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Abstract: Let G = (V, E) be a simple graph. A Subset S of V is said to be strong restrained dominating set or restrained strong dominating
set of G if for every u €V — S, there exists elements v € S and w € V — S such that v and w strongly dominates u. The minimum

cardinality of a strong restrained dominating set of G is called the strong restrained domination number of G and is denoted by y.4(G).
In this paper, changing and unchanging strong restrained domination number of a graphs are determined.
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1. INTRODUCTION

Throughout this paper, finite, undirected, simple graph is considered. Let G = (V,E) be a simple graph. The degree of any vertex u in G is the
number of edges incident with u and is denoted by deg u. The minimum and maximum degree of a vertex is denoted by &(G) and A(G)
respectively. A vertex of degree one is called a pendant (end) vertex and a vertex which is adjacent to an end vertex is called a support
vertex. A set S < V is a dominating set of G if every vertex not in S is adjacent to a vertex in S. The domination number of G, denoted by
v(G), is the minimum cardinality of a dominating set [1]. The concept of strong domination in graphs was introduced by Sampathkumar and
Puspalatha[5] and the restrained domination was introduced by Domke [2] et al. A set S < V(G) is said to be a strong dominating set of G if
every vertex v € V — S is strongly dominated by some vertex u in S. A set S — V(G) is a restrained dominating set of G, if every vertex not
in S is adjacent to a vertex in S and to a vertex in V — S. The restrained domination number of a graph G, denoted by y,(G), is the minimum
cardinality of a restrained dominating set in G. The strong restrained domination was introduced by Selvaloganayaki and Namasivayam [6].
For all graph theoretic terminologies and notations, Harary [3] is referred to. In this paper, changing and unchanging strong restrained
domination number of a graphs are characterized.

Definition 1.1: Let G = (V, E) be a simple graph. A subset S of V is said to be a strong restrained dominating set of G if for everyu € V - S,
there exists v € S and w € V — S such that v and w strongly dominate u. The minimum cardinality of a strong restrained dominating set of G
is called the strong restrained domination number of G and is denoted by y4(G).

The existence of a strong restrained dominating set of G is guaranteed, since V(G) is a strong restrained dominating set of G.

Example 1.2: Consider the following graph G,

V3 Vs

V3 Ve

Vg ' G
Figure 1

S = {3, V4} is a strong restrained dominating set of G. Since every vertex in V — S has one strong neighbour in S and one strong neighbour in
V-S.
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n+ 2ifm=3n
Result 1.3: For the path Py, Ysd(Pm) =4n + 3 if m = 3n + 1 where n > 1.
n+4 ifm=3n+2

Result 1.4: 7a(Cr) =y(Cr) =n -2 | 2|, n>3.

Result 1.5: y4q(Kp) =1,n> 3.

Result 1.6: ygq(W,) =1, n>4.

Result 1.7: For n > 1, ygq(Kyp) =n+ 1.
Result 1.8: Forr, s> 1, ygq(Dys) = r+s+ 2.

Result 1.9: Let G = Ky, ,, where m,n € N. Then y44(G) = {

Result 1.10: Let G be a connected graph.

(i). If G has a unique full degree vertex u then any strong restrained dominating set of G contains u.

(ii). If G has two full degree vertices v and w, then any strong restrained dominating set of G contains v and w.
Result 1.11: If G is a graph with at least 3 full degree vertices, then y44(G) = 1.

2 if m=n
m + n otherwise

2. Main Result: In this chapter, the changing and unchanging values of ysq When a vertex is removed and an edge is removed from a graph
is studied.

Definition 2.1 [4]: Following the notation used in the case of domination, we partition the vertex set V(G) into subsets V,, V., V_ as follows:
Vse0 (G) ={v € V(G): 1:(G) = v(G —~ )}
Vse+ (G) ={v € V(G): 15(G) < ys(G - V)}
Ve (G) ={V € V(G): 15(G) > 15(G = V) }.

Theorem 2.2: Let G = P3,, n > 1. Let v; be a vertex of Ps,. Then V£, (G) = V(G).

Proof: Case i: Let v; be an end vertex of Ps,. Thus P3, — Vi = P3,_1. ¥Ysrq(P3n_1) =N + 3 and y4.q(P3,) = n + 2. Therefore yg.q(Psn — Vi) >
Ysra(Pan)- Hence v; € Vit (G).

Case ii: Suppose V; = V, Or Vi = Vi, _ 1. Thus P3p — Vi = Py U Pay o, ¥grq(Pan—2) = n + 2. Therefore y4,.4(Pan — Vi) > ¥srqa(P3n). Hence v;
Vstd(G)-

Case iii: Suppose V= V3 Or Vj = V3, _». Thus P3y — V; = Py U Pap 3. Ysrq(Pan_3) = n + 1. Therefore yg.q(Psn — Vi) > ¥sra(Pan). Hence v;
Vera(G).

Case iv: Suppose V;=Vzy, 2 <k <n-—1. Thus Pz, = V; = P31 U Py _ak. Vsrqg(Pak—1) =K + 3 and Y4 (Psn_3) = n — k + 2. Hence ygq(P3n — Vi)
=n + 5. Therefore yg,q(Pan — Vi) > ¥srq (Pan). Hence v; € Vi, (G).

Case v: Suppose Vi = Va1, | <k <n—2. Thus Pz, — Vi = Pax U Pan k1. Ysra(Pak) = K + 2 and ys-q(Psn—3c—1) = n—k + 3. Hence yg.q(Pan —
V) = n + 5. Therefore ys,q(Pan — Vi) > Ysra(Pan)- Hence v; € Vit (G).

Case vi: Suppose Vi= Vi, 1 <k <n-2. Thus Pan — Vi = Pais1 U Py _ a0, )/ST'd(P3k ¥ 1) =k + 3and )/srd(P3n 3k - 2) =n -k + 2. Hence
Ysra(Pan— Vi) = n + 5. Therefore yg.q(Pan — Vi) > Vsrq(Pan). Hence v; € Vi, (G). In all the cases, V', (G) = V(G). Hence the theorem.

Theorem 2.3: V3 ,(Py) =@, wherem=3n+1,3n+2,n> 1.

Proof: Case i: Let G = Pa,.1. Suppose Vi € V2.,(G), where 1 <i<3n+1. Then y44(G — Vi) = ¥6rq ().

Subcase ia: Let v; be an end vertex of G. Thus G — V; = Pap. ¥srq(P3n) = N + 2 and y4,-4(Pane1) = n + 3. Therefore y4,.4(G — Vi) < v44(G), a
contradiction. Therefore v; cannot be an end vertex of G.

Subcase ib: Suppose v; = v, or v; = vz,. Thus G — v; = P; U Pay _ 1. Vspq(Pan - 1) = N+ 3 and y4,.4(G — v;) = n + 4. Therefore y4-4(G — v;) >
¥+ra(G), a contradiction. Therefore v; # v, and v; # va.

Subcase ic: Suppose V; = V3 0r V; = V3 _1. Thus G — v; = Py U Py 2. ¥spq(Pan_2) =N + 2 and y4,.4(G — v;) = n + 4. Therefore y4,.4(G — v;) >
¥+ra(G), a contradiction. Therefore v; # vz and v; # van_1.

Subcase id: Suppose vi= Vg, 2 <k <n—1 Thus G — V; = P33 U Pay_sk+1- Ysra(Pak - 1) = K+ 3 and y4.4(P3n_ 3+ 1) = nh — k + 3. Hence
Yra(G — Vi) =n + 6. Therefore y4,-4(G — Vi) > y5-4(G), a contradiction. Therefore v; # vz, 2 <k <n-1.

Subcase ie: Suppose Vi= Vgys1, 1 Sk<n—1. Thus G — V; = Py U P3p _ 3k Vrg(Pa) =K+ 2 and y5q(Pan_3x) = — k + 2. Hence y4,.4(G —v;) =
n + 4. Therefore y4-q(G — Vi) > v44(G), a contradiction. Therefore v; # vasg, | <k <n-1.

Subcase if: Suppose Vi = Vakz, 1 <k <n—2. Thus G — V; = Pas1 U Pan 3k 1 Vsra(Pak+ 1) = K+ 3 and yg.4(P3n 3 1) = n —k + 3. Hence
Yera(G — Vi) = n + 6. Therefore y4.4(G — Vi) > v4-4(G), a contradiction. Therefore v; # vakz, 1 <k < n — 2. Thus there is no v; belong to
V2,(G). Therefore V2, (Pan+1) = @.

Case ii: Let G = Pn.p. Suppose v; € V2.,4(G), where 1 <i<3n+2. Then y4,4(G — Vi) = ¥6rq(G).

Subcase iia: Let v; be an end vertex of G. Thus G — V; = Pz 4 1. ¥sra(Pan + 1) =N + 3 and ys-q(Psn + 2) = n + 4. Therefore y4,.4(G — v) <
¥+ra(G), a contradiction. Therefore v; cannot be an end vertex of G.

Subcase iib: Suppose v; = Vv, 0r V; = Vg, 4 1. Thus G — v; = Py U Pap. ¥srq(Pan) =N + 2 and y4,.4(G — Vi) = n + 3. Therefore y,,4(G — v <
¥+ra(G), a contradiction. Therefore v; # v, and V; # vap + 1.

Subcase iic: Suppose Vi = V3 or V; = V3. Thus G — v; = P, U Py _ 1. Yrq(Pan-1) = n + 3 and y4,.4(G — v;) = n + 5. Therefore y4,-4(G — v;) >
¥+ra(G), a contradiction. Therefore v; # vs and V; # vap.

Subcase iid: Suppose Vi= vz, 2 <k <n—1. Thus G — V; = P31 U P3n_3c+2- Ysra(Pak-1) = K+ 3 and yg.q(Psn 3+ 2) =N — k + 4. Hence
Yera(G — Vi) =n + 7. Therefore y4,-4(G — Vi) > y4,-4(G), a contradiction. Therefore v; # va,, 2 <k <n-1.

Subcase iie: Suppose Vi = Va1, 1 <k <n—1. Thus G — V; = Pg U Pay_sk+1- Vsra(Pa) = K+ 2 and ¥4 (Psn _3k+1) =N — K + 3. Hence y4,-4(G
—V;) =n + 5. Therefore y4-4(G — Vi) > v4,.4(G), a contradiction. Therefore v; # vas, | <k <n-1.
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Subcase iif: Suppose V; = Vayio, 1 <k <n-—1. Thus G — V; = P31 U Paq_3k. Vsra(Pak+1) = K+ 3 and ¥4 (Pan_3) = n—k + 2. Hence y4,-4(G —
Vi) = n + 5. Therefore y4,.4(G — Vi) > ¥54(G), a contradiction. Therefore v; # vauz, 1 <k <n — 1. Thus there is no v; belong to V.2, (G).
Therefore V3., (Psn+2) = @. Hence the theorem.

Theorem 2.4: Let G = C,,, m > 4. Then V£, (G) = V(G).

Proof: Case i: Let G = Cz,, n > 2. Let v € V(G). Then y,,4(G) =n, G — v is a path P3,_; and y.4(P3,_1) = n + 3. Therefore y¢,.4(G — V) >
ysrd(G)-

Case ii: Let G=Cs,+ 1, n > 1. Letv € V(G). Then y4,4(G) =n + 1, G — v is a path P3, and y¢.4(P3,) = n + 2. Therefore y4,.4(G — v) >
ysrd(G)-

Case iii: Let G=Czp40,n2 1. Letv € V(G). Then y4,4(G) =n + 2, G —vis a path Pz, 41 and ygq(P3n+ 1) =n + 3. Therefore y,.4(G —v) >
Ysra(G). Therefore Vi, (G) = V(G). Hence the theorem.

Remark 2.5: Let G = Cs. Let v € Cs. Then y,,4(G) = 1, G — v is a path P, and y,.4(P2) = 2. Therefore y.q(G — V) > y5-4(G). Therefore
Via(G) = V(G).

Theorem 2.6: Let G = Ky, Viry(G) = V(G), n > 2.

Proof: Let V(G) = {Vv, v, V, ...., va} and E(G) = {wv;/ 1 <i<n}, ysq(Kin) = n + 1.

Case i: G—Vvis nKy. ys-q¢(NKy) = n. Therefore y5,.4(G — V) < y5-q(G). Hence v € V., (G).

Caseii: G—v;, 1 <i<nisastar K;, ;and yg.q(Kyn_ 1) = n. Therefore ys.q4(G — V) < ¥5-4(G). Hence v; € Vg,.4(G). Therefore V,;4(G) =
V(G). Hence the theorem.

Theorem 2.7: V,y(Wy) =0, n >4

Proof: Let G =W, n>4. Let V(G) = {v, vi/ 1 <i<n}, E(G) = {vvj, ViViss / 1 £i<n—1} U {vvi} and ys-q(W,) = 1. Suppose v, v; €
Vs;d (Wn) s 1< i =n Then Vsra (G - V) < Vsra (G) and Ysra (G B Vi) < ysrd(G)-

Casei: G—visacycle C,and y4.4(Cy) =n— ZEJ Therefore ¥4 (G — V) > y4.4(G). Hence v e V1, (G), a contradiction.

Case ii: G —v; = P, + Ky and y,.4 (P, + K1) = 1. Therefore y4,4(G — Vi) = y5,-4(G). Hence v € V3 ,(G), a contradiction. From cases (i) and (ii),
there is no v, v; belong to V. ;(G). Therefore
Vera(Wy) = @. Hence the theorem.

Vs-;d (G) lf m=n

Vs;d (G) if m<n

Proof: Let G = Kpp, m,n>2. Let V(G) = {u;, vj/ 1 <i<m, | <j<n}.

Case i: Suppose m =n. Let v € V(G). Then y5,.q(G) =2, G —v =K, n_1 (0r) Ky m-1. Hence Y5, (G —v) =m+ n— 1> y..,(G). Therefore v
e V,(6). Hence V£, (G) = V(G).

Case ii: Suppose m <n.

Subcase iia: Suppose n—m =1, y,4(G) =m+n.

Subsubcase iiai: G — u; is a complete bipartite graph Ky, 1, n, then y4,.4(G—u) =m+n-1<y,,4(G).

Subsubcase iiaii: G — v; is also a complete bipartite graph Ky, n 1, m=n—1, then y5,.4(G — Vi) = 2 < ¥4 (G).

Subcase iib: Suppose n—m # 1, ¥5.4(G) =m + n.

Subsubcase iibi: G — u; is a complete bipartite graph Kp_ 1 p, then y,.¢(G — i) =m + n— 1 < y,.4(G).

Subsubcase iibii: G — v; is also a complete bipartite graph K n- 1, m = n — 1, then y,4(G — vi) = m + n — 1 < y.,.4(G). Hence u;, v;
€Vq4(G). Therefore V., (G) = V(G). Hence the theorem.

Theorem 2.8: Let G = Ky, m,n>2. Then V(G) = {

Theorem 2.9: Let G =D 5, 1, 5> 1. Then V., (G) = V(G).
Proof: Let v e V(G), ¥5a(G) = 1+ 5+ 2. Thus G — v = Ky, U sKy (0r) Ky U Ky 5 (0r) Dy, 5-1(0r) Dy 1,5, ¥5ra(G — V) = 1 +5 + 1 < ¥5,4(G).
Hence v eV,;(G). Therefore V,.,(G) = V(G). Hence the theorem.

Definition 2.10 [4]: Following the notation used in the case of domination, we partition the edge set E(G) into subsets Eq, E., E_ as follows:
ES.(G) = {e€G; Yse(G) = V5o (G — e)}
E:e(G) ={e€G; Yse(G) < ¥se(G — e)}
E5.(G) = {e € G; ¥5e(G) > 5. (G — &)}

Theorem 2.11: Let G = P3,, n > 2. Let g; be a edge of P3,. Then Ef.;(G) = E(G).

Proof: Let G =P3p,, n>2. Let V(G) ={vi/ 1 <i<3n} and E(G) = {vjVi,1 / 1 <i<3n- 1}

Case i: Suppose e; = e; Or &; = €3,_1. Thus P3, — € = P; U P3,_ 1. ¥5pq(Pan—1) =N + 3, Ysra(P3n — €) = n + 4. Therefore yg.q(Psn — €) >
Ysra(Pan)- Hence g; € EZ 4 (G).

Case ii: Suppose e; = e, or &j = €3y _ 5. Thus P3, — € = P, U Pay_ 2. Vsra(Pan—2) = N + 2, ¥5.q(P3n — €) = n + 4. Therefore yg,.4(Psn — €) >
Ysra(Pan)- Hence g; € EZ4(G).

Case iii: Suppose ej= ez, | <k <n— 1. Thus Ps, — €; = Pg U P3n_ 3k Vsra(Pa) = K+ 2 and yg,.4(Psn_3) = n — k + 2. Hence yg.q(Psn—€) =n
+ 4, Therefore ¥4 (Pan — €) > ¥Ysra(Pan). Hence g; € E& 4 (G).

Case iv: Suppose €; = egs1, | <k <n—2. Thus Pg, — € = Pax+1 U Pan_sk-1- Vsra(Pak+1) = K+ 3 and yg.q(Psn 3« 1) = h — k + 3. Hence
Vsrd(PSn - ei) =n + 6. Therefore Vsrd(PBn - ei) N Vsrd(P3n)- Hence e; € E;;“d(G)
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Case v: Suppose ;= esx+2, 1 <k <n—2. Thus Pap — €; = Paksa U Pan 3k 2. Vsra(Pak+2) =K+ 4 and y5.q(Pan_3k_2) =n—k + 2. Hence y4-q(Pan
— &) =n + 6. Therefore y4.q(Pan — €) > ¥srq (P3n). Hence &; € ES;(G). In all the cases, Ef.;(G) = E(G). Hence the theorem.

Theorem 2.12: E_ ;(Py) =@, wherem=3n+1,n>2,3n+2,n>1.

Proof: Case i: Let G = Pap.q, N 2 2. Suppose €; € E,.4(G), where 1 <i<3n+1. Then ¥5,.4(G — €j) < ¥5q(G).

Subcase ia: Suppose e;=e; or €; = e3,. Thus G — €; = Py U P3y. ¥srq(P3n) =N+ 2 and y4,.4(G — &) = n + 3. Therefore y4,4(G — &) = y5q4(G), a
contradiction. Therefore ; # e; and e; # ez

Subcase ib: Suppose ¢;=€, or e; = €3,_1. Thus G — €; = P, U P3y_1. Yrq(Pan_1) =N + 3 and y,-4(G — €) = n + 5. Therefore y.,4(G — ¢) >
¥sra(G), a contradiction. Therefore e; # e, and €; # e, _ 1.

Subcase ic: Suppose ej= €3, ] <k <n-1. Thus G — &; = P3x U P3,_3x+ 1. Vsrq(Pax) = K+ 2 and ygq(Pan_3c+1) =N — Kk + 3. Hence y4,.4(G —
;) =n + 5. Therefore y,.4(G — &) > y4-4(G), a contradiction. Therefore e; # ez, 1 <k<n-1.

Subcase id: Suppose €;= €31, 1 <k <n-—1. Thus G — &; = P3xs1 U Pap_ 3k Vsra(Pake1) = K+ 3 and y4-q(Pan_3k) = n — Kk + 2. Hence y4,.4(G —
) = n+ 5. Therefore y,,-4(G — &) > v5-4(G), a contradiction. Therefore e; # esxe1, 1 <k <n-—1.

Subcase ie: Suppose €; = 32, 1 <k <n—2. Thus G — €; = Paxso U Pan_3k_ 1. Vera(Pak+2) = K+ 4 and Y4 (Pan_3c—1) = n —k + 3. Hence
Ysra(G — &) = n + 7. Therefore y4,.4(G — &) > y5-q(G), a contradiction. Therefore e; # es2, 1 <k < n — 2. Thus there is no e; belong to
E54(G). Therefore E;,.;(Pan+1) = .

Case ii: Let G = P3n.p, N> 1. Suppose g; € E.4(G), where 1 <i<3n+2. Then y4.4(G — &) < ¥5rq(G).

Subcase iia: Suppose ej=€; Or €j = €31 +1. ThUS G — € = P; U P3p+ 1. Vspa(Pan+1) =N + 3 and y4.4(G — &) = n + 4. Therefore y,,.4(G — ) =
¥sra(G), a contradiction. Therefore e; # e; and €; # ez + 1.

Subcase iib: Suppose e;= e, or e; = e3,. Thus G — &j = P, U P3p. ¥ (P3n) =N+ 2 and y,-4(G — €)) = n + 4. Therefore y4,.4(G — &) = y5-4(G), a
contradiction. Therefore ; # e, and e; # ez

Subcase iic: Suppose gj=es, 1 <k <n-—1. Thus G — €; = P3x U P3n_3k+2- Vsra(Pa) = K+ 2 and ygq(Psn—_ak+2) =N — K + 4. Hence y4,.4(G —
;) = n + 6. Therefore y,4(G — &) > y4-4(G), a contradiction. Therefore e; ez, 1 <k <n-1.

Subcase iid: Suppose ;= €1, ] <k<n—1.Thus G — € = Pax+1 U P3y_sk+1. Vsra(Pak+1) =K+ 3 and ygq(Pan—3k+1) =n— Kk + 3. Hence
Ysra(G —€) =n + 6. Therefore y,.4(G — &) > y5-4(G), a contradiction. Therefore e; # esxi1, | <k <n-1.

Subcase iie: Suppose ;= €z, 1 <k <n—1. Thus G — €; = Pgis2 U P3p_ak. Ysra(Pak+2) = K+ 4 and yg.q(Psn—s) = n — Kk + 2. Hence y4,.4(G —
e) = n + 6. Therefore y4,.4(G — &) > y-q(G), a contradiction. Therefore e; # esx+2, 1 <k < n — 1. Thus there is no e; belong to E.;(G).
Therefore Eg,.;(Pan+2) = @. Hence the theorem.

Result 2.13: Let G=P3. G —e = P; U P, (0r) P, U P1. ¥,4(G — €) = 3 = y5,.4(G). Hence e €E2.,(G). Therefore EX.,(G) = E(G).
Result 2.14: Let G=P,. G —e =P; U P3 (0r) P, U P, (0r) P3 U Py1. ¥5,q(G — €) = 4 = ¥4,.4(G). Hence e €EL.;(G). Therefore E2.,(G) = E(G).

Theorem 2.15: Let G =C,,,, m > 3. Then E¢,(G) = E(G).

Proof: Case i: Letm =3n,n> 1. Lete € E(G). Then y4-4(G) =n, G — e is a path Ps, and ¥4, (P3n) = n + 2. Therefore y4,.4(G —€) > y-4(G).
Hence e € Ef.4(G).

Caseii: Letm=3n+1,n>1. Lete € E(G). Then y44(G) =n+ 1, G —eis apath Pz, 41 and ys-q(Pan+1) =n + 3. Therefore y,,4(G —e) >
Ysra(G). Hence e € EZ.;(G).

Caseiii: Letm=3n+2,n>1. Lete € E(G). Then y5.4(G) =n + 2, G —eis apath Ps,+2 and yg.q(Pan+2) = n + 4. Therefore y4,.4(G —¢) >
Ysra(G). Hence e € Ef ;(G). Therefore E},(G) = E(G). Hence the theorem.

Theorem 2.16: Let G = Ky, E2.,(G) =E(G),n>2.
Proof: Lete € E(G), Vsra(Kin) =N+ 1. ThusG —eis Ky 1V Ky, V(K no1U Ky) = n + 1. Therefore y,,.4(G — €) = ¥5-4(G). Hence e
E2 4(G). Therefore E2.,(G) = E(G). Hence the theorem.

Theorem 2.17: Let G=D, ,, 1, s > 1. Then E2.,(G) = E(G).
Proof: Lete € E(G), y5q(G) =r+s+2. ThusG-e=D,_; s U Ky (0r) Ky UD; .1 (0r) K,y UKy s, Vsra(G—€) =1 +5+2=y,4(G).
Hence e eE2.,(G). Therefore ES.;(G) = E(G). Hence the theorem.

Theorem 2.18: Let G = K, n > 5. Then Then E2.,(G) = E(G).
Proof: Let e € E(G), y5+¢(G) = 1. G — e has at least 3 full degree vertices, by result 1.11, y,,.4(G — €) = 1. Therefore y5.4(G — €) = Y5q(G).
Hence e € E2 ;(G). Therefore E2.;(G) = E(G). Hence the theorem.

Result 2.19: Let G = K,. Lete € E(G), v4-4(G) = 1. G — e has two full degree vertices, by theorem 1.10, any strong restrained dominating set
of G contains two full degree vertices and there is no vertex to strongly dominate the remaining two vertices, they also belong to strong
restrained dominating set of G. Hence y,4(G — €) = 4. Therefore y4,.4(G — €) > y44(G). Hence e € EZ,,(G). Therefore E{.,(G) = E(G).

Theorem 2.20: Let G = W,, n>5. Then E_.;(G) = @.

Proof: Let V(G) ={v,vi/ 1 <i<n},E(G)={ei=ViVis1/ 1 <i<n-2}u{e, 1 =Vp Vi U{ei+n_1=wW;/1<i<n-1}and ygq(W,) = 1.
SUppOSE € €i+n-1,6n-1 € Es_rd(G) Then Vsrd(G - ei) B ysrd(G)! ysrd(G — & +n—1) < ysrd(G) and ysrd(G - en—l) < YSrd(G)-

Casei: G—¢; (0r) G —e,_1 =P, + Ky and yg.q(Pn + Ky) = 1. Therefore y4,4(G — &) = ¥ra(G) = ¥5ra(G —€,_1). Hence e;, e, 1 € E2.4(G), a
contradiction.

Case ii: Let S be the strong restrained dominating set of G — €. ,_1. G — €+ ,_1 contain only one maximum degree vertex v, v belongs to S
and since there is no vertex to strongly dominate v; in V — S, v; belongs to S. Hence y4,-4(G — €j+n_1) = 2. Therefore y,q(G — €+ n_1) >
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Ysra(G). Hence &, ,_1 € EZ.4(G), a contradiction. From cases (i) and (ii), there is no edges belong to E;,.,(G). Therefore E;, ;(G) = @. Hence
the theorem.

Result 2.21: Let G = W,. Let e € E(G), y5q(G) = 1. G — e has two full degree vertices, by theorem 1.10, any strong restrained dominating
set of G contains two full degree vertices and there is no vertex to strongly dominate the remaining two vertices, they also belong to strong
restrained dominating set of G. Hence y 4,4 (G — €) = 4. Therefore y4,.4(G — €) > y44(G). Hence e € E. ,(G). Therefore E{.,(G) = E(G).
Theorem 222: Let G = Ky, m, n > 1 Let V(G) = (Vi, Vo), |Vi] = m and |V,] = n Then E@G) =
{Esord(G) ifm=n, mn #2and |m—n| =2

Eqa(@® if [m—n| =1
Proof: Case i: Suppose m=n, m,n#2. Lete=uVj, | <i,j<n. {u, i}, 1 <k, t<n,k #1i, t #j is a strong restrained dominating set of G —
e. Clearly y4,.4(G — €) = 2 = y4,4(G). This is true for any e € E(G). Hence E2.,(G) = E(G).
Case ii: Suppose | m-n | 22.¥sra(G)=m+n. Lete = uyj, | <i<m, 1 <j<n. Then V(G) is the unique strong restrained dominating set
of G —e. Hence ES ;(G) = E(G).
Case iii: Suppose |m—n| = 1. y5q(G) =m+n. Let Vi = {vy, Vy, ..., v} and V= {Uy, Up, ....., u}. Lete = viy;, 1 <i<m, 1 <j<n. Since
the maximum degree vertices are not adjacent with one another, they belong to any strong restrained dominating set of G. Then S = {v, /1<
k<m,k#i} U{u, Uj/ 1 <t<n,t+#j} is a strong restrained dominating set of G — e. Therefore | S | =m+ 1. Hence y5-¢q(G—e) <m+ 1.
Also, no set with less than m vertices forms a strong restrained dominating set of G — e. Therefore y,,.4(G —e) > m + 1. Hence y,,4(G —¢) =
m + 1. Therefore y5,.4(G — €) < y5-¢(G). Hence e € E_.;,(G). Therefore E.;,(G) = E(G).

Remark 2.23: Suppose m = n =2, y,.4(Ky 2) = 2. Since Ky, — € = Py, Ysra(Kz, 2 — €) = 4. Hence yg-q(Kz, 2 — €) > y6-q(Ky, 2). Therefore e e
Egq(Ky,2). Hence ES4(Ks, 2) = E(Ky,2).

3. CONCLUSION

In this paper, the authors studied changing and unchanging strong restrained domination number of a graphs. Similar studies can be made on
this type.
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