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Abstract: In this paper contained the numerical solution of differential equations with finite differences, a variety of schemes are available 

for the discretization of the problem. In many situations, questions arise regarding the round-off and truncation errors involved in the 

numerical computations, as well as the stability and the convergence of the finite difference scheme. Here we presented a brief description of 

the physical significance of these terminologies and its different terms such as Round-off Errors, Truncation Error, Stability, and 

Convergence. Later, the third-order partial differential equations have been discussed since it can  make a base of many mathematical 

models for the dynamics of the soil moisture and subsoil waters, spreading of acoustic waves in a weakly heterogeneous environment. 

Finally, fourth order convergence of the approximate solution is established. 
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Errors involved in numerical solutions  

         Study of numerical solution of differential equations with finite difference solutions, a variety of structures are available for the 

discretization of the problem. In many cases, there are many questions arise regarding the truncation errors and round-off those involves in the 

numerical computations, as well as the stability and the convergence of the finite difference scheme. Here we have composed a brief description 

of the physical significance of these terminologies. 

Round-off Errors   
Computations are rarely made in exact arithmetic. This means that real numbers are represented in ”floating point” form and as a result, errors 

are caused due to the rounding-off of real numbers. Even though modern computers represent numbers to twelve or more places of decimals, in 

extreme cases such errors, called round-off errors, accumulate and become a main source of error. 

 Truncation Error 

Infinite difference representation of derivatives with Taylor’s series expansion, the higher order terms are neglected by truncating the series and 

the error caused due to such truncation is called the truncation error. For example, in forward difference of the first derivative to the order X  

as follows 

 
'' 2 '''

0 0

1 1
( ) ( ) ( ) ( ) ( ) ...

2 6
O X X f X X f X        

Represents the truncation error and the lowest order term on the right hand side that has given the order of the method. 

 Stability 
Numerical solution of differential equations with finite differences, errors are introduced at almost every stage of the calculations. The solution 

scheme is said to be stable if the error involved in numerical computations is not amplified without bounds. 

 Convergence 

The numerical solution is said to be convergent if the numerical solution approaches the exact solution of the problem at the time and space steps 

tend to zero. We note that the conditions of stability and convergence are related to each other. The total error involved in finite difference 

calculations consists of the discretization error plus the round-off error. The discretization error increases with increasing the mesh size while the 

round-off error decreases with increasing mesh size. Therefore, the total error is expected to exhibit a minimum as the mesh size is decreased. 

 Method of Lines for Third Order Partial Differential Equations 

The third-order partial differential equations make a base of numerous mathematical models for the flow of the dirt, moisture and 

subsoil waters, spreading of acoustic waves in a pitifully heterogeneous environment. Numerous physical wonders and mechanical situations 

have been formulated into boundary value problems with integral boundary conditions.  

Later, many works have appeared such as Ashyralyev and Aggez, Ashyralyev and Tetikoglua, Pulkina, and Ashyralyev and Gercek. It 

ought to be noticed that there are so much work given to the existence of a solution for this sort of boundary value problems where explanatory 

equations, hyperbolic equations, and mixed-sort equations are considered. The proof of existence and uniqueness of solution has been 

contemplated by Latrous and Memou.  

As of late, the reproducing portion space method (RKSM) assumes a vital part in numerical solutions of differential and integral 

equations. The main ideas of RKSM are based on the construction of reproducing piece space (RKS). The reproducing part function can retain 

all definite conditions. Then the numerical solution of definite problem is approximated by the reproducing portion function. Clearly constructing 

a reasonable reproducing portion space and viably calculating the reproducing part function expression become the way to apply RKSM. The 

method of lines is applied to the boundary-value problem for third order partial differential equation. Unequivocal expression and order of 

convergence for the estimated solution are obtained.  

Be that as it may, because of the intricate three-point value conditions with an integral condition, the RKSM has not constructed 

reasonable RKS to manage the numerical solution. All the more precisely, the establishment of traditional RKS depends intensely on the two 

endpoints. Henceforth it cannot be reached out to three-point nonlocal boundary value problem which is based on intermediate point, especially 
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with the integral boundary condition. In addition, to the best of the authors' information, the numerical approximations of the problem equation 

have not been considered before. Persuaded by all the works above, we describe a change of the RKSM to find the numerical solution. Another 

RKS is effectively established by a few strategies. Furthermore, other partial differential equations with multipoint boundary value conditions 

might be numerically solved using a comparable procedure. 

Furthermore, we consider the boundary value problem for the third order differential equation in the domain 

{0 ,0 }x m y n     : 

3 3

3 2
( , )

w w
f x y

x x y
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Where 1 2 1 2 3( ), ( ), ( ), ( ), ( )x x h y h y h y   are sufficiently smooth functions. 

The problems of type (1) -(4) arise in many mathematical and scientific applications. In this study, we construct first order accurate 

differential difference scheme for this problem and give error estimate for its solutions. The approach to the construction of the discrete problem 

and the error analysis for the approximate solution are similar. 

Let the solution of the problem (1) -(4) have a bounded derivative 

7
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We divide the domain Ω into 1t   stripe by lines g( 1,2,.... ; )
1

l

n
y y l l t g

t
   


. On these lines the problem of (1) -(4) we approximate 

by the following differential difference problem: 
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Let us rewrite the problem (5) -(8) in the form 
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The matrix M can be diagnosed as 
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Multiplying Equation (9) on the left by B  we have 
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The solution of (10) - (12) containing the third order ordinary differential equation with constant coefficients can be found explicitly 
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Therefore the solution of (5)-(8) can be expressed as 
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Now we investigate the error of the approximate solution. From the error ( ) ( , ) ( )l l lz x w x y W x   we have the following boundary value 

problem: 
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By the mean value theorem we have 
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Hence 
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Using here the inequality
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I.e., fourth order convergence of the approximate solution is established.  

 

CONCLUSION 

The numerical displaying of genuine problems, for example, earth shake, traffic flow, flag handling, viscoelastic problems offers an ascent to 

partial differential equations (PDEs). Sometimes, it is difficult to compute the correct solutions of partial differential equations by utilizing 

explanatory strategies. This is the major weakness of this approach, to beat this issue, mathematicians are inspired to create numerical strategies 

for the arithmetic and logical solutions of PDEs. At that point we discussed about the numerical arrangement of differential equations with finite 

contrasts, an assortment of plans is accessible for the discretization of the issue. In many case questions emerge with respect to the round-off and 

truncation blunders required in the numerical calculations, and also the stability and the joining of the finite distinction conspire. Here we 

introduced a short depiction of the physical centrality of these wordings and its distinctive terms, for example, Round-off Errors, Truncation 

Error, Stability, and Convergence. Later the third-arrange partial differential equations has been talked about since it can make a base of 

numerous numerical models for the dynamics of the dirt dampness and subsoil waters, spreading of acoustic waves in a feebly heterogeneous 

condition.  
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