp.
Definition 2.5: An edge e of G is (G, D)-critical if $\gamma_{G}(G-e)>\gamma_{G}(G)$.
Definition 2.6: A graph G is called an edge (G, D)- critical (or edge $\gamma_{G}-$ critical) graph if $\gamma_{G}(G-e)>\gamma_{G}(G)$ for every edge $e \in E(G)$.
Definition 2.7: An edge e of G is (G, D)-durable if $\gamma_{G}(G-e)=\gamma_{G}(G)$.
Definition 2.8: A graph G is called an edge (G, D)-durable (or edge γ_{G}-durable) graph if
$\gamma_{G}(G-e)=\gamma_{G}(G)$ for every edge $e \in E(G)$.
Example 2.9: (i) In a star graph, every edge is γ_{G}-durable. So, star graph is a γ_{G}-durable graph.
(ii) P_{2} is a γ_{G} - durable graph.
(iii) P_{3} is a γ_{G} - critical graph.

Theorem 2.10: If for any edge e in G, there exists a $b_{n} \gamma_{G}$ - set containing e, then e is γ_{G}-durable.
Proof: Let $e \in E(G)$ such that there exists a $b_{n} \gamma_{G}-$ set S containing e. Then, $\gamma_{G}(G-S)=\gamma_{G}(G)$. Therefore, $\gamma_{G}(G-e)=\gamma_{G}(G)$ and so, e is γ_{G} - durable.
Corollary 2.11: If $b \gamma_{G}(G)=\infty$, then G is γ_{G} - durable.
Proof: Since $b \gamma_{G}(G)=\infty$, every edge of G belonging to $b_{n} \gamma_{G}$ - set of G. By Theorem 2.10, every edge of G is γ_{G} - durable and hence, G is γ_{G} - durable.
Theorem 2.12: If $X \subseteq E(G)$ is a nonbondage (G, D)-set of G, then every edge in $G-X$ is γ_{G}-critical with respect to $G-X$.
Proof: Let X be a $b_{n} \gamma_{G}$-set of G. Then, $\gamma_{G}(G-X)=\gamma_{G}(G)$. If there exists an edge $e \in G-X$ such that e is not γ_{G}-critical, then γ_{G} [($G-$ $X)-\{e\}]=\gamma_{G}(G-X)=\gamma_{G}(G)$. So that,
$\gamma_{G}[G-(X \cup\{e\})]=\gamma_{G}(G)$. Which is a contradiction to the maximality of X .
Remark 2.13: Converse of the above theorem is not true. Consider the graph G given in Figure 2.2.

Let $X=\left\{v_{1} v_{2}, v_{1} v_{4}\right\}$. Every edge in $G-X \mathrm{i}$
Observation 2.14: Let G be a non-complete,
${ }$ raph. If H is a spanning subgraph of G obtained by removing at least one $\gamma_{G^{-}}$ critical edge from G , then $\gamma_{G}(G)<\gamma_{G}(H)$.
Theorem 2.15: Let G be a graph without cliques of order greater than or equal to 3 . Suppose H is a spanning subgraph of G. Then, $\gamma_{G}(G) \leq \gamma_{G}(H)$.
Proof: Suppose H is a spanning subgraph of G. Then, $V(G)=V(H)$ and $E(H) \subset E(G)$. Take $E^{\prime}=E(G)-E(H)$.
Case 1: $\left|E^{\prime}\right|=0$
Then, $H=G$. Therefore, $\gamma_{G}(H)=\gamma_{G}(G)$.
Case 2: $\left|E^{\prime}\right|=1$
Let $E^{\prime}=\{x\}$.
Subcase (2a): x is γ_{G}-critical
Then, $\gamma_{G}(G)<\gamma_{G}(H)$.
Subcase (2b): x is γ_{G}-durable
Then, $\gamma_{G}(G-x)=\gamma_{G}(G)$ and so, $\gamma_{G}(H)=\gamma_{G}(G)$.
Case 3: $\left|E^{\prime}\right|>1$
Subcase (3a): E^{\prime} is a $b_{n} \gamma_{G}$-set
Then, $\gamma_{G}\left(G-E^{\prime}\right)=\gamma_{G}(G)$ and so, $\gamma_{G}(H)=\gamma_{G}(G)$.
Subcase (3b): E^{\prime} is a $b \gamma_{G}$-set
Then, $\gamma_{G}\left(G-E^{\prime}\right)>\gamma_{G}(G)$ and so, $\gamma_{G}(H)>\gamma_{G}(G)$.
Subcase (3c): Every element of E^{\prime} is γ_{G}-durable
Suppose $\left|E^{\prime}\right|=|E|-1$. Let $E^{\prime}=\left\{x_{1}, x_{2}, \ldots, x_{q-1}\right\}$.
Then, $\gamma_{G}\left(G-x_{1}\right)=\gamma_{G}\left(G-x_{2}\right)=\cdots=\gamma_{G}\left(G-x_{q-1}\right)=\gamma_{G}(G)$. If we remove $q-1$ edges from G, then $E(H)=1$ and $V(H)=V(G)$. Therefore, $\gamma_{G}(H)=|V(H)|=|V(G)| \geq \gamma_{G}(G)$ and so, $\gamma_{G}(G) \leq \gamma_{G}(H)$.
Subcase (3d): Every element of E^{\prime} is γ_{G}-critical
Suppose $\left|E^{\prime}\right|=|E|-1=\left|\left\{x_{1}, x_{2}, \ldots, x_{q-1}\right\}\right|$ as before. Then, by Observation 2.14,
$\gamma_{G}\left(G-x_{i}\right)>\gamma_{G}(G)$ for all $i=1,2, \ldots, q-1$ and so, $\gamma_{G}\left(G-E^{\prime}\right)>\gamma_{G}(G)$.
Thus, $\gamma_{G}(G)<\gamma_{G}(H)$.
Subcase (3e): $E^{\prime}=W \cup Z, W$ is the set of γ_{G}-durable edges and Z is the set of γ_{G}-critical edges
Since E^{\prime} contains at least one γ_{G}-critical edge, by Observation 2.14, $\gamma_{G}(G)<\gamma_{G}(H)$.
From the above cases, $\gamma_{G}(G) \leq \gamma_{G}(H)$.

References:

[1] Buckley F and Harary F, 1990, Distance in graphs, Addison Wesley, Redwood City, CA.
[2] Chartrand G, Harary F and Zhang P, 2000, Geodetic sets in graphs, Discussiones Mathematicae Graph theory, 20, 129-138e.
[3] Chartrand G, Harary F and Zhang P, 2002, On the Geodetic number of a graph, Networks, Volume 39(1), 1-6.
[4] Chartrand G, Zhang P and Harary F, 1998, Extremal problems in Geodetic graph Theory, Congressus Numerantium 131, 55-66.
[5] Fink J F, Jacobson M S, Kinch I F and Roberts J, 1990, The bondage number of a graph, Discrete Math., 86(1-3), 47-57.
[6] Kalavathi S and Palani K, 2018, (G, D)-Bondage and (G, D)-Nonbondage Number of a graph, International Journal of Mathematics Trends and Technology, Volume 57(1), 67-72.
[7] Kulli V R and Janakiram B, The nonbondage number of a graph, 1996, Graph Theory Notes of New York, New York Academy of Sciences, 30, 14-16.
[8] Ore O, 1962, Theory of graphs, American Mathematical Society Colloq. Publications, 38(American Mathematical Society, RI).
[9] Palani K and Nagarajan A, (G, D)-Number of a graph, 2011, International Journal of Mathematics Research, Volume 3, Number 3, 285-299.
[10] Palani K and Kalavathi S, (G, D)-Number of some special graphs, 2014 International Journal of Engineering and Mathematical Sciences, January-June 2014, Volume 5(1), pp.7-15.
[11] Palani K, Nagarajan A and Mahadevan G, 2010, Results connecting domination, geodetic and (G,D)-number of graph, International Journal of Combinatorial graph theory and applications, Volume 3(1), pp.51-59.

