A Survey on Hierarchical Routing Technique in WSN

¹Tilak S. Rajput ²Mousami Vanjale

¹Research student ²Assistant professor ^{1,2}Department of Electronics Engineering ^{1,2}AISSMS IOIT, Pune-01, India.

Abstract: This paper gives detailed survey of hierarchical routing techniques in wireless sensor networks. Routing algorithm provides reliable path from source node to destination node. In Wireless Sensor Networks Energy efficiency is main constraint. For improving life time and energy consumption various routing algorithms have been proposed, such as location based routing, hierarchical routing and data centric routing. Hierarchical routing includes tree based routing, cluster based routing, chain based protocol, and grid based routing. And also compare the hierarchical routing techniques.

Keywords— Wireless sensor network, LEACH, clustering, routing techniques.

I. INTRODUCTION

Like living organisms, various electronic systems rely on data from the real world around it, and the network which provides this type of data is known as Wireless Sensor Networks (WSN). WSN is formed by very small nodes deployed in the area of which parameters like physical or environmental conditions, such as temperature, vibration, pressure, sound or motion collectively are to be measured.

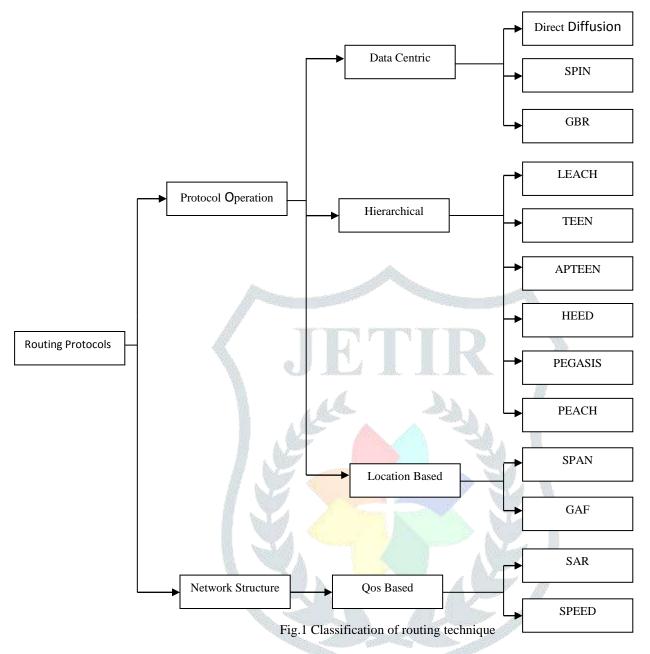
The node measures relative parameters from the surrounding environment and then transforms these physical parameters into electronics signals that can be processed and further transmitted towards destination to monitor parameters to be measured in that area. Generally in many applications the nodes once deployed are inaccessible therefore wireless network needed to form therefore the name wireless sensor network (WSN) [1]. WSNs can contain hundreds of these sensor nodes, and these sensors can communicate either directly to the base station (BS) as well as among each other. As number of sensors increases for sensing it is possible to cover larger geographical area with greater accuracy.

In Wireless sensors to increase the lifetime of networks minimum energy should be used for that delay free processing of data is required. Minimum energy is used by proper grouping of nodes in the clusters. Clustering is design technique to control the network energy consumption. Clusters make a group of nodes as one and decrease the number of nodes for communication. In each cluster one node is selected as a cluster head (CH) on basis of some criteria. Cluster head receive data from nodes and transfer to base station. This technique reduces energy consumption. Several protocols have been described in this paper, which increases the network life time by usage of cluster based approach [2].

II. DIFFERENT TYPES OF ROUTING TECHNIQUES

In WSN there are two routing techniques Network operations based and Network structure based routing as shown in Fig.1 In which network structure based routing is divided into three categories as location based, data centric and hierarchical on the basis of the structure of the network. And QoS based protocols are present on the basis of operations of network.

By considering routing protocols how Hierarchical, Data Centric, Location based routings are employed into wireless sensor networks is explained. Though the division of a network in hierarchical manner is commonly considered as network classification parameter, we will discuss it as technique used in routing protocols and also study some hierarchical routing protocols.


Data centric Routing

It is query based routing technique in which, sensors from node sense the data and send it to the sink node, meanwhile intermediate nodes perform some form of aggregation on the data and send the aggregated data toward the base station. This process requires less energy because of less transmission of data required by means of aggregation from the sources to the sink. *Hierarchical Routing*

By dividing arrangements of nodes into clusters energy consumption is reduced in hierarchical routing. Each cluster has a node which can selected as the cluster head. There are various protocols for hierarchical routings which differs in selection of cluster head and behaviour of nodes in inter and intra cluster domain.

Location based Routing

In location-based routing, data is sent in the form of hops from one node to another till it reaches base station. The source node adds the destination address at the starting of every data packet which is required to identify the destination of the packet. Location-based routing uses the location information of the node for higher efficiency and scalability, and it is done with the help of GPS module.

III. HIERARCHICAL ROUTING

Hierarchical routing originally implemented in wire line networks. In this technique nodes having higher residual energy are used to process and transfer the information from lower level to higher in hierarchy, while nodes having low energy are used to perform the sensing in the target area. It improves the lifetime, scalability of network. It reduces the traffic on network [3].

Hierarchical routing improves energy-efficiency and scalability in WSNs. In order to reduce transmitted energy per data frame, data aggregation and fusion is done within a cluster itself before transmitting it to the base station.

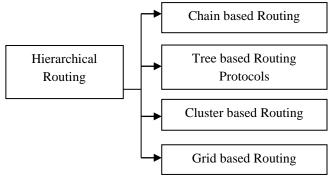


Fig.2 Types of hierarchical routing

A. Chain based Routing

In this routing, to connect the sensor nodes various chains are formed. From chain one sensor is constructed as head to perform data transmission. Data delivered along chain and head node automatically. [4]

Main drawback of chain based topology that due to one or more chains increases number of hops and delay occurred. Sector chain based routing protocol proposed in which target network is divided into sectors. It balances number of nodes and arrange in multiple chains. Chain based routing protocols are:

i. PEGASIS

ii. CCS

i. PEGASIS

It is a chain based power efficient protocol. In this each node selects its closest neighbor as the next hop arrives in the chain. It communicates only with closest neighbor and turns data transmission to base station. Neighbor nodes are finds with usage of signal strength with calculating distance between nodes. In this energy and lifetime reduces per round.

In PEGASIS it is necessary that all Neighbor nodes are joined with each other so less energy consumption of radio signals, this is disadvantages of this protocol that there is necessary that all nodes must be connected to each other. It uses greedy algorithm for chain construction, avoids clustering overhead, reduces power consumption and reduces the cluster head selection burden with usage of chain.

According to simulations [5], the average energy consumed by MH-PEGASIS is lower than the average energy consumed by the hierarchical PEAGASIS, PEAGASIS and LEACH. Compared to LEACH, number of nodes alive is more in MH-PEGASIS than hierarchical PEGASIS than PEGASIS with LEACH having minimum.

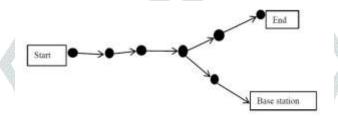


Fig.3 PEGASIS Chain based Protocol

ii. CCS (Concentric Clustering Scheme)

In this routing include the location of base station for less energy consumption and increases life time of network in to concentric circular part say level and each level has assigned a cluster head. According to distance from base station there is assigned a level. The Concentric circular part which is nearest the base station allocates a level 1 and with distance increases level number also increases. In each track multiple chains are formed. At each level cluster head selected and cluster head transfer data to its two neighbor cluster head. Due to communication from CH to CH distances reduced and consume less energy for data transmission.

The concentric clustering scheme is used in enhanced PEGASIS protocol and the data always flow in forward direction towards the base station. Therefore, redundant transmission of the data is avoided and we can save the energy around 35% in comparison with the current PEGASIS protocol.

B. Tree based Routing Protocols

In tree-based routing, hierarchy of sensor nodes forms a tree. Data delivered from leaf nodes to their parent node. Parent nodes after receiving data send to its parent nodes. This process continues up to root node, therefore balancing the energy consumption between the nodes which results in the increased network lifetime [7]. But main drawback of this clustering is that it has too many levels from root to leaf nodes. So it consumes more memory for data transmission.

Various types of tree based clustering are:

i. EADAT

ii. BATR

iii. PEDAP

i. PADAT (Energy-Aware Data Aggregation Tree)

In this algorithm sink node broadcast control message. The sink is considered as the root node in the tree. Sensor node chooses a node which has higher residual energy and shortest path to reach a parent node. If residual power less than it broadcast a help message and changes its status to sleep mode. After receiving help message from parent leaf node find a new parent node if exist. If not any parent node found it goes to danger state. In this routing distance and residual energy to factors are included.

ii. BATR (Balanced Aggregation Tree Routing)

It is a tree-based routing algorithm. It finds an optimum path for transfer of packets from source to destination by means of balanced tree, therefore each node consumes the equal amount of energy. In this assumed that the BS has knowledge about location of all nodes. This routing algorithm starts from base station as root node. Minimum spanning tree is formed which results in minimum energy dissipation cost. iii. PEDAP (Power-efficient Data Gathering and Aggregation Protocol)

The purpose of PEDAP protocol is to increases network lifetime. The minimum energy cost tree is used for data transmission. This protocol uses 'Prism's minimum spanning tree algorithm [8]. In this algorithm minimum spanning tree is formed resulting weighted undirected graph. Edges which increases spanning of tree for that subset is found which include every vertex, where weight of spanning edges is minimised. The sink is considered as the root of the tree. Minimum weighted edge selected for tree construction, in which one node selected from tree and second which is not in tree.

Hozgur, korpe et.al.[8], demonstrated while LEACH and DTE is not as much optimal but PEGASIS provides a considerable improvement. Compared to PEGASIS, first node lifetime of PEDAP-PA improved about 400%, but lifetime for the last node remains same. Whereas in PEDAP lifetime of the last node increased about 125%, while lifetime for the first node does not changes.

C. Cluster based Routing

Cluster based routing is a hierarchical routing technique. In this cluster are formed with portioning network in to group of nodes. One node selected as cluster head on basis of residual energy. There are various types of clustering protocols as

i. LEACH

ii. HEED

iii. TEEN

iv. APTEEN, etc.

i. LEACH (Low Energy Adaptive Cluster Hierarchy)

Heinzelman et al. [9], demonstrated a hierarchical clustering technique for sensor networks, named as Low Energy Adaptive Clustering Hierarchy (LEACH). In this whole network is divided into clusters, and for aggregation and transfer of data few sensor nodes are selected as cluster heads (CHs) randomly and this role is rotated to each node so that energy is distributed evenly among the sensors in the network. Data arriving from nodes that belong to the respective cluster is compressed by cluster head, and send it in the form of data packets to the BS, so information that must be transmitted to the BS reduces and hence energy is reduced. Collection of data is centralized and periodically performed, hence this protocol performs well if there is a need for continuous monitoring by the sensor network. Collision between clusters is avoided with code-division multiple access (CDMA)/time division multiple access (TDMA) MAC protocol. Sometimes all the data may not need immediately. Therefore by periodic data transmissions energy is wasted and may drain power source of the sensor nodes. After a certain amount of time, function of cluster head rotated randomly therefore the uniform distribution of dissipation of energy is obtained. It is experimentally found that only 5 percent of the nodes needed to act as CH's [10]. Threshold value calculated as:

$$T(n) = \frac{p}{1 - p * \left(r * mod \frac{1}{p}\right)} \forall n = G$$

$T(n) = 0 \qquad otherwise$

Communication energy is reduced by 8x in LEACH, and also time duration to death of first node increases by 8x whereas last node death duration increased by 3x compared to direct transmission and minimum-transmission-energy routing. ii. HEED (Hybrid Energy-Efficient Distributed Routing Protocol)

HEED improves lifetime of network by distributed energy consumption. HEED in which cluster head is selected on the basis of factors two factors as residual energy of sensors and communicate cost during transmission of data between sensor nodes. Cluster head selected more than once in cluster. Therefore more energy required for transmission Selection of probability on basis of

CHprob=Cprob*Eresidual\Emax

Eresidual is current energy of nodes. Emax is maximum energy. HEED protocol improves lifetime of network as compare to LEACH protocol [11].

iii. TEEN (Threshold-sensitive Energy Efficient Protocols)

TEEN used for time specific applications. In time specific applications rapidly change possible as temperature change during a day. This protocol forms the clusters firstly and then each cluster head (CH) transmit two threshold values to group nodes. The core idea of TEEN protocol is that the cluster head is selected periodically, probability and randomly [12]. In cluster head selection during TEEN it is not guaranteed that member nodes must belong to similar cluster head so there is high energy consumption. For less energy consumption TEEN uses the multipath and Multi-hop network.

iv. APTEEN (Adaptive Periodic Threshold Sensitive Energy Efficient Sensor Network Protocol)

It is advancement of TEEN protocol. TEEN is depending on fixed threshold values, so not suitable for periodic reports for real time applications. To provide periodic information APTEEN is used. It is a hybrid approach because it sends data with both critical time and periodic time with hierarchical clustering approach [13]. It provides a TDMA based structure for cluster formation. In this cluster heads broadcast threshold values, physical parameters, timing limit. APTEEN consume less memory. Main disadvantage of TEEN and APTEEN is more levels of cluster formation and overhead of threshold values.

As results shown by Manjeshwar, Agrawal et al. [13], the performance evaluation is done between LEACH, TEEN, APTEEN with respect to energy consumption, number of nodes alive over time and total data signals received at the BS respectively. With respect to longevity and energy consumption, the performance of APTEEN lies between TEEN and LEACH. TEEN transmits time critical data, to overcome this periodic transmission is incorporated in APTEEN. As only threshold value change is transmitted in APTEEN it performs better than LEACH. *D. Grid based Routing*

In a grid-based routing by the geographic approach network is divided into various grids. It is a greedy algorithm which uses traffic splitting and dynamic range based cluster head to minimize the intra cluster communication cost. It also optimize inter cluster communication cost among cluster heads [14] in this routing performed without routing table. Various routing protocols are as:

i. PANEL

ii. TTDD

iii. HGMR

i. PANEL(Position-Based Aggregator Node Election Protocol)

In PANEL geographical position information of the nodes is obtained through GPS. PANEL assumed sensor nodes constructed in a limited area and this area divided in to geographic clusters. It used in inter cluster communications. Reference point is computed according to position of clusters. The node which is the nearest to the reference point is considered as CH, therefore both synchronous and asynchronous applications are satisfied. PANEL ensures load balances and each node has given same chance to become aggregator [15].

ii. TTDD (Two-Tier Data Dissemination)

This routing technique provides efficient and scalable data delivery to multiple mobile sinks. Grid based structure allows to mobile sinks continuously receive data in local area [16]. In this approach each source node with sink node makes a rectangular grid around itself and it becomes a crossing point of this grid. To form grid location enabled sensor nodes are required. When sink node require data, it send query message within a grid cell and the source nodes responds to these queries by forwarding data to the sink through same path.

iii. HGMR (Hierarchical Geographic Multicast Routing)

HGMR is the combination of both HRPM (Hierarchical Rendezvous Point Multicast) and GMR (Geographic Multicast Routing) protocols, in which HRPM is reduces the encoding overhead while GMR improves the forwarding efficiency respectively. In HRPM, the network is partitioned into multiple cells hierarchically using the mobile geographic tagging idea. It provides energy efficiency and scalability to large networks [16].

As HGMR is combination of HRPM and GMR; HGMR less number of transmissions than GMR, but an encoding overhead similar to HRPM if the network size increases. PDR of HGMR is much higher than GMR but very close to HRPM. Finally, HGMR performs better than other two protocols even non-uniform distribution of group member.

E. Advantages of clustering

- i. Clustering reduce overhead for data transmission between network topology.
- ii. Consume less memory during routing between sensor nodes.
- iii. It provides bandwidth reusability and reduces collisions of channels.
- iv. Network stability increases due to less usage of energy by clusters.
- v. Only Cluster heads of several nodes and gateway nodes maintain routing in network.

F. Analysis of Hierarchical Routing Techniques

Table 1. Chain based Routing Techniques

Various Parameters	PEGASIS	CCS	
Power Usage	High	Low	
Scalability	Good	Low	
No. of cluster groups	Single	Multiple	
Selection of Cluster head	Based on distance from BS	Based on Distance from BS	
Traffic	Low	High	
QoS	Low	Low	
Energy efficiency	High	Very low	
Algorithm Complexity	High	Moderate	

Table 2. Cluster based Routing Techniques

Various Parameters	LEACH	HEED	TEEN	APTEEN
Power Usage	High	Low	High	Moderate
Scalability	Good	Good	Good	Good
No. of cluster groups	Multiple	Multiple	Multiple	Multiple
Selection of Cluster head	Based on probabilistic approach	Based on residual energy	Based on attribute	Based on attributes and time limit
Traffic	High	High	Low	Low
QoS	Low	Low	Moderate	Moderate
Energy efficiency	Poor	Poor	High	High
Algorithm Complexity	Low	Low	High	High

Table 3. Tree based Routing Techniques

Various Parameters	EADAT	BATR	PEDAP
Power Usage	Moderate	High	Moderate
Scalability	Low	Low	Low
No. of cluster groups	Single	Multiple	Multiple
Selection of Cluster head	Depends on	Depends on	Depends on root of
Selection of Cluster head	root of node	root of node	node

Traffic	High	High	Moderate
QoS	Low	Moderate	Low
Energy efficiency	Moderate	Low	Moderate
Algorithm Complexity	Low	Moderate	Moderate

& Author & Routing LEACH: Low Energy Adaption i. Centralized, Hybrid & distributed clustering implemented, which is based on the residual energy in each node. Cluster bead selected deterministically or randomly. Elexery Adaption iii. Two phases, Setup Phase (Cluster formation) and steady phase (data transfer phase). Hierarchical iii. Two types of data transmission techniques implemented single-hop technique and multihop technique. Heinzelman,2000 iv. DL-LEACH (Dual-hop Layered-LEACH), July-2016:- Multi-hop routing technique is implemented in this protocol which overcomes two-hop transmission distance of LEACH Hierarchical [17]. i. For cluster head selection two types of threshold tachue. Routing vi. LEACH-MAC (LEACH-Medium Access Control), July 2016:- randomness problem reduced by restricting the number of cluster head advertisements [18]. TEEN: Threshold i. For cluster head selection two types of threshold tachue. Network iii. Data reaches the user in very short time therefore it is suitable for real time applications. Network iii. Data reaches the user of the varied, depending on the criticality of the sensed attribute and the target application. As threshold value reduces in hierarchical PEGASIS takes tentative and twery complicated threshold value which forms long chain, allowing nodes to dissipate small prover in data transfer, which enhances the lifetime of the network by saving energy [22]. Lindsey and Raphavend	Routing protocol	Table 4: Classification of Hierarchical Routing Protocols Bauting protocols Kay features & Decent developments			
Routing technique i. Centralized. Hybrid & distributed clustering implemented, which is based on the residual energy in each node. Cluster head selected deterministically or randomly. Energy Adaptive Clustering ii. Two types of data transmission techniques implemented single-hop technique and multi- hop technique. Heirarchy ii. Two types of data transmission techniques implemented single-hop technique is implemented in this protocol which overcomes two-hop transmission distance of LEACH (17). Heirarchical v. DL-LEACH (Dual-hop Layered-LEACH), July-2016 Multi-hop routing technique is implemented in this protocol which overcomes two-hop transmission distance of LEACH (17). Routing v. LEACH-MAC (LEACH-Medium Access Control), July 2016:- randommess problem reduced by restricting the number of cluster head advertisements [18]. TEEN: Threshold i. For cluster head selection two types of threshold tue. Network iii. Data reaches the user in very short time therefore it is suitable for real time applications. Network Network iii. Data reaches the user in very short time therefore it is suitable for real time application. A marget application. As threshold value reduces we can get more accurate picture of the target application. As threshold value reduces we can get more accurate picture of the network, therefore trad-off between accuracy and energy efficient for an be solved [21]. Information ii. PEGASIS, algorithm is based on chain, Each node aggregates data from downstream node and send it to upstream node [20]. Gathering		Key leatures & Recent developments			
technique					
LEACH: Low Eargy Adaptive i. Centralized. Hybrid & distributed clustering implemented, which is based on the residual energy in each node. Cluster head selected deterministically or randomly. Insering iii. Two types of data transmission techniques implemented single-hop technique and multi-hop tochnique. Iii. Two types of data transmission techniques implemented single-hop technique and multi-hop tochnique. iv. DL-LEACH (Dual-hop Layered-LEACH), July-2016 Multi-hop routing technique is implemented in this protocol which overcomes two-hop transmission distance of LEACH [17]. Routing vi. LEACH-MAC (LEACH-Medium Access Control), July 2016: randomness problem reduced by restricting the number of cluster head selection two types of threshold value. II: For cluster head selection two types of threshold technique is used which is soft threshold can be varied, depending on the criticality of the sensed attribute and the target application. As threshold value reduces we can get more accurate picture of the network, therefore trade-off between accuracy and energy efficiency can be controlled [19]. D.P Agrawal, 2001 ii. DrefGASIS, algorithm is based on chain. Each node aggregates data from downstream node and send it to upstream node [20]. Iii. During chain building Improved Energy Efficient PEGASIS takes tentative and very system ii. During chain building Improved Energy Efficient PEGASIS takes tentative and very over in data transfer, which enhances the lifetime of the network by saving energy [22]. Lindsey and Raghavendra 2002 Hybrid ii. As name indicated HEED based on distributed clus	2				
Energy Adaptive Clustering energy in each node. Cluster head selected deterministically or randomly. Iterarchical cluster is two types of data transmission techniques implemented single-hop technique and multi- hop technique. Heinzelman.2000 iv. LL-EACH (Dual-hop Layered-LEACH) , July-2016:- Multi-hop routing technique is implemented in this protocol which overcomes two-hop transmission distance of LEACH (17). Routing vi. LEACH-MAC (LEACH-Medium Access Control) , July 2016:- randomness problem reduced by restricting the number of cluster head advertisements [18]. TEEN: Threshold sensity Energy i. For cluster head selection two types of threshold technique is used which is soft threshold sensity Energy Efficient sensity ii. Soft threshold can be varied, depending on the criticality of the sensed attribute and the target application. As threshold value reduces we can get more accurate picture of the network, therefore trade-off between accuracy and energy efficiency can be controlled [19]. Hierarchical Routing ii. During chain building Improved Energy Efficient PEGASIS therefore data gathering problem can be solved [21]. Information System ii. As name indicated HEED based on distributed clustering. Considered as improvement over leach. The clustering is done in rounds, and CH is selected on the basis of residual energy in each round. Iterarchical Routing ii. As name indicated HEED based on distributed clustering. Considered as improvement over leach. The clustering is done in rounds, and CH is selected on the basis of residual energy in each round. Inderustical Routing ii. HelED(He		i Controlized Hybrid & distributed elustering implemented which is based on the residual			
Clustering ii. Two phases, Setup Phase (Cluster formation) and steady phase (data transfer phase). Hierarchy ii. Two types of data transmission techniques implemented single-hop technique in multi-hop technique. Heinzelman,2000 iv. DL-LEACH (Dual-hop Layered-LEACH), July-2016:- Multi-hop routing technique is implemented in this protocol which overcomes two-hop transmission distance of LEACH Hierarchical iv. DL-LEACH-MAC (LEACH-Medium Access Control), July 2016:- radomness problem reduced by restricting the number of cluster head advertisements [18]. TEEN: Threshold is for cluster head selection two types of threshold technique is used which is soft threshold avalue. ensitive Energy ii. Data reaches the user in very short time therefore it is suitable for real time applications. Network iii. Data reaches the user in very short time therefore it is suitable for real time applications. D.P Agrawal, 2001 ii. In PEGASIS, algorithm is based on chain. Each node aggregates data from downstream node and send it to upstream node [20]. Gathering ii. Pack delay can be reduced in hierarchical PEGASIS therefore data gathering problem can be solved [21]. Information ii. As name indicated HEED based on distributed clustering. Considered as improvement over leach. The clustering is done in rounds, and CH is selected on the basis of residual energy in each round. Itindsey and Rabaronda ii. HHEED: Hybrid i. As name indicated HEED based on distributed clustering. Considered a					
Hierarchy iii. Two types of data transmission techniques implemented single-hop technique and multi-hop technique. Heinzelman,2000 iv. DL-LEACH (Dual-hop Layered-LEACH), July-2016:- Multi-hop routing technique is implemented in this protocol which overcomes two-hop transmission distance of LEACH [17]. Routing vi. LEACH-MAC (LEACH-Medium Access Control), July 2016:- randomness problem reduced by restricting the number of cluster head advertisements [18]. TEEN: Threshold i. For cluster head selection two types of threshold technique is used which is soft threshold system performs better if users don't get threshold value. Efficient sensor ii. Soft threshold can be varied, depending on the criticality of the sensed attribute and the network, therefore trade-off between accuracy and energy efficiency can be controlled [19]. D.P Agrawal, 2001 ii. In PEGASIS, algorithm is based on chain. Each node aggregates data from downstream node and send it to upstream node [20]. Gathering in Sensor ii. Packet delay can be reduced in hierarchical PEGASIS therefore data gathering problem can be solved [21]. Information ii. Packet delay can be reduced in hierarchical PEGASIS takes tentative and very complicated threshold value which forms long chain, allowing nodes to dissipate small power in data transfer, which enhances the lifetime of the network by saving energy [22]. Lindsey and Raphavendra 2002 ii. As name indicated HEED based on distributed clustering. Considered as improvement over leach for the sensor of residual energy Efficient Distributed 2010 - Specially dever leach of theu					
Heinzelman,200 iv. DL-LEACH (Dual-hop Layered-LEACH), July-2016:- Multi-hop routing technique is implemented in this protocol which overcomes two-hop transmission distance of LEACH [17]. Routing reduced by restricting the number of cluster head advertisements [18]. TEEN: Threshold i. For cluster head selection two types of threshold technique is used which is soft threshold system performs better if users don't get threshold value. Billion ii. Data reaches the user in very short time therefore it is suitable for real time applications. Network iii. Soft threshold can be varied, depending on the criticality of the sensed attribute and the target application. As threshold value reduces we can get more accurate picture of the network, therefore trade-off between accuracy and energy efficiency can be controlled [19]. P.P Agrawal, 2001 ii. In PEGASIS, algorithm is based on chain. Each node aggregates data from downstream node and send itto upstream node [20]. Brouting iii. Detat delay can be reduced in hierarchical PEGASIS therefore data gathering problem can be solved [21]. Information iii. PEGASIS, algorithm is based on chain, Each node aggregates data from downstream node and send itto upstream node [21]. Lindsey and Raphavendra 2002 Juing iii. Turing chain building Improved Energy Efficient PEGASIS takes tentative and very complicated threshold value which forms long chain, allowing nodes to dissipate small power in data transfer, which enhances the lifetime of the network by saving energy [22]. Linds					
Hierarchical Routing implemented in this protocol which overcomes two-hop transmission distance of LEACH [17]. Vi. LEACH-MAC (LEACH-Medium Access Control), July 2016: randomness problem reduced by restricting the number of cluster head advertisements [18]. TEEN: Threshold ensitive Energy Efficient sensor i. For cluster head selection two types of threshold technique is used which is soft threshold or hard threshold. System performs better if users don't get threshold value. Network ii. Data reaches the user in very short time therefore it is suitable for real time applications. Network iii. Soft threshold can be varied, depending on the criticality of the sensed attribute and the target application. As threshold value reduces we can get more accurate picture of the network, therefore trade-off between accuracy and energy efficiency can be controlled [19]. D.P. Agrawal, 2001 i. In PEGASIS, algorithm is based on chain. Each node aggregates data from downstream node and send it to upstream node [20]. Gathering ii. During chain building Improved Energy Efficient PEGASIS takes tentative and very complicated threshold value which forms long chain, allowing nodes to dissipate small power in data transfer, which enhances the lifetime of the network by saving energy [22]. Lindsey and Raghavendra "2002 i. As name indicated HEED based on distributed clustering. Considered as improvement or local transfer, which enhances the lifetime of the network by saving energy [22]. O.Younis, and S-Fahmy, 2004, i. As name indicated HEED based on distributed clustering.	Hierarchy				
Routing vi. LEACH-MAC (LEACH-Medium Access Control), July 2016:- randomness problem reduced by restricting the number of cluster head advertisements [18]. TEEN: Threshold i. For Cluster head selection two types of threshold technique is used which is soft threshold sensitive Energy Efficient sensor ii. Data reaches the user in very short time therefore it is suitable for real time applications. Network ii. Soft threshold can be varied, depending on the criticality of the sensed attribute and the target application. As threshold value reduces we can get more accurate picture of the network, therefore trade-off between accuracy and energy efficiency can be controlled [19]. Network therefore trade-off between accuracy and energy efficiency can be controlled [19]. P.P Agrawal, 2001 i. In PEGASIS, algorithm is based on chain. Each node aggregates data from downstream node and send it to upstream node [20]. Gathering ii. In PEGASIS, algorithm is based on chain. Each node aggregates tentative and very complicated threshold value which forms long chain, allowing nodes to dissipate small power in data transfer, which enhances the lifetime of the network by saving energy [22]. Lindsey and Reghavendra ii. As aname indicated HEED based on distributed clustering. Considered as improvement over leach. The clustering is done in rounds, and CH is selected on the basis of residual energy in each round. Noting ii. H-HEED(Heterogeneous Hybrid Energy Efficient Distributed), 2010- Specially developed for heterogeneous Hybrid Energy Efficient Situation [2	Heinzelman,2000	iv. DL-LEACH (Dual-hop Layered-LEACH), July-2016:- Multi-hop routing technique is implemented in this protocol which overcomes two-hop transmission distance of LEACH			
reduced by restricting the number of cluster head advertisements [18]. TEEN: Threshold sensitive Energy of hard threshold. System performs better if users don't get threshold value. ii. Data reaches the user in very short time therefore it is suitable for real time applications. Network iii. Soft threshold value reduces we can get more accurate picture of the network, therefore trade-off between accuracy and energy efficiency can be controlled [19]. D.P. Agrawal, 2001 i. In PEGASIS, algorithm is based on chain. Each node aggregates data from downstream node and send it to upstream node [20]. Gathering in Sensor ii. Daria caches the user in node a super strictical PEGASIS therefore data gathering problem can be solved [21]. Information iii. During chain building Improved Energy Efficient PEGASIS takes tentative and very complicated threshold value which forms long chain, allowing nodes to dissipate small power in data transfer, which enhances the lifetime of the network by saving energy [22]. Lindsey and Raghavendra 2002 i. As name indicated HEED based on distributed clustering. Considered as improvement over leach. The clustering is done in rounds, and CH is selected on the basis of residual energy in each round. ii. H-HEED/Chetrogeneous Hybrid Energy Efficient Distributed), 2010- Specially developed for heterogeneous Hybrid Energy Efficient Distributed), 2010- Specially developed for heterogeneous type of network. iii. RHEED- clustering, limitations of proactive and reactive network has been overcome in this protocol [21]. ApritEN: Adaptive Periodic resistive Energy esmiti					
TEEN: Threshold i. For cluster head selection two types of threshold technique is used which is soft threshold sensitive Energy Efficient Sensor ii. Data reaches the user in very short time therefore it is suitable for real time applications. Retwork iii. Soft threshold can be varied, depending on the criticality of the sensed attribute and the target application. As threshold value reduces we can get more accurate picture of the network, therefore trade-off between accuracy and energy efficiency can be controlled [19]. D.P. Agrawal, 2001 ii. In PEGASIS, algorithm is based on chain. Each node aggregates data from downstream node and send it to upstream node [20]. Gathering ii. In PEGASIS, algorithm is based on chain. Each node aggregates data from downstream node and send it to upstream node [20]. Information ii. During chain building Improved Energy Efficient PEGASIS takes tentative and very complicated threshold value which forms long chain, allowing nodes to dissipate small power in data transfer, which enhances the lifetime of the network by saving energy [22]. Hierarchical Routing i. As name indicated HEED based on distributed clustering. Considered as improvement over leach. The clustering is done in rounds, and CH is selected on the basis of residual energy in each round. Bitributed i. H-HEED(Heterogeneous Hybrid Energy Efficient Distributed), 2010- Specially developed for heterogeneous type of network. Bitranchical Routing i. Hybrid clustering, limitations of proactive and reactive network has been overcome in this protoccl [21]. Bitranchic	Routing	vi. LEACH-MAC (LEACH-Medium Access Control), July 2016: randomness problem			
sensitive Energy or hard threshold. System performs better if users don't get threshold value. Efficient ii. Data reaches the user in very short time therefore it is suitable for real time applications. Network k A.Manjeshwar & k 2001 ii. Soft threshold can be varied, depending on the criticality of the sensed attribute and the target application. As threshold value reduces we can get more accurate picture of the network, therefore trade-off between accuracy and energy efficiency can be controlled [19]. D.P Agrawal, 2001 ii. In PEGASIS, algorithm is based on chain. Each node aggregates data from downstream node and send it to upstream node [20]. Gathering ii. In PEGASIS, algorithm is based on chain. Each node aggregates data from downstream node and send it to upstream node [20]. Britistical iii. During chain building Improved Energy Efficient PEGASIS takes tentative and very complicated threshold value which forms long chain, allowing nodes to dissipate small power in data transfer, which enhances the lifetime of the network by saving energy [22]. Lindsey and Raghavendra 2002 Hierarchical Network Routing i. As name indicated HEED based on distributed clustering. Considered as improvement over leach. The clustering is done in rounds, and CH is selected on the basis of residual energy in each round. Network ii. Hybrid clustering, limitations of proactive and reactive network	-	reduced by restricting the number of cluster head advertisements [18].			
sensitive Energy or hard threshold. System performs better if users don't get threshold value. Efficient sensor ii. Data reaches the user in very short time therefore it is suitable for real time applications. Network ke A.Manjeshwar & A.Manjeshwar & ke D.P Agrawal, 2001 Hierarchical i. In PEGASIS, algorithm is based on chain. Each node aggregates data from downstream node and send it to upstream node [20]. Gathering ii. Dacket delay can be reduced in hierarchical PEGASIS therefore data gathering problem can boolved [21]. Information iii. During chain building Improved Energy Efficient PEGASIS takes tentative and very complicated threshold value which forms long chain, allowing nodes to dissipate small power in data transfer, which enhances the lifetime of the network by saving energy [22]. Lindsey and Raghavendra 2002 i. As name indicated HEED based on distributed clustering. Considered as improvement over leach. The clustering is done in rounds, and CH is selected on the basis of residual energy in each round. Distributed ii. HHEED- clustering, limitations of proactive and reactive network has been overcome in this Adaptive Periodic threshold AppTEEN: Adaptive Periodic threaks it compatible to the time critical situation [24]. Hierarchical sensitive Energy ii. Hybrid clustering, limitations of proactive and reactive network has been overcome in this Adaptive Periodic that it makes it compati	TEEN: Threshold	i. For cluster head selection two types of threshold technique is used which is soft threshold			
Efficient Networkii. Data reaches the user in very short time therefore it is suitable for real time applications. iii. Soft threshold can be varied, depending on the criticality of the sensed attribute and the target application. As threshold value reduces we can get more accurate picture of the network therefore trade-off between accuracy and energy efficiency can be controlled [19].A.Manjeshwar & 2001i. In PEGASIS, algorithm is based on chain. Each node aggregates data from downstream node and send it to upstream node [20]. ii. Daring chair building Improved Energy Efficient PEGASIS takes tentative and very complicated threshold value which forms long chain, allowing nodes to dissipate small power in data transfer, which enhances the lifetime of the network by saving energy [22].Hierarchical Rootingi. As name indicated HEED based on distributed clustering. Considered as improvement over leach. The clustering is done in rounds, and CH is selected on the basis of residual energy in each round. iii. H-HEED(Heterogeneous Hybrid Energy Efficient Distributed), 2010- Specially developed for heterogeneous type of network. iii. RHEED- clustering operation divided into rounds [23].AptreEN: Adaptive Periodic Threshold- senstive Energyi. Hybrid clustering, limitations of proactive and reactive network has been overcome in this protocol [21]. ii. By sending periodic data it gives continuous monitoring, as well as by sending drastic change in data it makes it compatible to the time critical situation [24]. iii. Limitation is complexity required to implement threshold function and count values [24].	sensitive Energy				
Network iii. Soft threshold can be varied, depending on the criticality of the sensed attribute and the target application. As threshold value reduces we can get more accurate picture of the network, therefore trade-off between accuracy and energy efficiency can be controlled [19]. D.P Agrawal, 2001 iii. Soft threshold can be varied, depending on the criticality of the sensed attribute and the target application. As threshold value reduces we can get more accurate picture of the network, therefore trade-off between accuracy and energy efficiency can be controlled [19]. PAgrawal, 2001 iii. In PEGASIS, algorithm is based on chain. Each node aggregates data from downstream node [20]. Gathering ii. In PEGASIS, algorithm is based on chain. Each node aggregates data from downstream can be solved [21]. Information iii. Packet delay can be reduced in hierarchical PEGASIS therefore data gathering problem can be solved [21]. Lindsey and Raghavendra .002 Lindsey and Raghavendra .002 Ustributed i. As name indicated HEED based on distributed clustering. Considered as improvement over leach. The clustering is done in rounds, and CH is selected on the basis of residual energy in each round. D.Younis, and iii. H-HEED(Heterogeneous Hybrid Energy Efficient Distributed). 2010- Specially developed for heterogeneous type of network. APTEEN: Adaptive Periodic Adaptive Periodic iii. Hybrid clustering, limitation	0.				
A.Manjeshwar & A.Manjeshwar & D.P Agrawal, 2001target application. As threshold value reduces we can get more accurate picture of the network, therefore trade-off between accuracy and energy efficiency can be controlled [19].B.P.GASIS: Power DEGASIS: Power efficient and enterstring in Sensor Information Sensor Information Systemi. In PEGASIS, algorithm is based on chain. Each node aggregates data from downstream node and send it to upstream node [20].Iii. Daving chain building Improved Energy Efficient PEGASIS takes tentative and very complicated threshold value which forms long chain, allowing nodes to dissipate small power in data transfer, which enhances the lifetime of the network by saving energy [22].Lindsey and Raghavendra 2002 Hierarchical Routingi. As name indicated HEED based on distributed clustering. Considered as improvement over leach. The clustering is done in rounds, and CH is selected on the basis of residual energy in each round. ii. H-HEED (Heterogeneous Hybrid Energy Efficient Distributed), 2010- Specially developed for heterogeneous type of network. iii. RHEED- clustering operation divided into rounds [23].APTEEN: Adaptive Periodic Threshold- senstive Energy Efficient Sensor Networki. Hybrid clustering, limitations of proactive and reactive network has been overcome in this protocol [21]. iii. By sending periodic data it gives continuous monitoring, as well as by sending drastic change in data it makes it compatible to the time critical situation [24]. iii. Limitation is complexity required to implement threshold function and count values [24].					
A.Manjeshwar & network, therefore trade-off between accuracy and energy efficiency can be controlled [19]. D.P. Agrawal, 2001 Pierarchical Routing i. In PEGASIS, algorithm is based on chain. Each node aggregates data from downstream node and send it to upstream node [20]. Gathering in Sensor ii. Packet delay can be reduced in hierarchical PEGASIS therefore data gathering problem can be solved [21]. Information iii. During chain building Improved Energy Efficient PEGASIS takes tentative and very complicated threshold value which forms long chain, allowing nodes to dissipate small power in data transfer, which enhances the lifetime of the network by saving energy [22]. Lindsey and Raghavendra i. As name indicated HEED based on distributed clustering. Considered as improvement over leach. The clustering is done in rounds, and CH is selected on the basis of residual energy in each round. Britrearchical Routing ii. H-HEED/ Eletrogeneous Hybrid Energy Efficient Distributed), 2010- Specially developed for heterogeneous type of network. V.Younis, and S.Fahmy, 2004, ii. Hybrid clustering, limitations of proactive and reactive network has been overcome in this protocol [21]. Hierarchical Routing i. Hybrid clustering, limitations of proactive and reactive network has been overcome in this protocol [21]. Hierarchical Routing ii. Hybrid clustering, limitations of proactive and reactive network has been overcome in this protocol [21]. Bending Periodic Route Eneregy iii. By sending periodic data it g					
D.P Agrawal, 2001 Image: Construct of the second secon	A Manieshwar &				
2001 Hierarchical Routing PEGASIS: Power Efficient i. In PEGASIS, algorithm is based on chain. Each node aggregates data from downstream node and send it to upstream node [20]. ii. Dacket delay can be reduced in hierarchical PEGASIS therefore data gathering problem can be solved [21]. Information System ii. During chain building Improved Energy Efficient PEGASIS takes tentative and very complicated threshold value which forms long chain, allowing nodes to dissipate small power in data transfer, which enhances the lifetime of the network by saving energy [22]. Lindsey and Raghavendra .2002 i. As name indicated HEED based on distributed clustering. Considered as improvement over leach. The clustering is done in rounds, and CH is selected on the basis of residual energy in each round. In-HEED: Hybrid Energy Efficient Distributed i. As name indicated HEED based on distributed clustering. Considered as improvement over leach. The clustering is done in rounds, and CH is selected on the basis of residual energy in each round. II. H-HEED(Heterogeneous Hybrid Energy Efficient Distributed), 2010- Specially developed for heterogeneous type of network. iii. RHEED- clustering operation divided into rounds [23]. Hierarchical Routing i. Hybrid clustering, limitations of proactive and reactive network has been overcome in this protocol [21]. APTEEN: Adaptive Periodic Network i. Hybrid clustering, limitations of proactive and reactive network has been overcome in this protocol [21]. ii. By sending pe		network, increase inductor between accuracy and energy efficiency can be controlled [17].			
Hierarchical RoutingIn PEGASIS, algorithm is based on chain. Each node aggregates data from downstream node and send it to upstream node [20].Gathering Sensor Information Systemi. In PEGASIS, algorithm is based on chain. Each node aggregates data from downstream node and send it to upstream node [20].Information Systemii. Packet delay can be reduced in hierarchical PEGASIS therefore data gathering problem can be solved [21].Lindsey Raghavendra 2002 Hierarchical PEOD2and Raghavendra 2002Lindsey systemand Raghavendra 2002 Hierarchical PEOD2HEED: Hybrid Energy Efficient Distributedi. As name indicated HEED based on distributed clustering. Considered as improvement over leach. The clustering is done in rounds, and CH is selected on the basis of residual energy in each round.Notingii. H-HEED(Heterogeneous Hybrid Energy Efficient Distributed), 2010- Specially developed for heterogeneous type of network. iii. RHEED- clustering operation divided into rounds [23].APTEEN: Adative Periodic Threshold- sensitive Energy Efficient Sensor Networki. Hybrid clustering, limitations of proactive and reactive network has been overcome in this protocol [21]. ii. By sending periodic data it gives continuous monitoring, as well as by sending drastic change in data it makes it compatible to the time critical situation [24]. iii. Limitation is complexity required to implement threshold function and count values [24].					
Routing In PEGASIS, algorithm is based on chain. Each node aggregates data from downstream node and send it to upstream node [20]. Bilderight i. In PEGASIS, algorithm is based on chain. Each node aggregates data from downstream node and send it to upstream node [20]. Bilderight ii. Packet delay can be reduced in hierarchical PEGASIS therefore data gathering problem can be solved [21]. Information System System iii. During chain building Improved Energy Efficient PEGASIS takes tentative and very complicated threshold value which forms long chain, allowing nodes to dissipate small power in data transfer, which enhances the lifetime of the network by saving energy [22]. Lindsey and Raghavendra 2002 Hierarchical nover leach. The clustering is done in rounds, and CH is selected on the basis of residual energy in each round. Distributed ii. H-HEED(Heterogeneous Hybrid Energy Efficient Distributed), 2010- Specially developed for heterogeneous type of network. S.Fahmy, 2004, ii. RHEED- clustering operation divided into rounds [23]. Hierarchical Routing i. Hybrid clustering, limitations of proactive and reactive network has been overcome in this protocol [21]. Hierarchical Routing ii. Hybrid clustering, limitations of proactive and reactive network has been overcome in this protocol [21]. Hierarchical Routing ii. Hybrid clustering, limitations of proactive	2001				
Routing In PEGASIS, algorithm is based on chain. Each node aggregates data from downstream node and send it to upstream node [20]. Bilderight i. In PEGASIS, algorithm is based on chain. Each node aggregates data from downstream node and send it to upstream node [20]. Bilderight ii. Packet delay can be reduced in hierarchical PEGASIS therefore data gathering problem can be solved [21]. Information System System iii. During chain building Improved Energy Efficient PEGASIS takes tentative and very complicated threshold value which forms long chain, allowing nodes to dissipate small power in data transfer, which enhances the lifetime of the network by saving energy [22]. Lindsey and Raghavendra 2002 Hierarchical nover leach. The clustering is done in rounds, and CH is selected on the basis of residual energy in each round. Distributed ii. H-HEED(Heterogeneous Hybrid Energy Efficient Distributed), 2010- Specially developed for heterogeneous type of network. S.Fahmy, 2004, ii. RHEED- clustering operation divided into rounds [23]. Hierarchical Routing i. Hybrid clustering, limitations of proactive and reactive network has been overcome in this protocol [21]. Hierarchical Routing ii. Hybrid clustering, limitations of proactive and reactive network has been overcome in this protocol [21]. Hierarchical Routing ii. Hybrid clustering, limitations of proactive	TT' 1' 1				
PEGASIS: Power i. In PEGASIS, algorithm is based on chain. Each node aggregates data from downstream node and send it to upstream node [20]. Gathering ii. Packet delay can be reduced in hierarchical PEGASIS therefore data gathering problem can be solved [21]. Information iii. During chain building Improved Energy Efficient PEGASIS takes tentative and very complicated threshold value which forms long chain, allowing nodes to dissipate small power in data transfer, which enhances the lifetime of the network by saving energy [22]. Lindsey and Raghavendra ,2002 Hierarchical i. As name indicated HEED based on distributed clustering. Considered as improvement over leach. The clustering is done in rounds, and CH is selected on the basis of residual energy in each round. Distributed ii. H-HEED(Heterogeneous Hybrid Energy Efficient Distributed), 2010- Specially developed for heterogeneous type of network. S.Fahmy, 2004, ii. RHEED- clustering operation divided into rounds [23]. Hierarchical Routing i. Hybrid clustering, limitations of proactive and reactive network has been overcome in this protocol [21]. Maptive Periodic ii. By sending periodic data it gives continuous monitoring, as well as by sending drastic change in data it makes it compatible to the time critical situation [24]. Ketwork A.Manjeshwar					
Efficient Gathering sensornode and send it to upstream node [20].ii. Packet delay can be reduced in hierarchical PEGASIS therefore data gathering problem can be solved [21].Information SystemSystemSystemSystemComplicated threshold value which forms long chain, allowing nodes to dissipate small power in data transfer, which enhances the lifetime of the network by saving energy [22].Lindsey Raghavendra ,2002 Hierarchical RoutingHEED:Hybrid Energy EfficientI. As name indicated HEED based on distributed clustering. Considered as improvement over leach. The clustering is done in rounds, and CH is selected on the basis of residual energy in each round. ii. H-HEED(Heterogeneous Hybrid Energy Efficient Distributed), 2010- Specially developed for heterogeneous type of network. iii. RHEED- clustering operation divided into rounds [23].APTEEN: Adaptive Periodic sensitive Energy Efficient sensor Networki. Hybrid clustering, limitations of proactive and reactive network has been overcome in this protocol [21]. ii. By sending periodic data it gives continuous monitoring, as well as by sending drastic change in data it makes it compatible to the time critical situation [24]. iii. Limitation is complexity required to implement threshold function and count values [24].A.Manjeshwar					
Gathering Sensor Informationii. Packet delay can be reduced in hierarchical PEGASIS therefore data gathering problem can be solved [21].Information Systemiii. During chain building Improved Energy Efficient PEGASIS takes tentative and very complicated threshold value which forms long chain, allowing nodes to dissipate small power in data transfer, which enhances the lifetime of the network by saving energy [22].Lindsey Raghavendra ,2002and Raghavendra ,2002HEED:Hybrid Energy Efficient Distributedi. As name indicated HEED based on distributed clustering. Considered as improvement over leach. The clustering is done in rounds, and CH is selected on the basis of residual energy in each round. ii. H-HEED(Heterogeneous Hybrid Energy Efficient Distributed), 2010- Specially developed for heterogeneous Hybrid Energy Efficient Distributed), 2010- Specially developed for heterogeneous type of network. iii. RHEED- clustering operation divided into rounds [23].Hierarchical Routingi. Hybrid clustering, limitations of proactive and reactive network has been overcome in this protocol [21]. ii. By sending periodic data it gives continuous monitoring, as well as by sending drastic change in data it makes it compatible to the time critical situation [24]. iii. Limitation is complexity required to implement threshold function and count values [24].A.ManjeshwarA.Manjeshwar					
Sensor Information Systemcan be solved [21].iii. During chain building Improved Energy Efficient PEGASIS takes tentative and very complicated threshold value which forms long chain, allowing nodes to dissipate small power in data transfer, which enhances the lifetime of the network by saving energy [22].Lindsey and Raghavendra ,2002 Hierarchical Routingi. As name indicated HEED based on distributed clustering. Considered as improvement over leach. The clustering is done in rounds, and CH is selected on the basis of residual energy in each round. ii. H-HEED(Heterogeneous Hybrid Energy Efficient Distributed), 2010- Specially developed for heterogeneous type of network. iii. RHEED- clustering operation divided into rounds [23].APTEEN: Adaptive Periodic Threshold- sensitive Energy Efficient sensor Networki. Hybrid clustering, limitations of proactive and reactive network has been overcome in this protocol [21]. ii. By sending periodic data it gives continuous monitoring, as well as by sending drastic change in data it makes it compatible to the time critical situation [24]. iii. Limitation is complexity required to implement threshold function and count values [24].					
Information Systemiii. During chain building Improved Energy Efficient PEGASIS takes tentative and very complicated threshold value which forms long chain, allowing nodes to dissipate small power in data transfer, which enhances the lifetime of the network by saving energy [22].Lindsey Raghavendra ,2002 Hierarchical Routingii. As name indicated HEED based on distributed clustering. Considered as improvement over leach. The clustering is done in rounds, and CH is selected on the basis of residual energy in each round. ii. H-HEED(Heterogeneous Hybrid Energy Efficient Distributed), 2010- Specially developed for heterogeneous type of network. iii. RHEED- clustering operation divided into rounds [23].APTEEN: Adaptive Periodic Threshold— sensitive Energy Efficient sensor Networki. Hybrid clustering, limitations of proactive and reactive network has been overcome in this protocol [21]. ii. By sending periodic data it gives continuous monitoring, as well as by sending drastic change in data it makes it compatible to the time critical situation [24]. iii. Limitation is complexity required to implement threshold function and count values [24].	U				
Systemcomplicated threshold value which forms long chain, allowing nodes to dissipate small power in data transfer, which enhances the lifetime of the network by saving energy [22].Lindsey and Raghavendra ,2002and Hierarchical RoutingHEED:Hybrid Energy Efficient Distributedi. As name indicated HEED based on distributed clustering. Considered as improvement over leach. The clustering is done in rounds, and CH is selected on the basis of residual energy in each round. ii. H-HEED(Heterogeneous Hybrid Energy Efficient Distributed), 2010- Specially developed for heterogeneous type of network. iii. RHEED- clustering operation divided into rounds [23].APTEEN: Adaptive Periodic Threshold- senstive Energy Efficient sensor Networki. Hybrid clustering, limitations of proactive and reactive network has been overcome in this protocol [21]. ii. By sending periodic data it gives continuous monitoring, as well as by sending drastic change in data it makes it compatible to the time critical situation [24]. iii. Limitation is complexity required to implement threshold function and count values [24].A.Manjeshwar	Sensor				
Lindsey Raghavendra ,2002power in data transfer, which enhances the lifetime of the network by saving energy [22].Hierarchical Routingi. As name indicated HEED based on distributed clustering. Considered as improvement over leach. The clustering is done in rounds, and CH is selected on the basis of residual energy in each round. ii. H-HEED(Heterogeneous Hybrid Energy Efficient Distributed), 2010- Specially developed for heterogeneous type of network. iii. RHEED- clustering operation divided into rounds [23].APTEEN: Adaptive Periodic Threshold- sensitive Energy Efficient sensori. Hybrid clustering, limitations of proactive and reactive network has been overcome in this protocol [21]. ii. By sending periodic data it gives continuous monitoring, as well as by sending drastic change in data it makes it compatible to the time critical situation [24]. iii. Limitation is complexity required to implement threshold function and count values [24].	Information				
Lindseyand Raghavendra ,2002Hierarchical Routingi. As name indicated HEED based on distributed clustering. Considered as improvement over leach. The clustering is done in rounds, and CH is selected on the basis of residual energy in each round. ii. H-HEED(Heterogeneous Hybrid Energy Efficient Distributed), 2010- Specially developed for heterogeneous type of network. iii. RHEED- clustering operation divided into rounds [23].APTEEN: Adaptive Periodic Threshold- sensitive Energy Efficient sensori. Hybrid clustering, limitations of proactive and reactive network has been overcome in this protocol [21]. ii. By sending periodic data it gives continuous monitoring, as well as by sending drastic change in data it makes it compatible to the time critical situation [24]. iii. Limitation is complexity required to implement threshold function and count values [24].	System				
Raghavendra ,2002 Hierarchical Routingi. As name indicated HEED based on distributed clustering. Considered as improvement over leach. The clustering is done in rounds, and CH is selected on the basis of residual energy in each round. ii. H-HEED(Heterogeneous Hybrid Energy Efficient Distributed), 2010- Specially developed for heterogeneous type of network. iii. RHEED- clustering operation divided into rounds [23].APTEEN: Adaptive Periodic Threshold— sensitive Energy Efficient sensori. Hybrid clustering, limitations of proactive and reactive network has been overcome in this protocol [21]. ii. By sending periodic data it gives continuous monitoring, as well as by sending drastic change in data it makes it compatible to the time critical situation [24]. iii. Limitation is complexity required to implement threshold function and count values [24].	Lindsey and				
2002 Hierarchical Routingi. As name indicated HEED based on distributed clustering. Considered as improvement over leach. The clustering is done in rounds, and CH is selected on the basis of residual energy in each round. ii. H-HEED(Heterogeneous Hybrid Energy Efficient Distributed), 2010- Specially developed for heterogeneous type of network. iii. RHEED- clustering operation divided into rounds [23].APTEEN: Adaptive Periodic rotocol [21]. ii. By sending periodic data it gives continuous monitoring, as well as by sending drastic change in data it makes it compatible to the time critical situation [24]. iii. Limitation is complexity required to implement threshold function and count values [24].					
Hierarchical RoutingI. As name indicated HEED based on distributed clustering. Considered as improvement over leach. The clustering is done in rounds, and CH is selected on the basis of residual energy in each round. ii. H-HEED(Heterogeneous Hybrid Energy Efficient Distributed), 2010- Specially developed for heterogeneous type of network. iii. RHEED- clustering operation divided into rounds [23].APTEEN: Adaptive Periodic Threshold- sensitive Energy Efficient sensor Networki. Hybrid clustering, limitations of proactive and reactive network has been overcome in this protocol [21]. ii. By sending periodic data it gives continuous monitoring, as well as by sending drastic change in data it makes it compatible to the time critical situation [24]. iii. Limitation is complexity required to implement threshold function and count values [24].					
RoutingHEED:HybridEnergyi. As name indicated HEED based on distributed clustering. Considered as improvement over leach. The clustering is done in rounds, and CH is selected on the basis of residual energy in each round. ii. H-HEED(Heterogeneous Hybrid Energy Efficient Distributed), 2010- Specially developed for heterogeneous type of network. iii. RHEED- clustering operation divided into rounds [23].APTEEN: Adaptive Periodic Threshold- sensitive Energy Efficient sensor Networki. Hybrid clustering, limitations of proactive and reactive network has been overcome in this protocol [21]. ii. By sending periodic data it gives continuous monitoring, as well as by sending drastic change in data it makes it compatible to the time critical situation [24]. iii. Limitation is complexity required to implement threshold function and count values [24].					
HEED:Hybrid Energyi. As name indicated HEED based on distributed clustering. Considered as improvement over leach. The clustering is done in rounds, and CH is selected on the basis of residual energy in each round. ii. H-HEED(Heterogeneous Hybrid Energy Efficient Distributed), 2010- Specially developed for heterogeneous type of network. iii. RHEED- clustering operation divided into rounds [23].Hierarchical Routingi. Hybrid clustering, limitations of proactive and reactive network has been overcome in this protocol [21]. ii. By sending periodic data it gives continuous monitoring, as well as by sending drastic change in data it makes it compatible to the time critical situation [24]. iii. Limitation is complexity required to implement threshold function and count values [24].					
EnergyEfficient Distributedover leach. The clustering is done in rounds, and CH is selected on the basis of residual energy in each round. ii. H-HEED(Heterogeneous Hybrid Energy Efficient Distributed), 2010- Specially developed for heterogeneous type of network. iii. RHEED- clustering operation divided into rounds [23].Hierarchical Routingi. Hybrid clustering, limitations of proactive and reactive network has been overcome in this protocol [21]. ii. By sending periodic data it gives continuous monitoring, as well as by sending drastic change in data it makes it compatible to the time critical situation [24]. iii. Limitation is complexity required to implement threshold function and count values [24].A.ManjeshwarA.Manjeshwar		i As name indicated HEED based on distributed elustering. Considered as improvement			
Distributedenergy in each round. ii. H-HEED(Heterogeneous Hybrid Energy Efficient Distributed), 2010- Specially developed for heterogeneous type of network. iii. RHEED- clustering operation divided into rounds [23].APTEEN: Adaptive Periodic Threshold- sensitive Energy Efficient sensor Networki. Hybrid clustering, limitations of proactive and reactive network has been overcome in this protocol [21]. ii. By sending periodic data it gives continuous monitoring, as well as by sending drastic change in data it makes it compatible to the time critical situation [24]. iii. Limitation is complexity required to implement threshold function and count values [24].					
O.Younis, S.Fahmy, 2004,ii. H-HEED(Heterogeneous Hybrid Energy Efficient Distributed), 2010- Specially developed for heterogeneous type of network. iii. RHEED- clustering operation divided into rounds [23].Hierarchical Routingi. Hybrid clustering, limitations of proactive and reactive network has been overcome in this protocol [21]. ii. By sending periodic data it gives continuous monitoring, as well as by sending drastic change in data it makes it compatible to the time critical situation [24]. iii. Limitation is complexity required to implement threshold function and count values [24].A.ManjeshwarA.Manjeshwar					
O.Younis, and S.Fahmy, 2004,developed for heterogeneous type of network. iii. RHEED- clustering operation divided into rounds [23].Hierarchical Routingi. Hybrid clustering, limitations of proactive and reactive network has been overcome in this protocol [21]. ii. By sending periodic data it gives continuous monitoring, as well as by sending drastic change in data it makes it compatible to the time critical situation [24]. iii. Limitation is complexity required to implement threshold function and count values [24].A.Manjeshwar	Distributed				
S.Fahmy, 2004,iii. RHEED- clustering operation divided into rounds [23].Hierarchical Routingiii. Hybrid clustering, limitations of proactive and reactive network has been overcome in this protocol [21].APTEEN: Adaptive Periodic Threshold- sensitive Energy Efficient sensor Networki. Hybrid clustering, limitations of proactive and reactive network has been overcome in this protocol [21].AManjeshwari. Hybrid clustering, limitations of proactive and reactive network has been overcome in this protocol [21].AManjeshwarii. By sending periodic data it gives continuous monitoring, as well as by sending drastic change in data it makes it compatible to the time critical situation [24].A.Manjeshwariii. Limitation is complexity required to implement threshold function and count values [24].					
Hierarchical Routingi. Hybrid clustering, limitations of proactive and reactive network has been overcome in this protocol [21].APTEEN: Adaptive Periodic Threshold- sensitive Energy Efficient sensor Networki. Hybrid clustering, limitations of proactive and reactive network has been overcome in this protocol [21].AManjeshwari. Hybrid clustering, limitations of proactive and reactive network has been overcome in this protocol [21].AAPTEEN: adaptive Periodic threshold- sensitive Energy Efficient sensorii. By sending periodic data it gives continuous monitoring, as well as by sending drastic change in data it makes it compatible to the time critical situation [24].A.Manjeshwariii. Limitation is complexity required to implement threshold function and count values [24].					
Routingi. Hybrid clustering, limitations of proactive and reactive network has been overcome in this protocol [21].Adaptive Periodic Threshold- sensitive Energy Efficient sensor Networki. Hybrid clustering, limitations of proactive and reactive network has been overcome in this protocol [21].A.Manjeshwari. Hybrid clustering, limitations of proactive and reactive network has been overcome in this protocol [21].A.Manjeshwarii. By sending periodic data it gives continuous monitoring, as well as by sending drastic change in data it makes it compatible to the time critical situation [24].	S.Fahmy, 2004,	111. RHEED- clustering operation divided into rounds [23].			
Routingi. Hybrid clustering, limitations of proactive and reactive network has been overcome in this protocol [21].Adaptive Periodic Threshold- sensitive Energy Efficient sensor Networki. Hybrid clustering, limitations of proactive and reactive network has been overcome in this protocol [21].A.Manjeshwari. Hybrid clustering, limitations of proactive and reactive network has been overcome in this protocol [21].A.Manjeshwarii. By sending periodic data it gives continuous monitoring, as well as by sending drastic change in data it makes it compatible to the time critical situation [24].	· · · ·				
APTEEN: Adaptive Periodic Threshold— sensitive Energy Efficient sensor Networki. Hybrid clustering, limitations of proactive and reactive network has been overcome in this protocol [21]. ii. By sending periodic data it gives continuous monitoring, as well as by sending drastic change in data it makes it compatible to the time critical situation [24]. iii. Limitation is complexity required to implement threshold function and count values [24].A.ManjeshwarA.Manjeshwar					
Adaptive Periodic Threshold- sensitive Energyprotocol [21].ii. By sending periodic data it gives continuous monitoring, as well as by sending drastic change in data it makes it compatible to the time critical situation [24].Efficient sensor Networkiii. Limitation is complexity required to implement threshold function and count values [24].A.Manjeshwariii. Limitation is complexity required to implement threshold function and count values [24].	Routing				
Adaptive Periodic Threshold- sensitive Energyprotocol [21].ii. By sending periodic data it gives continuous monitoring, as well as by sending drastic change in data it makes it compatible to the time critical situation [24].Efficient sensor Networkiii. Limitation is complexity required to implement threshold function and count values [24].A.Manjeshwariii. Limitation is complexity required to implement threshold function and count values [24].					
Threshold- sensitiveii. By sending periodic data it gives continuous monitoring, as well as by sending drastic change in data it makes it compatible to the time critical situation [24]. iii. Limitation is complexity required to implement threshold function and count values [24].A.Manjeshwar					
 sensitive Energy Efficient sensor Network A.Manjeshwar change in data it makes it compatible to the time critical situation [24]. change in data it makes it compatible to the time critical situation [24]. change in data it makes it compatible to the time critical situation [24]. change in data it makes it compatible to the time critical situation [24]. change in data it makes it compatible to the time critical situation [24]. 		1			
Efficient sensor iii. Limitation is complexity required to implement threshold function and count values [24]. Network A.Manjeshwar					
Network A.Manjeshwar					
A.Manjeshwar		iii. Limitation is complexity required to implement threshold function and count values [24].			
	Network				
	A.Manjeshwar				
	-				

Table 4: Classification of Hierarchical Routing Pr	rotocols
--	----------

D.P.Agrawal,2009			
Hierarchical Routing			

IV. Conclusion

Routing plays an essential role in WSN. The nodes are battery operable and unattended once deployed. In this paper, we studied comparison between various hierarchical routing protocol and previous work and recent development on various routing protocols. A detailed study of different versions of protocols has been done. Although most of these protocols look similar to conventional protocols such as LEACH, GBR, PEGASIS, but there is still many challenges overcome and modifications was done. This paper would be helpful for comparison between various routing protocols for future researchers.

In Hierarchical routing technique nodes are grouped to form clusters and the interactions between the cluster nodes are controlled by clusterhead. In this paper we described various types of hierarchical routing techniques and compare on basis of scalability, energy efficiency, QoS *etc* is done. Also various recent trends in these techniques are explained. Overall this paper will demonstrate complete analysis of the hierarchical routing techniques and superiority over each other.

V. References

[1] J. N. Al-Karaki and A. E. Kamal, "Routing techniques in wireless sensor networks: a survey," in *IEEE Wireless Communications*, vol. 11, no. 6, pp. 6-28, Dec. 2004. doi: 10.1109/MWC.2004.1368893

[2] S. Rani and S. H. Ahmed, "Multi-hop Network Structure Routing Protocols", Elsevier, (2016).

[3] N. Duy Tan and N. Dinh Viet, "SCBC: Sector-Chain Based Clustering Routing Protocol for Energy Efficiency in Heterogeneous Wireless Sensor Network", IEEE, (2015).

[4] X. Liu, "Atypical Hierarchical Routing Protocols for Wireless Sensor Networks: A Review", Sensors Journal, vol. 15, no. IEEE 10, (2015) October.

[5] Z. Aliouat and M. Aliouat "Efficient Management of Energy Budget for PEGASIS Routing Protocol", 6th International Conference on Sciences of Electronics, Technologies of Information and Telecommunications (SETIT) IEEE, (2012).

[6] S.M. Jung, Y.J Han, and T. M Chung, "The Concentric Clustering Scheme for Efficient Energy Consumption in the PEGASIS," in proc. 9th International Conf. on Advanced Communication Technology, vol.1, pp.260-265, Feb. 2007.

[7] K. Tae Kim, C. Hoon Lyu, S. Soo Moon and H. Yong Youn, "Tree-Based Clustering (TBC) for Energy Efficient Wireless Sensor Networks", 24th International Conference on Advanced Information Networking and Applications Workshops IEEE, (2010).

[8] H. "Ibrahim Korpeo, "Power Efficient Data Gathering and Aggregation in Wireless Sensor Networks", IEEE, (2003).

[9] W. R. Heinzelman, A. Chandrakasan and H. Balakrishnan, "Energy-efficient communication protocol for wireless microsensor networks," *Proceedings of the 33rd Annual Hawaii International Conference on System Sciences*, 2000. [10] S. K. Singh, P. Kumar and J. P. Singh, "A Survey on Successors of LEACH Protocol," in *IEEE Access*, vol. 5, pp. 4298-4328, 2017.

[11] V. M. Galshetwar and A. Jeyakumar, "Energy Efficient and Reliable Clustering Algorithms HEED and ADCP of Wireless Sensor Networks: A Comparative Study", International Conference on Communication and Signal Processing, IEEE, (2014) April 3-5.

[12] W. Junwei and F. Xiaoyi, "Improved TEEN Based Trust Routing Algorithm in WSNs", 27th Chinese Control and Decision Conference (CCDC), IEEE, (2015).

[13] A. Manjeshwar and D. P. Agrawal, "APTEEN: a hybrid protocol for efficient routing and comprehensive information retrieval in wireless," *Proceedings 16th International Parallel and Distributed Processing Symposium*, Ft. Lauderdale, FL, 2002.

[14] M. Tamene and K. Nageswara Rao, "Grid based Clustering Protocol with Dynamic Range Cluster head Advertisement and Traffic Splitting in Wireless Sensor Networks", International Advance Computing Conference (IACC) IEEE, (2014).

[15] L. Buttyan and P. Schaffer, "PANEL: Position-based Aggregator Node Election in Wireless Sensor Networks", IEEE, (2007).

[16] D. Koutsonikolas, S. Das, Y. Charlie Hu and I. Stojmenovic, "Hierarchical Geographic Multicast Routing for Wireless Sensor Networks", IEEE, (2007).

[17] J. Y. Lee, K. D. Jung, S. J. Moon, and H. Y. Jeong, "Improvement on LEACH protocol of a wide-area wireless sensor network," *Multimedia Tools Appl.*, vol. 75, pp. 1_18, Jul. 2016.

[18] P. K. Batra and K. Kant, ``LEACH-MAC: A new cluster head selection algorithm for wireless sensor networks," *Wireless Netw.*, vol. 22, no. 1, pp. 49_60, 2016.

[19] A. Manjeshwar and D. P. Agarwal April 2001, "TEEN: a routing protocol for enhanced efficiency in wireless sensor networks," In 1st International Workshop on Parallel and Distributed Computing Issues in Wireless Networks and Mobile Computing.

[20] Lindsey and C. Raghavendra 2001, "PEGASIS: Power- Efficient Gathering in Sensor Information Systems," in International Conf. on Communications.

[21] Jamal N. Al-Karaki Ahmed E. Kamal December 2004, "Routing Techniques in Wireless Sensor Networks: ASurvey", WirelessCommunications, IEEE, Volume: 11, Issue: 6.

[22] Hetal Rana, Sangeeta Vhatkar Sep – Oct. 2014, "Comparative Study of PEGASIS Protocols in Wireless Sensor Network", IOSR Journal of Computer Engineering (IOSR-JCE Volume 16, Issue 5, Ver. I.

[23] Wail Mardini, Muneer Bani Yassein, Yaser Khamayseh, and Barraq A. Ghaleb 2014," Rotated Hybrid, Energy-Efficient and Distributed (R-HEED) Clustering Protocol in WSN", wseas transactions on communications, Volume 13.

[24] A. Manjeshwar and D. P. Agarwal 2002, "APTEEN: A hybrid protocol for efficient routing and comprehensive information retrieval in wireless sensor networks," Parallel and Distributed Processing Symposium., Proceedings International, pp. 195-202.