Changing and Unchanging Strong Restrained Domination number of a Graphs

M. Selvaloganayaki ${ }^{1}$ and P. Namasivayam ${ }^{2}$
${ }^{1}$ Research Scholar, P.G. \& Research Department of Mathematics, The M.D.T. Hindu College, Tirunelveli - 627 010, Tamilnadu, India.
(Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli - 627 012, Tamilnadu, India)
${ }^{2}$ Associate Professor, P.G. \& Research Department of Mathematics, The M.D.T. Hindu College, Tirunelveli - 627 010, Tamilnadu.
(Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli - 627 012, Tamilnadu, India)

Abstract

Let $G=(V, E)$ be a simple graph. A Subset S of V is said to be strong restrained dominating set or restrained strong dominating set of G if for every $u \in V-S$, there exists elements $v \in S$ and $w \in V-S$ such that v and w strongly dominates u. The minimum cardinality of a strong restrained dominating set of G is called the strong restrained domination number of G and is denoted by $\gamma_{\text {srd }}(G)$. In this paper, changing and unchanging strong restrained domination number of a graphs are determined.

Keywords: Domination, strong domination, restrained domination, strong restrained domination.
AMS Subject Classification Number(2010): 05C69.

1. INTRODUCTION

Throughout this paper, finite, undirected, simple graph is considered. Let $G=(V, E)$ be a simple graph. The degree of any vertex u in G is the number of edges incident with u and is denoted by deg u. The minimum and maximum degree of a vertex is denoted by $\delta(\mathrm{G})$ and $\Delta(\mathrm{G})$ respectively. A vertex of degree one is called a pendant (end) vertex and a vertex which is adjacent to an end vertex is called a support vertex. A set $\mathrm{S} \subseteq \mathrm{V}$ is a dominating set of G if every vertex not in S is adjacent to a vertex in S . The domination number of G , denoted by $\gamma(\mathrm{G})$, is the minimum cardinality of a dominating set [1]. The concept of strong domination in graphs was introduced by Sampathkumar and Puspalatha[5] and the restrained domination was introduced by Domke [2] et al. A set $S \subseteq V(G)$ is said to be a strong dominating set of G if every vertex $v \in V-S$ is strongly dominated by some vertex u in S. A set $S \subseteq V(G)$ is a restrained dominating set of G, if every vertex not in S is adjacent to a vertex in S and to a vertex in $V-S$. The restrained domination number of a graph G, denoted by $\gamma_{\mathrm{r}}(\mathrm{G})$, is the minimum cardinality of a restrained dominating set in G. The strong restrained domination was introduced by Selvaloganayaki and Namasivayam [6]. For all graph theoretic terminologies and notations, Harary [3] is referred to. In this paper, changing and unchanging strong restrained domination number of a graphs are characterized.

Definition 1.1: Let $G=(V, E)$ be a simple graph. A subset S of V is said to be a strong restrained dominating set of G if for every $u \in V-S$, there exists $v \in S$ and $w \in V-S$ such that v and w strongly dominate u. The minimum cardinality of a strong restrained dominating set of G is called the strong restrained domination number of G and is denoted by $\gamma_{\text {srd }}(\mathrm{G})$.
The existence of a strong restrained dominating set of G is guaranteed, since $V(G)$ is a strong restrained dominating set of G.
Example 1.2: Consider the following graph G,

Figure 1
$S=\left\{v_{3}, v_{4}\right\}$ is a strong restrained dominating set of G. Since every vertex in $V-S$ has one strong neighbour in S and one strong neighbour in $\mathrm{V}-\mathrm{S}$.

Result 1.3: For the path $P_{m}, \gamma_{s r d}\left(P_{m}\right)=\left\{\begin{array}{l}n+2 \text { if } m=3 n \\ n+3 \text { if } m=3 n+1 \\ n+4 \text { if } m=3 n+2\end{array}\right.$ where $n \geq 1$.
Result 1.4: $\gamma_{\text {srd }}\left(\mathrm{C}_{\mathrm{n}}\right)=\gamma_{\mathrm{r}}\left(\mathrm{C}_{\mathrm{n}}\right)=\mathrm{n}-2\left\lfloor\frac{\mathrm{n}}{3}\right\rfloor, \mathrm{n} \geq 3$.
Result 1.5: $\gamma_{\mathrm{srd}}\left(\mathrm{K}_{\mathrm{n}}\right)=1, \mathrm{n} \geq 3$.
Result 1.6: $\gamma_{\text {srd }}\left(\mathrm{W}_{\mathrm{n}}\right)=1, \mathrm{n} \geq 4$.
Result 1.7: For $\mathrm{n} \geq 1, \gamma_{\mathrm{srd}}\left(\mathrm{K}_{1, \mathrm{n}}\right)=\mathrm{n}+1$.
Result 1.8: For $\mathrm{r}, \mathrm{s} \geq 1, \gamma_{\mathrm{srd}}\left(\mathrm{D}_{\mathrm{r}, \mathrm{s}}\right)=\mathrm{r}+\mathrm{s}+2$.
Result 1.9: Let $\mathrm{G}=\mathrm{K}_{\mathrm{m}, \mathrm{n}}$, where $\mathrm{m}, \mathrm{n} \in \mathrm{N}$. Then $\gamma_{\mathrm{srd}}(\mathrm{G})=\left\{\begin{array}{cc}2 \text { if } \quad m=n \\ m+n & \text { otherwise }\end{array}\right.$
Result 1.10: Let G be a connected graph.
(i). If G has a unique full degree vertex u then any strong restrained dominating set of G contains u.
(ii). If G has two full degree vertices v and w , then any strong restrained dominating set of G contains v and w .

Result 1.11: If G is a graph with at least 3 full degree vertices, then $\gamma_{\text {srd }}(\mathrm{G})=1$.
2. Main Result: In this chapter, the changing and unchanging values of $\gamma_{\text {srd }}$ when a vertex is removed and an edge is removed from a graph is studied.

Definition 2.1 [4]: Following the notation used in the case of domination, we partition the vertex set $\mathrm{V}(\mathrm{G})$ into subsets $\mathrm{V}_{0}, \mathrm{~V}_{+}, \mathrm{V}_{-}$as follows:

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{se}}{ }^{0}(\mathrm{G})=\left\{\mathrm{v} \in \mathrm{~V}(\mathrm{G}): \gamma_{\mathrm{se}}(\mathrm{G})=\gamma_{\mathrm{se}}(\mathrm{G}-\mathrm{v})\right\} \\
& \mathrm{V}_{\mathrm{se}}^{+}(\mathrm{G})=\left\{\mathrm{v} \in \mathrm{~V}(\mathrm{G}): \gamma_{\mathrm{se}}(\mathrm{G})<\gamma_{\mathrm{se}}(\mathrm{G}-\mathrm{v})\right\} \\
& \mathrm{V}_{\mathrm{se}}{ }^{-}(\mathrm{G})=\left\{\mathrm{v} \in \mathrm{~V}(\mathrm{G}): \gamma_{\mathrm{se}}(\mathrm{G})>\gamma_{\mathrm{se}}(\mathrm{G}-\mathrm{v})\right\} .
\end{aligned}
$$

Theorem 2.2: Let $\mathrm{G}=\mathrm{P}_{3 \mathrm{n}}, \mathrm{n} \geq 1$. Let v_{i} be a vertex of $\mathrm{P}_{3 \mathrm{n}}$. Then $V_{s r d}^{+}(\mathrm{G})=\mathrm{V}(\mathrm{G})$.
Proof: Case i: Let v_{i} be an end vertex of $\mathrm{P}_{3 \mathrm{n}}$. Thus $\mathrm{P}_{3 \mathrm{n}}-\mathrm{v}_{\mathrm{i}}=\mathrm{P}_{3 \mathrm{n}-1} \cdot \gamma_{s r d}\left(\mathrm{P}_{3 \mathrm{n}-1}\right)=\mathrm{n}+3$ and $\gamma_{s r d}\left(\mathrm{P}_{3 \mathrm{n}}\right)=\mathrm{n}+2$. Therefore $\gamma_{s r d}\left(\mathrm{P}_{3 \mathrm{n}}-\mathrm{v}_{\mathrm{i}}\right)>$ $\gamma_{s r d}\left(\mathrm{P}_{3 \mathrm{n}}\right)$. Hence $\mathrm{v}_{\mathrm{i}} \in V_{s r d}^{+}(\mathrm{G})$.
Case ii: Suppose $\mathrm{v}_{\mathrm{i}}=\mathrm{v}_{2}$ or $\mathrm{v}_{\mathrm{i}}=\mathrm{v}_{3 \mathrm{n}-1}$. Thus $\mathrm{P}_{3 \mathrm{n}}-\mathrm{v}_{\mathrm{i}}=\mathrm{P}_{1} \cup \mathrm{P}_{3 \mathrm{n}-2} . \gamma_{\text {srd }}\left(\mathrm{P}_{3 \mathrm{n}-2}\right)=\mathrm{n}+2$. Therefore $\gamma_{\text {srd }}\left(\mathrm{P}_{3 \mathrm{n}}-\mathrm{v}_{\mathrm{i}}\right)>\gamma_{\text {srd }}\left(\mathrm{P}_{3 \mathrm{n}}\right)$. Hence $\mathrm{v}_{\mathrm{i}} \in$ $V_{s r d}^{+}(\mathrm{G})$.
Case iii: Suppose $v_{i}=v_{3}$ or $v_{i}=v_{3 n-2}$. Thus $\mathrm{P}_{3 \mathrm{n}}-\mathrm{v}_{\mathrm{i}}=\mathrm{P}_{2} \cup \mathrm{P}_{3 \mathrm{n}-3} . \gamma_{s r d}\left(\mathrm{P}_{3 \mathrm{n}-3}\right)=\mathrm{n}+1$. Therefore $\gamma_{\text {srd }}\left(\mathrm{P}_{3 \mathrm{n}}-\mathrm{v}_{\mathrm{i}}\right)>\gamma_{\text {srd }}\left(\mathrm{P}_{3 \mathrm{n}}\right)$. Hence $\mathrm{v}_{\mathrm{i}} \in$ $V_{s r d}^{+}(\mathrm{G})$.
Case iv: Suppose $\mathrm{v}_{\mathrm{i}}=\mathrm{v}_{3 \mathrm{k}}, 2 \leq \mathrm{k} \leq \mathrm{n}-1$. Thus $\mathrm{P}_{3 \mathrm{n}}-\mathrm{v}_{\mathrm{i}}=\mathrm{P}_{3 \mathrm{k}-1} \cup \mathrm{P}_{3 \mathrm{n}-3 \mathrm{k}} \cdot \gamma_{s r d}\left(\mathrm{P}_{3 \mathrm{k}-1}\right)=\mathrm{k}+3$ and $\gamma_{s r d}\left(\mathrm{P}_{3 \mathrm{n}-3 \mathrm{k}}\right)=\mathrm{n}-\mathrm{k}+2$. Hence $\gamma_{s r d}\left(\mathrm{P}_{3 \mathrm{n}}-\mathrm{v}_{\mathrm{i}}\right)$ $=\mathrm{n}+5$. Therefore $\gamma_{s r d}\left(\mathrm{P}_{3 \mathrm{n}}-\mathrm{v}_{\mathrm{i}}\right)>\gamma_{s r d}\left(\mathrm{P}_{3 \mathrm{n}}\right)$. Hence $\mathrm{v}_{\mathrm{i}} \in V_{s r d}^{+}(\mathrm{G})$.
Case v: Suppose $\mathrm{v}_{\mathrm{i}}=\mathrm{v}_{3 \mathrm{k}+1}, 1 \leq \mathrm{k} \leq \mathrm{n}-2$. Thus $\mathrm{P}_{3 \mathrm{n}}-\mathrm{v}_{\mathrm{i}}=\mathrm{P}_{3 \mathrm{k}} \cup \mathrm{P}_{3 \mathrm{n}-3 \mathrm{k}-1} \cdot \gamma_{s r d}\left(\mathrm{P}_{3 \mathrm{k}}\right)=\mathrm{k}+2$ and $\gamma_{s r d}\left(\mathrm{P}_{3 \mathrm{n}-3 \mathrm{k}-1}\right)=\mathrm{n}-\mathrm{k}+3$. Hence $\gamma_{\text {srd }}\left(\mathrm{P}_{3 \mathrm{n}}-\right.$ $\left.\mathrm{v}_{\mathrm{i}}\right)=\mathrm{n}+5$. Therefore $\gamma_{s r d}\left(\mathrm{P}_{3 \mathrm{n}}-\mathrm{v}_{\mathrm{i}}\right)>\gamma_{s r d}\left(\mathrm{P}_{3 \mathrm{n}}\right)$. Hence $\mathrm{v}_{\mathrm{i}} \in V_{s r d}^{+}(\mathrm{G})$.
Case vi: Suppose $\mathrm{v}_{\mathrm{i}}=\mathrm{v}_{3 \mathrm{k}+2}, 1 \leq \mathrm{k} \leq \mathrm{n}-2$. Thus $\mathrm{P}_{3 \mathrm{n}}-\mathrm{v}_{\mathrm{i}}=\mathrm{P}_{3 \mathrm{k}+1} \cup \mathrm{P}_{3 \mathrm{n}-3 \mathrm{k}-2} \cdot \gamma_{s r d}\left(\mathrm{P}_{3 \mathrm{k}+1}\right)=\mathrm{k}+3$ and $\gamma_{s r d}\left(\mathrm{P}_{3 \mathrm{n}-3 \mathrm{k}-2}\right)=\mathrm{n}-\mathrm{k}+2$. Hence $\gamma_{s r d}\left(\mathrm{P}_{3 \mathrm{n}}-\mathrm{v}_{\mathrm{i}}\right)=\mathrm{n}+5$. Therefore $\gamma_{s r d}\left(\mathrm{P}_{3 \mathrm{n}}-\mathrm{v}_{\mathrm{i}}\right)>\gamma_{s r d}\left(\mathrm{P}_{3 \mathrm{n}}\right)$. Hence $\mathrm{v}_{\mathrm{i}} \in V_{s r d}^{+}(\mathrm{G})$. In all the cases, $V_{s r d}^{+}(\mathrm{G})=\mathrm{V}(\mathrm{G})$. Hence the theorem.

Theorem 2.3: $V_{\text {srd }}^{0}\left(\mathrm{P}_{\mathrm{m}}\right)=\emptyset$, where $\mathrm{m}=3 \mathrm{n}+1,3 \mathrm{n}+2, \mathrm{n} \geq 1$.
Proof: Case i: Let $\mathrm{G}=\mathrm{P}_{3 \mathrm{n}+1}$. Suppose vi $\in V_{s r d}^{0}(\mathrm{G})$, where $1 \leq \mathrm{i} \leq 3 \mathrm{n}+1$. Then $\gamma_{s r d}\left(\mathrm{G}-\mathrm{v}_{\mathrm{i}}\right)=\gamma_{s r d}(\mathrm{G})$.
Subcase ia: Let v_{i} be an end vertex of G . Thus $\mathrm{G}-\mathrm{v}_{\mathrm{i}}=\mathrm{P}_{3 \mathrm{n}} \cdot \gamma_{s r d}\left(\mathrm{P}_{3 \mathrm{n}}\right)=\mathrm{n}+2$ and $\gamma_{s r d}\left(\mathrm{P}_{3 \mathrm{n}+1}\right)=\mathrm{n}+3$. Therefore $\gamma_{s r d}\left(\mathrm{G}-\mathrm{v}_{\mathrm{i}}\right)<\gamma_{s r d}(\mathrm{G})$, a contradiction. Therefore v_{i} cannot be an end vertex of G.
Subcase ib: Suppose $v_{i}=v_{2}$ or $v_{i}=v_{3 n}$. Thus $G-v_{i}=P_{1} \cup P_{3 n-1} \cdot \gamma_{s r d}\left(P_{3 n-1}\right)=n+3$ and $\gamma_{s r d}\left(G-v_{i}\right)=n+4$. Therefore $\gamma_{s r d}\left(G-v_{i}\right)>$ $\gamma_{\text {srd }}(\mathrm{G})$, a contradiction. Therefore $\mathrm{v}_{\mathrm{i}} \neq \mathrm{v}_{2}$ and $\mathrm{v}_{\mathrm{i}} \neq \mathrm{v}_{3 \mathrm{n}}$.
Subcase ic: Suppose $\mathrm{v}_{\mathrm{i}}=\mathrm{v}_{3}$ or $\mathrm{v}_{\mathrm{i}}=\mathrm{v}_{3 \mathrm{n}-1}$. Thus $\mathrm{G}-\mathrm{v}_{\mathrm{i}}=\mathrm{P}_{2} \cup \mathrm{P}_{3 \mathrm{n}-2} \cdot \gamma_{\text {srd }}\left(\mathrm{P}_{3 \mathrm{n}-2}\right)=\mathrm{n}+2$ and $\gamma_{s r d}\left(\mathrm{G}-\mathrm{v}_{\mathrm{i}}\right)=\mathrm{n}+4$. Therefore $\gamma_{s r d}\left(\mathrm{G}-\mathrm{v}_{\mathrm{i}}\right)>$ $\gamma_{\text {srd }}(\mathrm{G})$, a contradiction. Therefore $\mathrm{v}_{\mathrm{i}} \neq \mathrm{v}_{3}$ and $\mathrm{v}_{\mathrm{i}} \neq \mathrm{v}_{3 \mathrm{n}-1}$.
Subcase id: Suppose $\mathrm{v}_{\mathrm{i}}=\mathrm{v}_{3 \mathrm{k}}, 2 \leq \mathrm{k} \leq \mathrm{n}-1$. Thus $\mathrm{G}-\mathrm{v}_{\mathrm{i}}=\mathrm{P}_{3 \mathrm{k}-1} \cup \mathrm{P}_{3 \mathrm{n}-3 \mathrm{k}+1} \cdot \gamma_{\text {srd }}\left(\mathrm{P}_{3 \mathrm{k}-1}\right)=\mathrm{k}+3$ and $\gamma_{\text {srd }}\left(\mathrm{P}_{3 \mathrm{n}-3 \mathrm{k}+1}\right)=\mathrm{n}-\mathrm{k}+3$. Hence $\gamma_{s r d}\left(\mathrm{G}-\mathrm{v}_{\mathrm{i}}\right)=\mathrm{n}+6$. Therefore $\gamma_{s r d}\left(\mathrm{G}-\mathrm{v}_{\mathrm{i}}\right)>\gamma_{s r d}(\mathrm{G})$, a contradiction. Therefore $\mathrm{v}_{\mathrm{i}} \neq \mathrm{v}_{3 \mathrm{k}}, 2 \leq \mathrm{k} \leq \mathrm{n}-1$.
Subcase ie: Suppose $\mathrm{v}_{\mathrm{i}}=\mathrm{v}_{3 \mathrm{k}+1}, 1 \leq \mathrm{k} \leq \mathrm{n}-1$. Thus $\mathrm{G}-\mathrm{v}_{\mathrm{i}}=\mathrm{P}_{3 \mathrm{k}} \cup \mathrm{P}_{3 \mathrm{n}-3 \mathrm{k}}$. $\gamma_{\text {srd }}\left(\mathrm{P}_{3 \mathrm{k}}\right)=\mathrm{k}+2$ and $\gamma_{\text {srd }}\left(\mathrm{P}_{3 \mathrm{n}-3 \mathrm{k}}\right)=\mathrm{n}-\mathrm{k}+2$. Hence $\gamma_{\text {srd }}\left(\mathrm{G}-\mathrm{v}_{\mathrm{i}}\right)=$ $\mathrm{n}+4$. Therefore $\gamma_{s r d}\left(\mathrm{G}-\mathrm{v}_{\mathrm{i}}\right)>\gamma_{s r d}(\mathrm{G})$, a contradiction. Therefore $\mathrm{v}_{\mathrm{i}} \neq \mathrm{v}_{3 \mathrm{k}+1}, 1 \leq \mathrm{k} \leq \mathrm{n}-1$.
Subcase if: Suppose $\mathrm{v}_{\mathrm{i}}=\mathrm{v}_{3 \mathrm{k}+2}, 1 \leq \mathrm{k} \leq \mathrm{n}-2$. Thus $\mathrm{G}-\mathrm{v}_{\mathrm{i}}=\mathrm{P}_{3 \mathrm{k}+1} \cup \mathrm{P}_{3 \mathrm{n}-3 \mathrm{k}-1} \cdot \gamma_{\text {srd }}\left(\mathrm{P}_{3 \mathrm{k}+1}\right)=\mathrm{k}+3$ and $\gamma_{s r d}\left(\mathrm{P}_{3 \mathrm{n}-3 \mathrm{k}-1}\right)=\mathrm{n}-\mathrm{k}+3$. Hence $\gamma_{s r d}\left(\mathrm{G}-\mathrm{v}_{\mathrm{i}}\right)=\mathrm{n}+6$. Therefore $\gamma_{\text {srd }}\left(\mathrm{G}-\mathrm{v}_{\mathrm{i}}\right)>\gamma_{\text {srd }}(\mathrm{G})$, a contradiction. Therefore $\mathrm{v}_{\mathrm{i}} \neq \mathrm{v}_{3 \mathrm{k}+2}, 1 \leq \mathrm{k} \leq \mathrm{n}-2$. Thus there is no v_{i} belong to $V_{s r d}^{0}(\mathrm{G})$. Therefore $V_{s r d}^{0}\left(\mathrm{P}_{3 \mathrm{n}+1}\right)=\emptyset$.
Case ii: Let $\mathrm{G}=\mathrm{P}_{3 \mathrm{n}+2}$. Suppose $\mathrm{v}_{\mathrm{i}} \in V_{s r d}^{0}(\mathrm{G})$, where $1 \leq \mathrm{i} \leq 3 \mathrm{n}+2$. Then $\gamma_{s r d}\left(\mathrm{G}-\mathrm{v}_{\mathrm{i}}\right)=\gamma_{s r d}(\mathrm{G})$.
Subcase iia: Let v_{i} be an end vertex of G. Thus $\mathrm{G}-\mathrm{v}_{\mathrm{i}}=\mathrm{P}_{3 \mathrm{n}+1} \cdot \gamma_{s r d}\left(\mathrm{P}_{3 \mathrm{n}+1}\right)=\mathrm{n}+3$ and $\gamma_{s r d}\left(\mathrm{P}_{3 \mathrm{n}+2}\right)=\mathrm{n}+4$. Therefore $\gamma_{s r d}\left(\mathrm{G}-\mathrm{v}_{\mathrm{i}}\right)<$ $\gamma_{s r d}(\mathrm{G})$, a contradiction. Therefore v_{i} cannot be an end vertex of G .
Subcase iib: Suppose $v_{i}=v_{2}$ or $v_{i}=v_{3 n+1}$. Thus $G-v_{i}=P_{1} \cup P_{3 n} . \gamma_{s r d}\left(P_{3 n}\right)=n+2$ and $\gamma_{s r d}\left(G-v_{i}\right)=n+3$. Therefore $\gamma_{s r d}\left(G-v_{i}\right)<$ $\gamma_{\text {srd }}(\mathrm{G})$, a contradiction. Therefore $\mathrm{v}_{\mathrm{i}} \neq \mathrm{v}_{2}$ and $\mathrm{v}_{\mathrm{i}} \neq \mathrm{v}_{3 \mathrm{n}+1}$.
Subcase iic: Suppose $\mathrm{v}_{\mathrm{i}}=\mathrm{v}_{3}$ or $\mathrm{v}_{\mathrm{i}}=\mathrm{v}_{3 \mathrm{n}}$. Thus $\mathrm{G}-\mathrm{v}_{\mathrm{i}}=\mathrm{P}_{2} \cup \mathrm{P}_{3 \mathrm{n}-1} \cdot \gamma_{s r d}\left(\mathrm{P}_{3 \mathrm{n}-1}\right)=\mathrm{n}+3$ and $\gamma_{s r d}\left(\mathrm{G}-\mathrm{v}_{\mathrm{i}}\right)=\mathrm{n}+5$. Therefore $\gamma_{s r d}\left(\mathrm{G}-\mathrm{v}_{\mathrm{i}}\right)>$ $\gamma_{\text {srd }}(\mathrm{G})$, a contradiction. Therefore $\mathrm{v}_{\mathrm{i}} \neq \mathrm{v}_{3}$ and $\mathrm{v}_{\mathrm{i}} \neq \mathrm{v}_{3 \mathrm{n}}$.
Subcase iid: Suppose $\mathrm{v}_{\mathrm{i}}=\mathrm{v}_{3 \mathrm{k}}, 2 \leq \mathrm{k} \leq \mathrm{n}-1$. Thus $\mathrm{G}-\mathrm{v}_{\mathrm{i}}=\mathrm{P}_{3 \mathrm{k}-1} \cup \mathrm{P}_{3 \mathrm{n}-3 \mathrm{k}+2} \cdot \gamma_{s r d}\left(\mathrm{P}_{3 \mathrm{k}-1}\right)=\mathrm{k}+3$ and $\gamma_{s r d}\left(\mathrm{P}_{3 \mathrm{n}-3 \mathrm{k}+2}\right)=\mathrm{n}-\mathrm{k}+4$. Hence $\gamma_{s r d}\left(\mathrm{G}-\mathrm{v}_{\mathrm{i}}\right)=\mathrm{n}+7$. Therefore $\gamma_{s r d}\left(\mathrm{G}-\mathrm{v}_{\mathrm{i}}\right)>\gamma_{\text {srd }}(\mathrm{G})$, a contradiction. Therefore $\mathrm{v}_{\mathrm{i}} \neq \mathrm{v}_{3 \mathrm{k}}, 2 \leq \mathrm{k} \leq \mathrm{n}-1$.
Subcase iie: Suppose $\mathrm{v}_{\mathrm{i}}=\mathrm{v}_{3 \mathrm{k}+1}, 1 \leq \mathrm{k} \leq \mathrm{n}-1$. Thus $\mathrm{G}-\mathrm{v}_{\mathrm{i}}=\mathrm{P}_{3 \mathrm{k}} \cup \mathrm{P}_{3 \mathrm{n}-3 \mathrm{k}+1} \cdot \gamma_{s r d}\left(\mathrm{P}_{3 \mathrm{k}}\right)=\mathrm{k}+2$ and $\gamma_{s r d}\left(\mathrm{P}_{3 \mathrm{n}-3 \mathrm{k}+1}\right)=\mathrm{n}-\mathrm{k}+3$. Hence $\gamma_{s r d}(\mathrm{G}$ $\left.-\mathrm{v}_{\mathrm{i}}\right)=\mathrm{n}+5$. Therefore $\gamma_{\text {srd }}\left(\mathrm{G}-\mathrm{v}_{\mathrm{i}}\right)>\gamma_{\text {srd }}(\mathrm{G})$, a contradiction. Therefore $\mathrm{v}_{\mathrm{i}} \neq \mathrm{v}_{3 \mathrm{k}+1}, 1 \leq \mathrm{k} \leq \mathrm{n}-1$.

Subcase iif: Suppose $\mathrm{v}_{\mathrm{i}}=\mathrm{v}_{3 \mathrm{k}+2}, 1 \leq \mathrm{k} \leq \mathrm{n}-1$. Thus $\mathrm{G}-\mathrm{v}_{\mathrm{i}}=\mathrm{P}_{3 \mathrm{k}+1} \cup \mathrm{P}_{3 \mathrm{n}-3 \mathrm{k}} \cdot \gamma_{\text {srd }}\left(\mathrm{P}_{3 \mathrm{k}+1}\right)=\mathrm{k}+3$ and $\gamma_{s r d}\left(\mathrm{P}_{3 \mathrm{n}-3 \mathrm{k}}\right)=\mathrm{n}-\mathrm{k}+2$. Hence $\gamma_{s r d}(\mathrm{G}-$ $\left.\mathrm{v}_{\mathrm{i}}\right)=\mathrm{n}+5$. Therefore $\gamma_{s r d}\left(\mathrm{G}-\mathrm{v}_{\mathrm{i}}\right)>\gamma_{s r d}(\mathrm{G})$, a contradiction. Therefore $\mathrm{v}_{\mathrm{i}} \neq \mathrm{v}_{3 \mathrm{k}+2}, 1 \leq \mathrm{k} \leq \mathrm{n}-1$. Thus there is no v_{i} belong to $V_{s r d}^{0}(\mathrm{G})$. Therefore $V_{s r d}^{0}\left(\mathrm{P}_{3 \mathrm{n}+2}\right)=\emptyset$. Hence the theorem.

Theorem 2.4: Let $\mathrm{G}=\mathrm{C}_{\mathrm{m}}, \mathrm{m} \geq 4$. Then $V_{\text {srd }}^{+}(\mathrm{G})=\mathrm{V}(\mathrm{G})$.
Proof: Case i: Let $\mathrm{G}=\mathrm{C}_{3 \mathrm{n}}, \mathrm{n} \geq 2$. Let $\mathrm{v} \in \mathrm{V}(\mathrm{G})$. Then $\gamma_{s r d}(\mathrm{G})=\mathrm{n}, \mathrm{G}-\mathrm{v}$ is a path $\mathrm{P}_{3 \mathrm{n}-1}$ and $\gamma_{s r d}\left(\mathrm{P}_{3 \mathrm{n}-1}\right)=\mathrm{n}+3$. Therefore $\gamma_{s r d}(\mathrm{G}-\mathrm{v})>$ $\gamma_{s r d}(\mathrm{G})$.
Case ii: Let $\mathrm{G}=\mathrm{C}_{3 \mathrm{n}+1}, \mathrm{n} \geq 1$. Let $\mathrm{v} \in \mathrm{V}(\mathrm{G})$. Then $\gamma_{s r d}(\mathrm{G})=\mathrm{n}+1, \mathrm{G}-\mathrm{v}$ is a path $\mathrm{P}_{3 \mathrm{n}}$ and $\gamma_{s r d}\left(\mathrm{P}_{3 \mathrm{n}}\right)=\mathrm{n}+2$. Therefore $\gamma_{s r d}(\mathrm{G}-\mathrm{v})>$ $\gamma_{s r d}(\mathrm{G})$.
Case iii: Let $\mathrm{G}=\mathrm{C}_{3 \mathrm{n}+2}, \mathrm{n} \geq 1$. Let $\mathrm{v} \in \mathrm{V}(\mathrm{G})$. Then $\gamma_{s r d}(\mathrm{G})=\mathrm{n}+2$, $\mathrm{G}-\mathrm{v}$ is a path $\mathrm{P}_{3 \mathrm{n}+1}$ and $\gamma_{s r d}\left(\mathrm{P}_{3 \mathrm{n}+1}\right)=\mathrm{n}+3$. Therefore $\gamma_{s r d}(\mathrm{G}-\mathrm{v})>$ $\gamma_{s r d}(\mathrm{G})$. Therefore $V_{s r d}^{+}(\mathrm{G})=\mathrm{V}(\mathrm{G})$. Hence the theorem.

Remark 2.5: Let $\mathrm{G}=\mathrm{C}_{3}$. Let $\mathrm{v} \in \mathrm{C}_{3}$. Then $\gamma_{s r d}(\mathrm{G})=1, \mathrm{G}-\mathrm{v}$ is a path P_{2} and $\gamma_{s r d}\left(\mathrm{P}_{2}\right)=2$. Therefore $\gamma_{s r d}(\mathrm{G}-\mathrm{v})>\gamma_{s r d}(\mathrm{G})$. Therefore $V_{s r d}^{+}(\mathrm{G})=\mathrm{V}(\mathrm{G})$.

Theorem 2.6: Let $\mathrm{G}=\mathrm{K}_{1, \mathrm{n}}, V_{s r d}^{-}(\mathrm{G})=\mathrm{V}(\mathrm{G}), \mathrm{n} \geq 2$.
Proof: Let $\mathrm{V}(\mathrm{G})=\left\{\mathrm{v}, \mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}\right\}$ and $\mathrm{E}(\mathrm{G})=\left\{\mathrm{vv}_{\mathrm{i}} / 1 \leq \mathrm{i} \leq \mathrm{n}\right\}, \gamma_{s r d}\left(\mathrm{~K}_{1, \mathrm{n}}\right)=\mathrm{n}+1$.
Case i: $\mathrm{G}-\mathrm{v}$ is $\mathrm{nK}_{1} \cdot \gamma_{s r d}\left(\mathrm{nK}_{1}\right)=\mathrm{n}$. Therefore $\gamma_{s r d}(\mathrm{G}-\mathrm{v})<\gamma_{s r d}(\mathrm{G})$. Hence $\mathrm{v} \in V_{s r d}^{-}(\mathrm{G})$.
Case ii: $\mathrm{G}-\mathrm{v}_{\mathrm{i}}, 1 \leq \mathrm{i} \leq \mathrm{n}$ is a star $\mathrm{K}_{1, \mathrm{n}-1}$ and $\gamma_{s r d}\left(\mathrm{~K}_{1, \mathrm{n}-1}\right)=\mathrm{n}$. Therefore $\gamma_{s r d}(\mathrm{G}-\mathrm{v})<\gamma_{s r d}(\mathrm{G})$. Hence $\mathrm{v}_{\mathrm{i}} \in V_{s r d}^{-}(\mathrm{G})$. Therefore $V_{s r d}^{-}(\mathrm{G})=$ $\mathrm{V}(\mathrm{G})$. Hence the theorem.

Theorem 2.7: $V_{\text {srd }}^{-}\left(\mathrm{W}_{\mathrm{n}}\right)=\emptyset, \mathrm{n} \geq 4$
Proof: Let $\mathrm{G}=\mathrm{W}_{\mathrm{n}}, \mathrm{n} \geq 4$. Let $\mathrm{V}(\mathrm{G})=\left\{\mathrm{v}, \mathrm{v}_{\mathrm{i}} / 1 \leq \mathrm{i} \leq \mathrm{n}\right\}, \mathrm{E}(\mathrm{G})=\left\{\mathrm{vv}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1} / 1 \leq \mathrm{i} \leq \mathrm{n}-1\right\} \cup\left\{\mathrm{v}_{\mathrm{n}} \mathrm{v}_{1}\right\}$ and $\gamma_{\text {srd }}\left(\mathrm{W}_{\mathrm{n}}\right)=1$. Suppose $\mathrm{v}, \mathrm{v}_{\mathrm{i}} \in$ $V_{s r d}^{-}\left(\mathrm{W}_{\mathrm{n}}\right), 1 \leq \mathrm{i} \leq \mathrm{n}$. Then $\gamma_{s r d}(\mathrm{G}-\mathrm{v})<\gamma_{s r d}(\mathrm{G})$ and $\gamma_{s r d}\left(\mathrm{G}-\mathrm{v}_{\mathrm{i}}\right)<\gamma_{s r d}(\mathrm{G})$.
Case i: $\mathrm{G}-\mathrm{v}$ is a cycle C_{n} and $\gamma_{s r d}\left(\mathrm{C}_{\mathrm{n}}\right)=\mathrm{n}-2\left\lfloor\frac{n}{3}\right\rfloor$. Therefore $\gamma_{s r d}(\mathrm{G}-\mathrm{v})>\gamma_{s r d}(\mathrm{G})$. Hence $\mathrm{v} \in V_{s r d}^{+}(\mathrm{G})$, a contradiction.
Case ii: $\mathrm{G}-\mathrm{v}_{\mathrm{i}}=\mathrm{P}_{\mathrm{n}}+\mathrm{K}_{1}$ and $\gamma_{s r d}\left(\mathrm{P}_{\mathrm{n}}+\mathrm{K}_{1}\right)=1$. Therefore $\gamma_{s r d}\left(\mathrm{G}-\mathrm{v}_{\mathrm{i}}\right)=\gamma_{s r d}(\mathrm{G})$. Hence $\mathrm{v} \in V_{s r d}^{0}(\mathrm{G})$, a contradiction. From cases (i) and (ii), there is no $\mathrm{v}, \mathrm{v}_{\mathrm{i}}$ belong to $V_{s r d}^{-}(\mathrm{G})$. Therefore $V_{s r d}^{-}\left(\mathrm{W}_{\mathrm{n}}\right)=\emptyset$. Hence the theorem.

Theorem 2.8: Let $\mathrm{G}=\mathrm{K}_{\mathrm{m}, \mathrm{n}}, \mathrm{m}, \mathrm{n} \geq 2$. Then $\mathrm{V}(\mathrm{G})=\left\{\begin{array}{l}V_{\text {srd }}^{+}(G) \text { if } m=n \\ V_{\text {srd }}^{-}(G) \text { if } m<n\end{array}\right.$
Proof: Let $\mathrm{G}=\mathrm{K}_{\mathrm{m}, \mathrm{n}}, \mathrm{m}, \mathrm{n} \geq 2$. Let $\mathrm{V}(\mathrm{G})=\left\{\mathrm{u}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}} / 1 \leq \mathrm{i} \leq \mathrm{m}, 1 \leq \mathrm{j} \leq \mathrm{n}\right\}$.
Case i: Suppose $\mathrm{m}=\mathrm{n}$. Let $\mathrm{v} \in \mathrm{V}(\mathrm{G})$. Then $\gamma_{s r d}(\mathrm{G})=2, \mathrm{G}-\mathrm{v}=\mathrm{K}_{\mathrm{m}, \mathrm{n}-1}($ or $) \mathrm{K}_{\mathrm{n}, \mathrm{m}-1}$. Hence $\gamma_{s r d}(\mathrm{G}-\mathrm{v})=\mathrm{m}+\mathrm{n}-1>\gamma_{s r d}(\mathrm{G})$. Therefore v $\in V_{\text {srd }}^{+}(G)$. Hence $V_{s r d}^{+}(G)=\mathrm{V}(\mathrm{G})$.
Case ii: Suppose m<n.
Subcase iia: Suppose $\mathrm{n}-\mathrm{m}=1, \gamma_{s r d}(\mathrm{G})=\mathrm{m}+\mathrm{n}$.
Subsubcase iiai: $G-u_{i}$ is a complete bipartite graph $K_{m-1, n}$, then $\gamma_{s r d}\left(G-u_{i}\right)=m+n-1<\gamma_{s r d}(G)$.
Subsubcase iiaii: $\mathrm{G}-\mathrm{v}_{\mathrm{i}}$ is also a complete bipartite graph $\mathrm{K}_{\mathrm{m}, \mathrm{n}-1}, \mathrm{~m}=\mathrm{n}-1$, then $\gamma_{\text {srd }}\left(\mathrm{G}-\mathrm{v}_{\mathrm{i}}\right)=2<\gamma_{\text {srd }}(\mathrm{G})$.
Subcase iib: Suppose $\mathrm{n}-\mathrm{m} \neq 1, \gamma_{s r d}(\mathrm{G})=\mathrm{m}+\mathrm{n}$.
Subsubcase iibi: $\mathrm{G}-\mathrm{u}_{\mathrm{i}}$ is a complete bipartite graph $\mathrm{K}_{\mathrm{m}-1, \mathrm{n}}$, then $\gamma_{s r d}\left(\mathrm{G}-\mathrm{u}_{\mathrm{i}}\right)=\mathrm{m}+\mathrm{n}-1<\gamma_{\text {srd }}(\mathrm{G})$.
Subsubcase iibii: $G-v_{i}$ is also a complete bipartite graph $K_{m, n-1}, m=n-1$, then $\gamma_{s r d}\left(G-v_{i}\right)=m+n-1<\gamma_{s r d}(G)$. Hence u_{i}, v_{i} $\in V_{s r d}^{-}(G)$. Therefore $V_{s r d}^{-}(G)=\mathrm{V}(\mathrm{G})$. Hence the theorem.

Theorem 2.9: Let $\mathrm{G}=\mathrm{D}_{\mathrm{r}, \mathrm{s}}, \mathrm{r}, \mathrm{s} \geq 1$. Then $V_{\text {srd }}^{-}(G)=\mathrm{V}(\mathrm{G})$.
Proof: Let $\mathrm{v} \in \mathrm{V}(\mathrm{G}), \gamma_{s r d}(\mathrm{G})=\mathrm{r}+\mathrm{s}+2$. Thus $\mathrm{G}-\mathrm{v}=\mathrm{K}_{1, \mathrm{r}} \cup \mathrm{sK}_{1}\left(\right.$ or) $\mathrm{rK} \mathrm{K}_{1} \cup \mathrm{~K}_{1, \mathrm{~s}}$ (or) $\mathrm{D}_{\mathrm{r}, \mathrm{s}-1}$ (or) $\mathrm{D}_{\mathrm{r}-1, \mathrm{~s}}, \gamma_{s r d}(\mathrm{G}-\mathrm{v})=\mathrm{r}+\mathrm{s}+1<\gamma_{s r d}(\mathrm{G})$. Hence $\mathrm{v} \in V_{s r d}^{-}(G)$. Therefore $V_{\text {srd }}^{-}(G)=\mathrm{V}(\mathrm{G})$. Hence the theorem.

Definition 2.10 [4]: Following the notation used in the case of domination, we partition the edge set $\mathrm{E}(\mathrm{G})$ into subsets E_{0}, E_{+}, E_{-}as follows: $E_{s e}^{o}(G)=\left\{e \in G ; \gamma_{s e}(G)=\gamma_{s e}(G-e)\right\}$

$$
\begin{aligned}
& E_{s e}^{+}(G)=\left\{e \in G ; \gamma_{s e}(G)<\gamma_{s e}(G-e)\right\} \\
& E_{s e}^{-}(G)=\left\{e \in G ; \gamma_{s e}(G)>\gamma_{s e}(G-e)\right\}
\end{aligned}
$$

Theorem 2.11: Let $\mathrm{G}=\mathrm{P}_{3 \mathrm{n}}, \mathrm{n} \geq 2$. Let e_{i} be a edge of $\mathrm{P}_{3 \mathrm{n}}$. Then $E_{\text {srd }}^{+}(\mathrm{G})=\mathrm{E}(\mathrm{G})$.
Proof: Let $\mathrm{G}=\mathrm{P}_{3 \mathrm{n}}, \mathrm{n} \geq 2$. Let $\mathrm{V}(\mathrm{G})=\left\{\mathrm{v}_{\mathrm{i}} / 1 \leq \mathrm{i} \leq 3 \mathrm{n}\right\}$ and $\mathrm{E}(\mathrm{G})=\left\{\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1} / 1 \leq \mathrm{i} \leq 3 \mathrm{n}-1\right\}$.
Case i: Suppose $\mathrm{e}_{\mathrm{i}}=\mathrm{e}_{1}$ or $\mathrm{e}_{\mathrm{i}}=\mathrm{e}_{3 \mathrm{n}-1}$. Thus $\mathrm{P}_{3 \mathrm{n}}-\mathrm{e}_{\mathrm{i}}=\mathrm{P}_{1} \cup \mathrm{P}_{3 \mathrm{n}-1} \cdot \gamma_{s r d}\left(\mathrm{P}_{3 \mathrm{n}-1}\right)=\mathrm{n}+3, \gamma_{s r d}\left(\mathrm{P}_{3 \mathrm{n}}-\mathrm{e}_{\mathrm{i}}\right)=\mathrm{n}+4$. Therefore $\gamma_{s r d}\left(\mathrm{P}_{3 \mathrm{n}}-\mathrm{e}_{\mathrm{i}}\right)>$ $\gamma_{s r d}\left(\mathrm{P}_{3 \mathrm{n}}\right)$. Hence $\mathrm{e}_{\mathrm{i}} \in E_{s r d}^{+}(\mathrm{G})$.
Case ii: Suppose $\mathrm{e}_{\mathrm{i}}=\mathrm{e}_{2}$ or $\mathrm{e}_{\mathrm{i}}=\mathrm{e}_{3 \mathrm{n}-2}$. Thus $\mathrm{P}_{3 \mathrm{n}}-\mathrm{e}_{\mathrm{i}}=\mathrm{P}_{2} \cup \mathrm{P}_{3 \mathrm{n}-2} . \gamma_{\text {srd }}\left(\mathrm{P}_{3 \mathrm{n}-2}\right)=\mathrm{n}+2, \gamma_{\text {srd }}\left(\mathrm{P}_{3 \mathrm{n}}-\mathrm{e}_{\mathrm{i}}\right)=\mathrm{n}+4$. Therefore $\gamma_{\text {srd }}\left(\mathrm{P}_{3 \mathrm{n}}-\mathrm{e}_{\mathrm{i}}\right)>$ $\gamma_{s r d}\left(\mathrm{P}_{3 \mathrm{n}}\right)$. Hence $\mathrm{e}_{\mathrm{i}} \in E_{s r d}^{+}(\mathrm{G})$.
Case iii: Suppose $\mathrm{e}_{\mathrm{i}}=\mathrm{e}_{3 \mathrm{k}}, 1 \leq \mathrm{k} \leq \mathrm{n}-1$. Thus $\mathrm{P}_{3 \mathrm{n}}-\mathrm{e}_{\mathrm{i}}=\mathrm{P}_{3 \mathrm{k}} \cup \mathrm{P}_{3 \mathrm{n}-3 \mathrm{k}} . \gamma_{\text {srd }}\left(\mathrm{P}_{3 \mathrm{k}}\right)=\mathrm{k}+2$ and $\gamma_{\text {srd }}\left(\mathrm{P}_{3 \mathrm{n}-3 \mathrm{k}}\right)=\mathrm{n}-\mathrm{k}+2$. Hence $\gamma_{\text {srd }}\left(\mathrm{P}_{3 \mathrm{n}}-\mathrm{e}_{\mathrm{i}}\right)=\mathrm{n}$ +4 . Therefore $\gamma_{s r d}\left(\mathrm{P}_{3 \mathrm{n}}-\mathrm{e}_{\mathrm{i}}\right)>\gamma_{s r d}\left(\mathrm{P}_{3 \mathrm{n}}\right)$. Hence $\mathrm{e}_{\mathrm{i}} \in E_{s r d}^{+}(\mathrm{G})$.
Case iv: Suppose $\mathrm{e}_{\mathrm{i}}=\mathrm{e}_{3 \mathrm{k}+1}, 1 \leq \mathrm{k} \leq \mathrm{n}-2$. Thus $\mathrm{P}_{3 \mathrm{n}}-\mathrm{e}_{\mathrm{i}}=\mathrm{P}_{3 \mathrm{k}+1} \cup \mathrm{P}_{3 \mathrm{n}-3 \mathrm{k}-1} . \gamma_{s r d}\left(\mathrm{P}_{3 \mathrm{k}+1}\right)=\mathrm{k}+3$ and $\gamma_{s r d}\left(\mathrm{P}_{3 \mathrm{n}-3 \mathrm{k}-1}\right)=\mathrm{n}-\mathrm{k}+3$. Hence $\gamma_{s r d}\left(\mathrm{P}_{3 \mathrm{n}}-\mathrm{e}_{\mathrm{i}}\right)=\mathrm{n}+6$. Therefore $\gamma_{s r d}\left(\mathrm{P}_{3 \mathrm{n}}-\mathrm{e}_{\mathrm{i}}\right)>\gamma_{s r d}\left(\mathrm{P}_{3 \mathrm{n}}\right)$. Hence $\mathrm{e}_{\mathrm{i}} \in E_{s r d}^{+}(\mathrm{G})$.

Case v: Suppose $\mathrm{e}_{\mathrm{i}}=\mathrm{e}_{3 \mathrm{k}+2}, 1 \leq \mathrm{k} \leq \mathrm{n}-2$. Thus $\mathrm{P}_{3 \mathrm{n}}-\mathrm{e}_{\mathrm{i}}=\mathrm{P}_{3 \mathrm{k}+2} \cup \mathrm{P}_{3 \mathrm{n}-3 \mathrm{k}-2} \cdot \gamma_{s r d}\left(\mathrm{P}_{3 \mathrm{k}+2}\right)=\mathrm{k}+4$ and $\gamma_{s r d}\left(\mathrm{P}_{3 \mathrm{n}-3 \mathrm{k}-2}\right)=\mathrm{n}-\mathrm{k}+2$. Hence $\gamma_{\text {srd }}\left(\mathrm{P}_{3 \mathrm{n}}\right.$ $\left.-\mathrm{e}_{\mathrm{i}}\right)=\mathrm{n}+6$. Therefore $\gamma_{s r d}\left(\mathrm{P}_{3 \mathrm{n}}-\mathrm{e}_{\mathrm{i}}\right)>\gamma_{s r d}\left(\mathrm{P}_{3 \mathrm{n}}\right)$. Hence $\mathrm{e}_{\mathrm{i}} \in E_{s r d}^{+}(\mathrm{G})$. In all the cases, $E_{s r d}^{+}(\mathrm{G})=\mathrm{E}(\mathrm{G})$. Hence the theorem.

Theorem 2.12: $E_{s r d}^{-}\left(\mathrm{P}_{\mathrm{m}}\right)=\emptyset$, where $\mathrm{m}=3 \mathrm{n}+1, \mathrm{n} \geq 2,3 \mathrm{n}+2, \mathrm{n} \geq 1$.
Proof: Case i: Let $\mathrm{G}=\mathrm{P}_{3 \mathrm{n}+1}, \mathrm{n} \geq 2$. Suppose $\mathrm{e}_{\mathrm{i}} \in E_{s r d}^{-}(\mathrm{G})$, where $1 \leq \mathrm{i} \leq 3 \mathrm{n}+1$. Then $\gamma_{s r d}\left(\mathrm{G}-\mathrm{e}_{\mathrm{i}}\right)<\gamma_{s r d}(\mathrm{G})$.
Subcase ia: Suppose $\mathrm{e}_{\mathrm{i}}=\mathrm{e}_{1}$ or $\mathrm{e}_{\mathrm{i}}=\mathrm{e}_{3 \mathrm{n}}$. Thus $\mathrm{G}-\mathrm{e}_{\mathrm{i}}=\mathrm{P}_{1} \cup \mathrm{P}_{3 \mathrm{n}} \cdot \gamma_{s r d}\left(\mathrm{P}_{3 \mathrm{n}}\right)=\mathrm{n}+2$ and $\gamma_{s r d}\left(\mathrm{G}-\mathrm{e}_{\mathrm{i}}\right)=\mathrm{n}+3$. Therefore $\gamma_{s r d}\left(\mathrm{G}-\mathrm{e}_{\mathrm{i}}\right)=\gamma_{s r d}(\mathrm{G})$, a contradiction. Therefore $e_{i} \neq e_{1}$ and $e_{i} \neq e_{3 n}$.
Subcase ib: Suppose $\mathrm{e}_{\mathrm{i}}=\mathrm{e}_{2}$ or $\mathrm{e}_{\mathrm{i}}=\mathrm{e}_{3 \mathrm{n}-1}$. Thus $\mathrm{G}-\mathrm{e}_{\mathrm{i}}=\mathrm{P}_{2} \cup \mathrm{P}_{3 \mathrm{n}-1} \cdot \gamma_{s r d}\left(\mathrm{P}_{3 \mathrm{n}-1}\right)=\mathrm{n}+3$ and $\gamma_{s r d}\left(\mathrm{G}-\mathrm{e}_{\mathrm{i}}\right)=\mathrm{n}+5$. Therefore $\gamma_{s r d}\left(\mathrm{G}-\mathrm{e}_{\mathrm{i}}\right)>$ $\gamma_{s r d}(\mathrm{G})$, a contradiction. Therefore $\mathrm{e}_{\mathrm{i}} \neq \mathrm{e}_{2}$ and $\mathrm{e}_{\mathrm{i}} \neq \mathrm{e}_{3 \mathrm{n}-1}$.
Subcase ic: Suppose $\mathrm{e}_{\mathrm{i}}=\mathrm{e}_{3 \mathrm{k}}, 1 \leq \mathrm{k} \leq \mathrm{n}-1$. Thus $\mathrm{G}-\mathrm{e}_{\mathrm{i}}=\mathrm{P}_{3 \mathrm{k}} \cup \mathrm{P}_{3 \mathrm{n}-3 \mathrm{k}+1} \cdot \gamma_{s r d}\left(\mathrm{P}_{3 \mathrm{k}}\right)=\mathrm{k}+2$ and $\gamma_{s r d}\left(\mathrm{P}_{3 \mathrm{n}-3 \mathrm{k}+1}\right)=\mathrm{n}-\mathrm{k}+3$. Hence $\gamma_{s r d}(\mathrm{G}-$ $\left.\mathrm{e}_{\mathrm{i}}\right)=\mathrm{n}+5$. Therefore $\gamma_{s r d}\left(\mathrm{G}-\mathrm{e}_{\mathrm{i}}\right)>\gamma_{s r d}(\mathrm{G})$, a contradiction. Therefore $\mathrm{e}_{\mathrm{i}} \neq \mathrm{e}_{3 \mathrm{k}}, 1 \leq \mathrm{k} \leq \mathrm{n}-1$.
Subcase id: Suppose $\mathrm{e}_{\mathrm{i}}=\mathrm{e}_{3 \mathrm{k}+1}, 1 \leq \mathrm{k} \leq \mathrm{n}-1$. Thus $\mathrm{G}-\mathrm{e}_{\mathrm{i}}=\mathrm{P}_{3 \mathrm{k}+1} \cup \mathrm{P}_{3 \mathrm{n}-3 \mathrm{k}} . \gamma_{s r d}\left(\mathrm{P}_{3 \mathrm{k}+1}\right)=\mathrm{k}+3$ and $\gamma_{s r d}\left(\mathrm{P}_{3 \mathrm{n}-3 \mathrm{k}}\right)=\mathrm{n}-\mathrm{k}+2$. Hence $\gamma_{s r d}(\mathrm{G}-$ $\left.\mathrm{e}_{\mathrm{i}}\right)=\mathrm{n}+5$. Therefore $\gamma_{s r d}\left(\mathrm{G}-\mathrm{e}_{\mathrm{i}}\right)>\gamma_{s r d}(\mathrm{G})$, a contradiction. Therefore $\mathrm{e}_{\mathrm{i}} \neq \mathrm{e}_{3 \mathrm{k}+1}, 1 \leq \mathrm{k} \leq \mathrm{n}-1$.
Subcase ie: Suppose $\mathrm{e}_{\mathrm{i}}=\mathrm{e}_{3 \mathrm{k}+2}, 1 \leq \mathrm{k} \leq \mathrm{n}-2$. Thus $\mathrm{G}-\mathrm{e}_{\mathrm{i}}=\mathrm{P}_{3 \mathrm{k}+2} \cup \mathrm{P}_{3 \mathrm{n}-3 \mathrm{k}-1} \cdot \gamma_{s r d}\left(\mathrm{P}_{3 \mathrm{k}+2}\right)=\mathrm{k}+4$ and $\gamma_{s r d}\left(\mathrm{P}_{3 \mathrm{n}-3 \mathrm{k}-1}\right)=\mathrm{n}-\mathrm{k}+3$. Hence $\gamma_{s r d}\left(\mathrm{G}-\mathrm{e}_{\mathrm{i}}\right)=\mathrm{n}+7$. Therefore $\gamma_{\text {srd }}\left(\mathrm{G}-\mathrm{e}_{\mathrm{i}}\right)>\gamma_{\text {srd }}(\mathrm{G})$, a contradiction. Therefore $\mathrm{e}_{\mathrm{i}} \neq \mathrm{e}_{3 \mathrm{k}+2}, 1 \leq \mathrm{k} \leq \mathrm{n}-2$. Thus there is no e_{i} belong to $E_{s r d}^{-}(\mathrm{G})$. Therefore $E_{s r d}^{-}\left(\mathrm{P}_{3 \mathrm{n}+1}\right)=\emptyset$.
Case ii: Let $\mathrm{G}=\mathrm{P}_{3 \mathrm{n}+2}, \mathrm{n} \geq 1$. Suppose $\mathrm{e}_{\mathrm{i}} \in E_{s r d}^{-}(\mathrm{G})$, where $1 \leq \mathrm{i} \leq 3 \mathrm{n}+2$. Then $\gamma_{s r d}\left(\mathrm{G}-\mathrm{e}_{\mathrm{i}}\right)<\gamma_{s r d}(\mathrm{G})$.
Subcase iia: Suppose $\mathrm{e}_{\mathrm{i}}=\mathrm{e}_{1}$ or $\mathrm{e}_{\mathrm{i}}=\mathrm{e}_{3 \mathrm{n}+1}$. Thus $\mathrm{G}-\mathrm{e}_{\mathrm{i}}=\mathrm{P}_{1} \cup \mathrm{P}_{3 \mathrm{n}+1} . \gamma_{s r d}\left(\mathrm{P}_{3 \mathrm{n}+1}\right)=\mathrm{n}+3$ and $\gamma_{s r d}\left(\mathrm{G}-\mathrm{e}_{\mathrm{i}}\right)=\mathrm{n}+4$. Therefore $\gamma_{s r d}\left(\mathrm{G}-\mathrm{e}_{\mathrm{i}}\right)=$ $\gamma_{\text {srd }}(\mathrm{G})$, a contradiction. Therefore $\mathrm{e}_{\mathrm{i}} \neq \mathrm{e}_{1}$ and $\mathrm{e}_{\mathrm{i}} \neq \mathrm{e}_{3 \mathrm{n}+1}$.
Subcase iib: Suppose $\mathrm{e}_{\mathrm{i}}=\mathrm{e}_{2}$ or $\mathrm{e}_{\mathrm{i}}=\mathrm{e}_{3 \mathrm{n}}$. Thus $\mathrm{G}-\mathrm{e}_{\mathrm{i}}=\mathrm{P}_{2} \cup \mathrm{P}_{3 \mathrm{n}} \cdot \gamma_{s r d}\left(\mathrm{P}_{3 \mathrm{n}}\right)=\mathrm{n}+2$ and $\gamma_{s r d}\left(\mathrm{G}-\mathrm{e}_{\mathrm{i}}\right)=\mathrm{n}+4$. Therefore $\gamma_{s r d}\left(\mathrm{G}-\mathrm{e}_{\mathrm{i}}\right)=\gamma_{s r d}(\mathrm{G})$, a contradiction. Therefore $e_{i} \neq e_{2}$ and $e_{i} \neq e_{3 n}$.
Subcase iic: Suppose $\mathrm{e}_{\mathrm{i}}=\mathrm{e}_{3 \mathrm{k}}, 1 \leq \mathrm{k} \leq \mathrm{n}-1$. Thus $\mathrm{G}-\mathrm{e}_{\mathrm{i}}=\mathrm{P}_{3 \mathrm{k}} \cup \mathrm{P}_{3 \mathrm{n}-3 \mathrm{k}+2} \cdot \gamma_{s r d}\left(\mathrm{P}_{3 \mathrm{k}}\right)=\mathrm{k}+2$ and $\gamma_{s r d}\left(\mathrm{P}_{3 \mathrm{n}-3 \mathrm{k}+2}\right)=\mathrm{n}-\mathrm{k}+4$. Hence $\gamma_{s r d}(\mathrm{G}-$ $\left.\mathrm{e}_{\mathrm{i}}\right)=\mathrm{n}+6$. Therefore $\gamma_{s r d}\left(\mathrm{G}-\mathrm{e}_{\mathrm{i}}\right)>\gamma_{s r d}(\mathrm{G})$, a contradiction. Therefore $\mathrm{e}_{\mathrm{i}} \neq \mathrm{e}_{3 \mathrm{k}}, 1 \leq \mathrm{k} \leq \mathrm{n}-1$.
Subcase iid: Suppose $\mathrm{e}_{\mathrm{i}}=\mathrm{e}_{3 \mathrm{k}+1}, 1 \leq \mathrm{k} \leq \mathrm{n}-1$. Thus $\mathrm{G}-\mathrm{e}_{\mathrm{i}}=\mathrm{P}_{3 \mathrm{k}+1} \cup \mathrm{P}_{3 \mathrm{n}-3 \mathrm{k}+1} \cdot \gamma_{s r d}\left(\mathrm{P}_{3 \mathrm{k}+1}\right)=\mathrm{k}+3$ and $\gamma_{s r d}\left(\mathrm{P}_{3 \mathrm{n}-3 \mathrm{k}+1}\right)=\mathrm{n}-\mathrm{k}+3$. Hence $\gamma_{s r d}\left(\mathrm{G}-\mathrm{e}_{\mathrm{i}}\right)=\mathrm{n}+6$. Therefore $\gamma_{s r d}\left(\mathrm{G}-\mathrm{e}_{\mathrm{i}}\right)>\gamma_{s r d}(\mathrm{G})$, a contradiction. Therefore $\mathrm{e}_{\mathrm{i}} \neq \mathrm{e}_{3 \mathrm{k}+1}, 1 \leq \mathrm{k} \leq \mathrm{n}-1$.
Subcase iie: Suppose $\mathrm{e}_{\mathrm{i}}=\mathrm{e}_{3 \mathrm{k}+2}, 1 \leq \mathrm{k} \leq \mathrm{n}-1$. Thus $\mathrm{G}-\mathrm{e}_{\mathrm{i}}=\mathrm{P}_{3 \mathrm{k}+2} \cup \mathrm{P}_{3 \mathrm{n}-3 \mathrm{k}} \cdot \gamma_{s r d}\left(\mathrm{P}_{3 \mathrm{k}+2}\right)=\mathrm{k}+4$ and $\gamma_{s r d}\left(\mathrm{P}_{3 \mathrm{n}-3 \mathrm{k}}\right)=\mathrm{n}-\mathrm{k}+2$. Hence $\gamma_{s r d}(\mathrm{G}-$ $\left.\mathrm{e}_{\mathrm{i}}\right)=\mathrm{n}+6$. Therefore $\gamma_{s r d}\left(\mathrm{G}-\mathrm{e}_{\mathrm{i}}\right)>\gamma_{s r d}(\mathrm{G})$, a contradiction. Therefore $\mathrm{e}_{\mathrm{i}} \neq \mathrm{e}_{3 \mathrm{k}+2}, 1 \leq \mathrm{k} \leq \mathrm{n}-1$. Thus there is no e_{i} belong to $E_{s r d}^{-}(\mathrm{G})$. Therefore $E_{s r d}^{-}\left(\mathrm{P}_{3 \mathrm{n}+2}\right)=\emptyset$. Hence the theorem.

Result 2.13: Let $\mathrm{G}=\mathrm{P}_{3} . \mathrm{G}-\mathrm{e}=\mathrm{P}_{1} \cup \mathrm{P}_{2}($ or $) \mathrm{P}_{2} \cup \mathrm{P}_{1} \cdot \gamma_{s r d}(\mathrm{G}-\mathrm{e})=3=\gamma_{s r d}(\mathrm{G})$. Hence $\mathrm{e} \in E_{s r d}^{0}(G)$. Therefore $E_{s r d}^{0}(G)=\mathrm{E}(\mathrm{G})$.
Result 2.14: Let $\mathrm{G}=\mathrm{P}_{4} . \mathrm{G}-\mathrm{e}=\mathrm{P}_{1} \cup \mathrm{P}_{3}($ or $) \mathrm{P}_{2} \cup \mathrm{P}_{2}($ or $) \mathrm{P}_{3} \cup \mathrm{P}_{1} \cdot \gamma_{s r d}(\mathrm{G}-\mathrm{e})=4=\gamma_{s r d}(\mathrm{G})$. Hence e $\in E_{s r d}^{0}(G)$. Therefore $E_{s r d}^{0}(G)=\mathrm{E}(\mathrm{G})$.
Theorem 2.15: Let $\mathrm{G}=\mathrm{C}_{\mathrm{m}}, \mathrm{m} \geq 3$. Then $E_{s r d}^{+}(\mathrm{G})=\mathrm{E}(\mathrm{G})$.
Proof: Case i: Let $\mathrm{m}=3 \mathrm{n}, \mathrm{n} \geq 1$. Let $\mathrm{e} \in \mathrm{E}(\mathrm{G})$. Then $\gamma_{s r d}(\mathrm{G})=\mathrm{n}, \mathrm{G}-\mathrm{e}$ is a path $\mathrm{P}_{3 \mathrm{n}}$ and $\gamma_{s r d}\left(\mathrm{P}_{3 \mathrm{n}}\right)=\mathrm{n}+2$. Therefore $\gamma_{s r d}(\mathrm{G}-\mathrm{e})>\gamma_{s r d}(\mathrm{G})$. Hence $\mathrm{e} \in E_{s r d}^{+}(\mathrm{G})$.
Case ii: Let $\mathrm{m}=3 \mathrm{n}+1, \mathrm{n} \geq 1$. Let $\mathrm{e} \in \mathrm{E}(\mathrm{G})$. Then $\gamma_{s r d}(\mathrm{G})=\mathrm{n}+1, \mathrm{G}-\mathrm{e}$ is a path $\mathrm{P}_{3 \mathrm{n}+1}$ and $\gamma_{s r d}\left(\mathrm{P}_{3 \mathrm{n}+1}\right)=\mathrm{n}+3$. Therefore $\gamma_{s r d}(\mathrm{G}-\mathrm{e})>$ $\gamma_{s r d}(\mathrm{G})$. Hence e $\in E_{s r d}^{+}(\mathrm{G})$.
Case iii: Let $\mathrm{m}=3 \mathrm{n}+2, \mathrm{n} \geq 1$. Let $\mathrm{e} \in \mathrm{E}(\mathrm{G})$. Then $\gamma_{s r d}(\mathrm{G})=\mathrm{n}+2, \mathrm{G}-\mathrm{e}$ is a path $\mathrm{P}_{3 \mathrm{n}+2}$ and $\gamma_{s r d}\left(\mathrm{P}_{3 \mathrm{n}+2}\right)=\mathrm{n}+4$. Therefore $\gamma_{s r d}(\mathrm{G}-\mathrm{e})>$ $\gamma_{s r d}(\mathrm{G})$. Hence $\mathrm{e} \in E_{s r d}^{+}(\mathrm{G})$. Therefore $E_{s r d}^{+}(\mathrm{G})=\mathrm{E}(\mathrm{G})$. Hence the theorem.

Theorem 2.16: Let $\mathrm{G}=\mathrm{K}_{1, \mathrm{n}}, E_{s r d}^{0}(\mathrm{G})=\mathrm{E}(\mathrm{G}), \mathrm{n} \geq 2$.
Proof: Let $\mathrm{e} \in \mathrm{E}(\mathrm{G}), \gamma_{s r d}\left(\mathrm{~K}_{1, \mathrm{n}}\right)=\mathrm{n}+1$. Thus $\mathrm{G}-\mathrm{e}$ is $\mathrm{K}_{1, \mathrm{n}-1} \cup \mathrm{~K}_{1} . \gamma_{s r d}\left(\mathrm{~K}_{1, \mathrm{n}-1} \cup \mathrm{~K}_{1}\right)=\mathrm{n}+1$. Therefore $\gamma_{s r d}(\mathrm{G}-\mathrm{e})=\gamma_{s r d}(\mathrm{G})$. Hence $\mathrm{e} \in$ $E_{s r d}^{0}(\mathrm{G})$. Therefore $E_{s r d}^{0}(\mathrm{G})=\mathrm{E}(\mathrm{G})$. Hence the theorem.

Theorem 2.17: Let $\mathrm{G}=\mathrm{D}_{\mathrm{r}, \mathrm{s}}, \mathrm{r}, \mathrm{s} \geq 1$. Then $E_{s r d}^{0}(G)=\mathrm{E}(\mathrm{G})$.
Proof: Let $\mathrm{e} \in \mathrm{E}(\mathrm{G}), \gamma_{s r d}(\mathrm{G})=\mathrm{r}+\mathrm{s}+2$. Thus $\mathrm{G}-\mathrm{e}=\mathrm{D}_{\mathrm{r}-1, \mathrm{~s}} \cup \mathrm{~K}_{1}$ (or) $\mathrm{K}_{1} \cup \mathrm{D}_{\mathrm{r}, \mathrm{s}-1}\left(\right.$ or) $\mathrm{K}_{1, \mathrm{r}} \cup \mathrm{K}_{1, \mathrm{~s}}, \gamma_{s r d}(\mathrm{G}-\mathrm{e})=\mathrm{r}+\mathrm{s}+2=\gamma_{s r d}(\mathrm{G})$. Hence e $\in E_{s r d}^{0}(G)$. Therefore $E_{s r d}^{0}(G)=\mathrm{E}(\mathrm{G})$. Hence the theorem.

Theorem 2.18: Let $\mathrm{G}=\mathrm{K}_{\mathrm{n}}, \mathrm{n} \geq 5$. Then Then $E_{s r d}^{0}(G)=\mathrm{E}(\mathrm{G})$.
Proof: Let $\mathrm{e} \in \mathrm{E}(\mathrm{G}), \gamma_{s r d}(\mathrm{G})=1 . \mathrm{G}-\mathrm{e}$ has at least 3 full degree vertices, by result $1.11, \gamma_{s r d}(\mathrm{G}-\mathrm{e})=1$. Therefore $\gamma_{s r d}(\mathrm{G}-\mathrm{e})=\gamma_{s r d}(\mathrm{G})$. Hence $\mathrm{e} \in E_{s r d}^{0}(\mathrm{G})$. Therefore $E_{s r d}^{0}(\mathrm{G})=\mathrm{E}(\mathrm{G})$. Hence the theorem.

Result 2.19: Let $\mathrm{G}=\mathrm{K}_{4}$. Let $\mathrm{e} \in \mathrm{E}(\mathrm{G}), \gamma_{s r d}(\mathrm{G})=1 . \mathrm{G}-\mathrm{e}$ has two full degree vertices, by theorem 1.10, any strong restrained dominating set of G contains two full degree vertices and there is no vertex to strongly dominate the remaining two vertices, they also belong to strong restrained dominating set of G . Hence $\gamma_{s r d}(\mathrm{G}-\mathrm{e})=4$. Therefore $\gamma_{s r d}(\mathrm{G}-\mathrm{e})>\gamma_{s r d}(\mathrm{G})$. Hence $\mathrm{e} \in E_{s r d}^{+}(\mathrm{G})$. Therefore $E_{s r d}^{+}(\mathrm{G})=\mathrm{E}(\mathrm{G})$.

Theorem 2.20: Let $\mathrm{G}=\mathrm{W}_{\mathrm{n}}, \mathrm{n} \geq 5$. Then $E_{s r d}^{-}(\mathrm{G})=\varnothing$.
Proof: Let $V(G)=\left\{v, v_{i} / 1 \leq i \leq n\right\}, E(G)=\left\{e_{i}=v_{i} v_{i+1} / 1 \leq i \leq n-2\right\} \cup\left\{e_{n-1}=v_{n-1} v_{1}\right\} \cup\left\{e_{i+n-1}=v_{i} / 1 \leq i \leq n-1\right\}$ and $\gamma_{s r d}\left(W_{n}\right)=1$. Suppose $\mathrm{e}_{\mathrm{i}}, \mathrm{e}_{\mathrm{i}+\mathrm{n}-1}, \mathrm{e}_{\mathrm{n}-1} \in E_{s r d}^{-}(\mathrm{G})$. Then $\gamma_{s r d}\left(\mathrm{G}-\mathrm{e}_{\mathrm{i}}\right)<\gamma_{s r d}(\mathrm{G}), \gamma_{s r d}\left(\mathrm{G}-\mathrm{e}_{\mathrm{i}+\mathrm{n}-1}\right)<\gamma_{s r d}(\mathrm{G})$ and $\gamma_{s r d}\left(\mathrm{G}-\mathrm{e}_{\mathrm{n}-1}\right)<\gamma_{s r d}(\mathrm{G})$.
Case i: $\mathrm{G}-\mathrm{e}_{\mathrm{i}}$ (or) $\mathrm{G}-\mathrm{e}_{\mathrm{n}-1}=\mathrm{P}_{\mathrm{n}}+\mathrm{K}_{1}$ and $\gamma_{s r d}\left(\mathrm{P}_{\mathrm{n}}+\mathrm{K}_{1}\right)=1$. Therefore $\gamma_{s r d}\left(\mathrm{G}-\mathrm{e}_{\mathrm{i}}\right)=\gamma_{s r d}(\mathrm{G})=\gamma_{s r d}\left(\mathrm{G}-\mathrm{e}_{\mathrm{n}-1}\right)$. Hence $\mathrm{e}_{\mathrm{i}}, \mathrm{e}_{\mathrm{n}-1} \in E_{s r d}^{0}(\mathrm{G})$, a contradiction.
Case ii: Let S be the strong restrained dominating set of $G-e_{i+n-1} . G-e_{i+n-1}$ contain only one maximum degree vertex v, v belongs to S and since there is no vertex to strongly dominate v_{i} in $V-S$, v_{i} belongs to S. Hence $\gamma_{s r d}\left(G-e_{i+n-1}\right)=2$. Therefore $\gamma_{s r d}\left(G-e_{i+n-1}\right)>$
$\gamma_{s r d}(\mathrm{G})$. Hence $\mathrm{e}_{\mathrm{i}+\mathrm{n}-1} \in E_{s r d}^{+}(\mathrm{G})$, a contradiction. From cases (i) and (ii), there is no edges belong to $E_{s r d}^{-}(\mathrm{G})$. Therefore $E_{s r d}^{-}(\mathrm{G})=\emptyset$. Hence the theorem.

Result 2.21: Let $\mathrm{G}=\mathrm{W}_{4}$. Let $\mathrm{e} \in \mathrm{E}(\mathrm{G}), \gamma_{\text {srd }}(\mathrm{G})=1 . \mathrm{G}-\mathrm{e}$ has two full degree vertices, by theorem 1.10, any strong restrained dominating set of G contains two full degree vertices and there is no vertex to strongly dominate the remaining two vertices, they also belong to strong restrained dominating set of G . Hence $\gamma_{s r d}(\mathrm{G}-\mathrm{e})=4$. Therefore $\gamma_{s r d}(\mathrm{G}-\mathrm{e})>\gamma_{s r d}(\mathrm{G})$. Hence $\mathrm{e} \in E_{s r d}^{+}(\mathrm{G})$. Therefore $E_{s r d}^{+}(\mathrm{G})=\mathrm{E}(\mathrm{G})$.

Theorem 2.22: Let $\mathrm{G}=\mathrm{K}_{\mathrm{m}, \mathrm{n}}, \mathrm{m}, \mathrm{n} \geq 1$. Let $\mathrm{V}(\mathrm{G})=\left(\mathrm{V}_{1}, \mathrm{~V}_{2}\right), \quad\left|\mathrm{V}_{1}\right|=\mathrm{m}$ and $\left|\mathrm{V}_{2}\right|=\mathrm{n}$. Then $\mathrm{E}(\mathrm{G})=$ $\left\{\begin{array}{c}E_{s r d}^{0}(G) \text { if } m=n, \quad m, n \neq 2 \text { and }|m-n| \geq 2 \\ E_{s r d}^{-}(\mathrm{G}) \text { if }|m-n|=1\end{array}\right.$
Proof: Case i: Suppose $m=n, m, n \neq 2$. Let $e=u_{i} v_{j}, 1 \leq i, j \leq n .\left\{u_{k}, v_{t}\right\}, 1 \leq k, t \leq n, k \neq i, t \neq j$ is a strong restrained dominating set of $G-$ e. Clearly $\gamma_{s r d}(\mathrm{G}-\mathrm{e})=2=\gamma_{s r d}(\mathrm{G})$. This is true for any $\mathrm{e} \in \mathrm{E}(\mathrm{G})$. Hence $E_{s r d}^{0}(\mathrm{G})=\mathrm{E}(\mathrm{G})$.

Case ii: Suppose $|\mathrm{m}-\mathrm{n}| \geq 2 . \gamma_{\text {srd }}(\mathrm{G})=\mathrm{m}+\mathrm{n}$. Let $\mathrm{e}=\mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{j}}, 1 \leq \mathrm{i} \leq \mathrm{m}, \mathrm{l} \leq \mathrm{j} \leq \mathrm{n}$. Then $\mathrm{V}(\mathrm{G})$ is the unique strong restrained dominating set of $\mathrm{G}-\mathrm{e}$. Hence $E_{s r d}^{0}(\mathrm{G})=\mathrm{E}(\mathrm{G})$.
Case iii: Suppose $|m-n|=1 . \gamma_{\text {srd }}(G)=m+n$. Let $V_{1}=\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ and $V_{2}=\left\{u_{1}, u_{2}, \ldots \ldots, u_{n}\right\}$. Let $e=v_{i} u_{j}, 1 \leq i \leq m, 1 \leq j \leq n$. Since the maximum degree vertices are not adjacent with one another, they belong to any strong restrained dominating set of G. Then $S=\left\{\mathrm{v}_{\mathrm{k}} / 1 \leq\right.$ $\mathrm{k} \leq \mathrm{m}, \mathrm{k} \neq \mathrm{i}\} \cup\left\{\mathrm{u}_{\mathrm{t}}, \mathrm{u}_{\mathrm{j}} / 1 \leq \mathrm{t} \leq \mathrm{n}, \mathrm{t} \neq \mathrm{j}\right\}$ is a strong restrained dominating set of $\mathrm{G}-\mathrm{e}$. Therefore $|\mathrm{S}|=\mathrm{m}+1$. Hence $\gamma_{s r d}(\mathrm{G}-\mathrm{e}) \leq \mathrm{m}+1$. Also, no set with less than m vertices forms a strong restrained dominating set of $G-e$. Therefore $\gamma_{s r d}(G-e) \geq m+1$. Hence $\gamma_{s r d}(G-e)=$ $\mathrm{m}+1$. Therefore $\gamma_{s r d}(\mathrm{G}-\mathrm{e})<\gamma_{s r d}(\mathrm{G})$. Hence $\mathrm{e} \in E_{s r d}^{-}(G)$. Therefore $E_{s r d}^{-}(\mathrm{G})=\mathrm{E}(\mathrm{G})$.

Remark 2.23: Suppose $\mathrm{m}=\mathrm{n}=2, \gamma_{s r d}\left(\mathrm{~K}_{2,2}\right)=2$. Since $\mathrm{K}_{2,2}-\mathrm{e}=\mathrm{P}_{4}, \gamma_{s r d}\left(\mathrm{~K}_{2,2}-\mathrm{e}\right)=4$. Hence $\gamma_{s r d}\left(\mathrm{~K}_{2,2}-\mathrm{e}\right)>\gamma_{s r d}\left(\mathrm{~K}_{2,2}\right)$. Therefore $\mathrm{e} \in$ $E_{s r d}^{+}\left(\mathrm{K}_{2,2}\right)$. Hence $E_{s r d}^{+}\left(\mathrm{K}_{2,2}\right)=\mathrm{E}\left(\mathrm{K}_{2,2}\right)$.

3. CONCLUSION

In this paper, the authors studied changing and unchanging strong restrained domination number of a graphs. Similar studies can be made on this type.

REFERENCES

[1] Acharya. B. D, Waliker. H. B and Sampathkumar. E, Domination Theory in Graphs, Mehta Research Institute, Alagabad, 1981.
[2] Domke.G.S, et al., Restrained domination in graphs, Discrete Mathematics, 203, pp.61-69, (1999).
[3] Harary. F, Graph Theory, Adison Wesley, Reading Mass (1969).
[4] Meena, N, Subramanian. A and Swaminathan. V, Changing and Unchanging GSE for Vertex Removal in Graphs, Proceedings of the International Conference on Applied Mathematics and Theoretical Computer Science - 2013, ISBN 978-93-82338-35-2 2013 © Bonfring
[5] Sampathkumar. E and Pushpa Latha. L, Strong weak domination and domination balance in a graph, Discrete Math., 161: 235-242, 1996.
[6] Selvaloganayaki. M and Namasivayam. P, Strong restrained domination number for some standard graphs, Advances in Domination Theory II, Vishwa International Publication (2013).

