Posets and Forbidden induced subgraph of the Line graph

1 Baiju Sukumaran, 2 Antony Mathews, 3 Athul T B
1 Associate Professor, 2 Associate Professor, 3 M.Phil Scholar
1 Department of Mathematics,
3 Sree Narayana College, Punalur, India

Abstract: The cover-incomparability graph of a poset P is the edge-union of the covering and the incomparability graph of P. As a continuation of the study of 2-colored and 3-colored diagrams we characterize some forbidden - preserving subposets of the posets whose cover-incomparability graph contains one of the forbidden induced subgraph of the line graph.

IndexTerms - Cover-incomparability graph, Blockgraph, Line graph, Poset

INTRODUCTION
Cover-incomparability graphs of posets, or shortly C-I graphs, were introduced in [2] as the underlying graphs of the standard interval function or transit function on posets (for more on transit functions in discrete structures [3, 4, 5, 6, 11]). On the other hand, C-I graphs can be defined as the edge-union of the covering and incomparability graph of a poset; in fact, they present the only non-trivial way to obtain an associated graph as unions and/or intersections of the edge sets of the three standard associated graphs (i.e. covering, comparability and incomparability graph). In the paper that followed [9], it was shown that the complexity of recognizing whether a given graph is the C-I graph of some poset is in general NP-complete. In [1] the problem was investigated for the classes of split graphs and block graphs, and the C-I graphs within these two classes of graphs were characterized. This resulted in a linear-time recognition algorithms for C-I block and C-I split graphs. It was also shown in [1] that whenever a C-I graph is a chordal graph, it is necessarily an interval graph, however a structural characterization of C-I interval graphs (and thus C-I chordal graphs) is still open. C-I distance-hereditary graphs have been characterized and shown to be efficiently recognizable [10]. Let P = (V, ≤) be a poset. If u ≤ v but u ≠ v, then we write u < v. For u, v ∈ V we say that v covers u in P if u < v and there is no w in V with u < w < v. If u ≤ v we will sometimes say that u is below v, and that v is above u. Also, we will write u ∼ v if v covers u; and u ∼ w v if u is below v but not covered by v. By u ∼ v we denote that u and v are incomparable. Let V' be a nonempty subset of V. Then there is a natural poset Q = (V', ≤'), where u ≤' v if and only if u ≤ v for any u, v ∈ V'. The poset Q is called a subposet of P and its notation is simplified to Q = (V' : ≤). If, in addition, together with any two comparable elements u and v of Q, a chain of shortest length between u and v of P is also in Q, we say that Q is an isometric subposet of P. Recall that a poset P is dual to a poset Q if for any x, y ∈ P the following holds: x ≤ y in P if and only if y ≤ x in Q. Given a poset P, its cover-incomparability graph G is V as its vertex set, and u ∼ v is an edge of G if u ∼ v, v ∼ u, or u and v are incomparable. A graph that is a cover-incomparability graph of some poset will be called a C-I graph.

Lemma 1 [2] Let P be a poset and G be its C-I graph. Then
(i) G is connected;
(ii) vertices in an independent set of G lie on a common chain of P;
(iii) an antichain of P corresponds to a complete subgraph in G;
(iv) G contains no induced cycles of length greater than 4.

II. 3-colored diagrams
A 3-coloured diagram Q in [13] is explained as follows. Let G be a C-I graph and H be an induced subgraph of G. We note that there can be different - preserving subposets Q of some posets with G̃ isomorphic to the subgraph H. Let u, v, w be an induced path in the direction from u to v in H. There are four possibilities in which u, v and w can be related in the preserving subposets. It is possible to have u ∼ v, u ∼ v and v ∼ w. Each case will appear as a preserving subposet of four different posets. If u ∼ v and v ∼ w in a subposet, then u ∼ v ∼ w is a chain in the subposet and u,v,w is an induced path in H. If there is either u ∼ v or v ∼ w in a subposet Q, then there should be another chain from u to w in Q in order to have u, v, w an induced path in H. We try to capture this situation using the idea of 3-colored diagram. Suppose in preserving subposet Q of a poset P, there exists two elements u, v which is always connected by some chain of length three in Q. Let w be an element in Q such that either both uw and vw are red edges or any one of them is a red edge. Then in order to have a chain between u and v, there must exist an element x in Q so that u, x, v form a chain in Q. When both edges are normal, then we have the chain uw, v in Q and hence the chain u, x, v is not required in this case. We denote the chain u, x, v by dashed lines between ux and xv in order to specify that it is possible to have the presence or absence of the chain u, x, v in Q. The presence of the chain u, x, v implies that either both of the edges uw and vw are red edges or one of them is a red edge. The absence of the chain implies that both uw and vw are normal edges in Q. We call posets having the above mentioned diagrams as 3-colored diagrams.

Theorem 2: (Theorem 1,[8]): Let G be a class of graphs with a forbidden induced subgraphs characterization. Let H = {P | P is a poset with G̃ isomorphic to G}. Then H has a characterization by forbidden - preserving subposets.
Theorem 3: (Theorem 7.1.8, [7]) Let G be a graph. Then G is a line graph if and only if G contains none of the nine forbidden graphs of Figure 1 as an induced subgraph.

![Figure 1: Nine Forbidden Induced Subgraphs of Line Graph](image)

Theorem 4: (Theorem 4.1,[12]) Let P be a poset. Then G_P is cograph if and only if P contains none of T_1, \ldots, T_7, depicted in Figure 2, and no duals of T_2 and T_5 as \preceq-preserving subposet.

![Figure 2: Forbidden \preceq-preserving subposets for C-I cographs](image)

Theorem 5: (Theorem 4,[13]) If P is a poset, then G_P is cograph if and only if P does not contain T_1 from Figure 1 and no 3-colored diagram Q_C from Figure 3 and its dual are \preceq-preserving subposets.
We consider some subposets to be forbidden so that its C-I graphs belong to the graph family $\mathcal{F}(G_5)$ of G_5 in Figure 1.

III. \preceq-preserving subposets of posets whose C-I graphs belong to the family $\mathcal{F}(G_5)$

We have the following theorem regarding the graph family $\mathcal{F}(G_5)$.

Theorem 6: If P is a poset, then G_P belongs to $\mathcal{F}(G_5)$ if and only if P contains the 3-colored diagrams Q_7 and Q_8 from Figure 4 and \preceq-preserving subposets U_1, U_2 from Figure 5 and their duals.

Proof. Suppose P contains 3-colored diagrams Q_7, Q_8 from Figure 4 and \preceq-preserving subposets U_1, U_2 from Figure 5. Then, clearly G_P contains the graph from Figure 1(g) as an induced subgraph.

Conversely, suppose G_P contains an induced subgraph isomorphic to G_5 as shown in Figure 1(g), with vertices labeled by u, v, w, x, y and z. There are four induced P_4 in G_5 induced by vertex sets $\{u, v, w, x\}$, $\{u, v, y, x\}$, $\{z, v, w, x\}$ and $\{u, z, y, x\}$. Without loss of generality, we consider the P_4 induced by the vertices u, v, w, x in G_5. Then by Theorem 5, there exists either a chain $u \preceq v \preceq w \preceq x$ in P or there exists the 3-colored diagram isomorphic to Q_7 in P.

Case (1): The P_4 in G_5 induced by the vertices u, v, w and x is formed by the chain $u \preceq v \preceq w \preceq x$ in the poset P. Since z is adjacent to v in the graph G_5, either y and z are in a covering relation or these vertices are incomparable in P.

Subcase (1.1): $v \parallel z$.

Since there is a path of length two from z to w in G_5, there must be a chain from z to w, let the chain be through the point a defined by normal edges in P. Consider the vertex y in G_5. There are two possibilities for y with respect to v. Either $v \preceq y$ or $v \parallel y$ ($y \prec v$, since w and y are adjacent in G_5).

Subcase (1.1.1): $v \preceq y$ and $y \preceq x$.

Subcase (1.1.2): $v \parallel y$ and $y \parallel x$.

In the posets described by the subcases (1.1.1), (1.1.2), corresponding to the adjacency relations among the vertices u, v, w, x, y and z in the graph G_5, satisfy the 3-colored poset Q_7 and we are done.

Subcase (1.1.3): $v \parallel y$ and $y \parallel x$.

Subcase (1.1.4): $v \parallel y$ and $y \parallel x$.

In subcases (1.1.3) and (1.1.4), there is no chain from u to y, but since there is a path of length two from u to y in G_5, there must be a chain from u to y, we allow a dashed line from u to y through z, y and x can have both possibilities, namely $y \preceq x$ or $y \parallel x$ and hence the edge xy can also be represented by red edge in the poset P. This situation is represented in the 3-colored diagram Q_7 shown in Figure 4.

Subcase (1.2): $z \preceq v$.

Since there is a path of length two from u to y in G_5, there must be a chain from u to y through the point b defined by normal edges in P. In this case, y and x can have both possibilities, namely $y \preceq x$ or $y \parallel x$. This is represented by the subposets U_1 and U_2 shown in Figure 5.
Case (2): The P_4 in G_5 induced by the vertices u, v, w and x is formed by two chains of length 3 as in the poset P as shown in Figure 2.

By Theorem 5, we have that the set \{u, v, w, x\} will form the 3-colored diagram Q_c in Figure 3. Now we consider the vertices y and z in G_5 and find all the possibilities that these vertices can appear in the 3-colored diagram Q_c. Let the chain from z to w be defined by normal edges in P as described in Case(1). Since there is a path of length two from z to x and a path of length three from u to x in G_5, there must be chains of length three from z to x, and u to x in P. If both these chains pass through b in Q_c, then both the vertices are in a covering relation with b (x ≮ z and x ≮ u, since z is adjacent to v and w is adjacent to x in G_5). Otherwise, there must be dashed lines between z and x, and u and x representing a chain of length 3 between z and x, and u and x respectively. Similar is the case between u and y in the graph G_5. Therefore, there must be a chain of length three from u to y in P. If the chain passes through a, then there is a covering relation between a and y ($y ≮ u$ since y and w are adjacent in G_5). Otherwise there must be a dashed line between u and y representing a chain of length 3 between u and y. Since vw, vy and zy are edges in G_5, there are three cases, either $v ≲ w$ or $v \parallel w$, $v ≲ y$ or $v \parallel y$ and $z ≲ y$ or $z \parallel y$ and hence these edges are red. From the above discussion, analyzing all the possibilities in which the vertices y and z can be related with the 3-colored diagram Q_c, it can be verified easily that we obtain the 3-colored diagram Q_8 in Figure 4, which is an extension of Q_c. Thus we have completed all the cases in which the vertices of the graph G_5 can appear in the poset P, which completes the proof of the theorem.
Figure 7: ⊲ - preserving subposets corresponding to Q8

Remarks
The number of forbidden ⊲ - preserving subposets of a poset P is such that its C-I graph G_P belongs to a graph possessing a forbidden induced subgraph characterization as instances of the Theorem 2 is in general very large compared to the number of forbidden induced subgraphs. Here we characterize forbidden ⊲ - preserving subposets of G_P in Figure1 and introduce the idea of 3-colored diagrams to minimize the list of subposets.

References