PRODUCT INTEGER CORDIAL LABELING OF SOME WELL KNOWN GRAPHS

A. Sahaya Rani ${ }^{1}$, P. Maya ${ }^{2}$, T. Nicholas ${ }^{1 *}$
${ }^{1}$ RESEARCH SCHOLAR, DEPARTMENT OF MATHEMATICS,RESAERCH CENTER, ST. JUDES COLLEGE, MANONMANIAM SUNDARANAR UNIVERSITY, TIRUNELVELI, TAMIL NADU, INDIA-627012.
${ }^{2}$ P. MAYA, ASSISSTANT PROFESSOR, DEPARTMENT OF MATHEMATICS, SRIDEVI KUMARI WOMENS COLLEGE, KUZHITHURAI, KANYAKUMARI DIST, TAMIL NADU, INDIA.
${ }^{1 *}$ T. NICHOLAS, FORMER PRINCIPAL, DEPARTMENT OF MATHEMATICS,RESEARCH CENTER, ST. JUDE'S COLLEGE, THOOTHOOR, KANYAKUMARI DIST, TAMIL NADU, INDIA-629176.

Abstract

In this paper we introduce the concept of product integer cordial labeling. Let $G(V, E)$ be a simple connected graph with p vertices. Let the injective mapping $f: V \rightarrow\{1,2, \ldots, p\}$ induce an edge labeling f^{*} on E such that $f^{*}(u v)=1$ or 0 according as $f(u) f(v)$ even or odd respectively. Let $e_{f}(i)=$ number of edges labeled with i, where $i=0$ or 1 . We call f a product integer cordial if $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$. A graph G is called product integer cordial if it admits a product integer cordial labeling. We also investigate the product integer cordial labeling of some graphs.

Keywords:- cordial, Integer cordial, product integer cordial labeling.

1. Introduction:

We consider finite, undirected and simple graphs G with vertex set $V(G)$ and Edge set $E(G)$.
The concept of cordial labeling originated from I. Cahit [1, 2] in 1987 as a weaker version of graceful and harmonious graphs and was based on $\{0,1\}$ binary labeling of vertices. For a deeper insight on cordial labeling one may refer to [1-13].The concept of I-cordial labeling was introduced by T. Nicholas and P. Maya [14].

Let f be an injective map from V to $\left[\frac{-p}{2}, \frac{p}{2}\right] *$ or $\left[\frac{-p}{2}, \frac{p}{2}\right]$ as p is even or odd respectively, such that $\mathrm{f}(\mathrm{u})+\mathrm{f}(\mathrm{v}) \neq 0$. Let f induce an edge labeling $f^{*}: E \rightarrow\{0,1\}$ where $f^{*}(u v)=1$ if $f(u)+f(v)>0$ and $f^{*}(u v)=0$ otherwise. We call f an I-cordial labeling of a graph $G(V, E)$ if $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$, where $e_{f}(i)=$ number of edges labeled with i, where $i=0$ or 1 . The graph G is called $I-$ cordial if it admits an I-cordial labeling. [14]

In this paper, we introduce the concept of product integer cordial labeling.
Let $G=(V, E)$ be a simple connected graph with p vertices. Let an injective mapping $f: V \rightarrow\{1,2, \ldots, p\}$ induce an edge labeling f^{*} on E such that $f *(u v)=1$ or 0 according as $f(u) f(v)$ even or odd respectively. Let $e_{f}(i)=$ number of edges labeled with i , where $\mathrm{i}=0$ or 1 . We call f a product integer cordial labeling if $\left|\mathrm{e}_{\mathrm{f}}(0)-\mathrm{e}_{\mathrm{f}}(1)\right| \leq 1$. A graph G is called product integer cordial if it admits a product integer cordial labeling.

In this paper we introduce the concept of a new variant of cordial labeling, namely, product integer cordial labeling and investigate it for some graphs.

2. Main results:

Definition 2.1:

Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a simple connected graph with p vertices. Let the injective mapping $\mathrm{f}: \mathrm{V} \rightarrow\{1,2, \ldots, \mathrm{p}\}$ induce an edge labeling f^{*} on E such that $f^{*}(u v)=1$ or 0 according as $f(u) f(v)$ is even or odd respectively. Let $e_{f}(i)=$ number of edges labeled with i , where $\mathrm{i}=0$ or 1 . We call f a product integer cordial if $\left|\mathrm{e}_{\mathrm{f}}(0)-\mathrm{e}_{\mathrm{f}}(1)\right| \leq 1$. A graph G is called product integer cordial if it admits a product integer cordial labeling.

Theorem 2.2: The cycle C_{n} is product integer cordial if and only if n is odd.
Proof: Let $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}$ be the vertices of C_{n}.

Case (i) n is even.
Define $f: V \rightarrow\{1,2, \ldots, n\}$ as $f\left(v_{i}\right)=\left\{\begin{array}{c}2 i-1 \text { for } i=1,2, \ldots, \frac{n}{2}, \\ 2 i-n \text { for } i=\frac{n}{2}+1, \ldots, n .\end{array}\right.$
Hence $f^{*}\left(v_{i} v_{i+1}\right)=0$; for $i=1,2 \ldots,\left(\frac{n}{2}-1\right)$
$f^{*}\left(v_{i} v_{i+1}\right)=1 ;$ for $i=\frac{n}{2}, \ldots,(n-1)$
$\mathrm{f}^{*}\left(\mathrm{v}_{\mathrm{n}} \mathrm{V}_{1}\right)=1$.
Hence $\frac{n}{2}+1$ edges receive label 1 and $\frac{n}{2}-1$ edges receive label 0 , which imply
$\left|e_{f}(1)-e_{f}(0)\right|=2$.
In fact any other labeling f would yield $\left|e_{f}(1)-e_{f}(0)\right| \geq 2$.
Hence C_{n} is not product integer cordial when n is even.
Case (ii) n is odd. $f\left(v_{i}\right)=\left\{\begin{array}{c}2 i-1, \text { for } i=1,2, \ldots, \frac{n+1}{2}, \\ 2 i-(n+1), \text { for } i=\frac{n+3}{2}, \ldots, n .\end{array}\right.$
Then $f^{*}\left(v_{i} v_{i+1}\right)=\left\{\begin{array}{l}0, \text { for } i=1,2, \ldots, \frac{n-1}{2}, \\ 1, \text { for } i=\frac{n+1}{2}, \ldots, n-1 .\end{array}\right.$
$\mathrm{f}^{*}\left(\mathrm{~V}_{\mathrm{n}} \mathrm{V}_{1}\right)=1$
Hence $\frac{n-1}{2}$ edges receive label 0 and $\frac{n+1}{2}$ edges receive label 1 , which imply $\left|\mathrm{e}_{\mathrm{f}}(1)-\mathrm{e}_{\mathrm{f}}(0)\right|=1$.
Hence C_{n} is product integer cordial graph iff n is odd.

Theorem 2.3: The complete bipartite graph $\mathrm{K}_{\mathrm{m}, \mathrm{n}}, \mathrm{n}>\mathrm{m}$, is product integer cordial iff $\mathrm{m}=1$.
Case(i) n is even.

Let $\mathrm{V}=\mathrm{U} \cup \mathrm{W}$ where $\mathrm{U}=\left\{\mathrm{u}_{1}\right\}, \mathrm{W}=\left\{\mathrm{w}_{1}, \ldots, \mathrm{w}_{\mathrm{n}}\right\} ; \mathrm{n}$ is even.
Then $\mathrm{p}=\mathrm{n}+1, \mathrm{q}=\mathrm{n}$
Let $\mathrm{f}: \mathrm{V} \rightarrow\{1,2, \ldots, \mathrm{n}+1\}$ be the function defined as follows:

$$
\mathrm{f}\left(\mathrm{u}_{1}\right)=1 ;
$$

$$
f\left(w_{i}\right)=\left\{\begin{array}{c}
2 i+1 ; i=1,2, \ldots, \frac{n}{2}, \\
2 i-n ; i=\frac{n}{2}+1, \ldots, n .
\end{array}\right.
$$

Hence $\frac{\mathrm{n}}{2}$ edges receive even labels and $\frac{\mathrm{n}}{2}$ edges odd labels.
Hence $\left|e_{f}(1)-e_{f}(0)\right|=0$.
Hence $K_{m, n}$ is product integer cordial when $m=1$ and n is even.

Product integer cordial

labeling of $\mathrm{K}_{1,4}$

Case (ii) n is odd.
Define $\mathrm{f}: \mathrm{V} \rightarrow\{1,2, \ldots, \mathrm{n}+1\}$ as follows:
$f\left(w_{i}\right)=\left\{\begin{array}{c}2 i+1 \text { for } i=1,2, \ldots, \frac{(n-1)}{2}, \\ 2 i-(n-1) \text { for } i=\frac{(n+1)}{2}, \ldots, n .\end{array}\right.$
and $f\left(u_{1}\right)=1$.
Hence $\mathrm{f}^{*}\left(\mathrm{u}_{1} \mathrm{w}_{\mathrm{i}}\right)=0$, for $\mathrm{i}=1,2, \ldots, \frac{(n-1)}{2}$
$f^{*}\left(u_{1} w_{i}\right)=1$, for $i=\frac{(n+1)}{2}, \ldots, n$.
That is, $\frac{\mathrm{n}-1}{2}$ edges receive odd labels and $\frac{\mathrm{n}+1}{2}$ edges receive even labels.
Hence $\left|e_{f}(1)-e_{f}(0)\right| \leq 1$.
Hence $\mathrm{K}_{\mathrm{m}, \mathrm{n}}$ is product integer cordial where n is odd and $\mathrm{m}=1$.
From both cases $\mathrm{K}_{\mathrm{m}, \mathrm{n}}$ is product integer cordial for any n and $\mathrm{m}=1$.

Case (iii): $\mathrm{m} \geq 2 ; \mathrm{n}>\mathrm{m}$.
Let $\mathrm{V}=\mathrm{A} \cup \mathrm{B}$, where $|\mathrm{A}|=\mathrm{m},|\mathrm{B}|=\mathrm{n}$.
If there exists a product integer cordial labeling f then for the least possible assignment, f must assign odd labels to the m vertices of the partite set A. In this case f would induce $m\left(\frac{n-m}{2}\right)$ odd labels for the edges.

Therefore ($m n-\frac{m(n-m)}{2}$) edges receive even labels.
That is $\mathrm{e}_{\mathrm{f}}(1)=\frac{m(n+m)}{2} ; \mathrm{e}_{\mathrm{f}}(0)=\frac{m(n-m)}{2}$
Therefore the difference between even and odd labels $=\left|e_{f}(0)-e_{f}(1)\right|$

$$
\begin{aligned}
& =\left|\frac{m(n+m)}{2}-\frac{m(n-m)}{2}\right| \\
& =m^{2} \geq 1
\end{aligned}
$$

which is a contradiction.
Hence $\mathrm{K}_{\mathrm{m}, \mathrm{n}}$ is product integer cordial graph iff $\mathrm{m}=1$.
Corollary 2.4: Star graph is product integer cordial for all n .
Theorem 2.5: Path P_{n} is product integer cordial for any n.
Case $(\mathbf{i}) \mathrm{n}$ is even.
Let G be a graph with n vertices, n is even, hence $\mathrm{q}=\mathrm{n}-1$.
Define f: $\mathrm{V}(\mathrm{G}) \rightarrow\{1,2,3, \ldots, \mathrm{n}\}$ by
$f\left(v_{i}\right)=\left\{\begin{array}{c}2 i-1 ; \text { for } i=1,2, \ldots, \frac{n}{2}, \\ 2 i-n ; \text { for } i=\frac{n}{2}+1, \ldots, n .\end{array}\right.$
Then $f^{*}\left(v_{i} v_{i+1}\right)=0$; for $i=1,2, \ldots, \frac{n}{2}-1$ and $f^{*}\left(v_{i} v_{i+1}\right)=1$; for $i=\frac{n}{2}, \ldots, n-1$.
Hence $\frac{\mathrm{n}}{2}-1$ edges receive odd labels and $\frac{\mathrm{n}}{2}$ edges receive even labels.
This implies $\left|e_{f}(1)-e_{f}(0)\right| \leq 1$. Hence P_{n} is product integer cordial when n is even.

Case (ii): n is odd.
Define $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2, \ldots, \mathrm{n}\}$ by
$f\left(v_{i}\right)=\left\{\begin{array}{c}2 i-1 ; i=1,2, \ldots, \frac{(n+1)}{2}, \\ 2 i-(n+1) ; i=\frac{(n+3)}{2}, \ldots, n .\end{array}\right.$
Then the induced function f^{*} is obtained as
$\mathrm{f}^{*}\left(\mathrm{v}_{\mathrm{i}} \mathrm{V}_{\mathrm{i}+1}\right)=\left\{\begin{array}{c}0 ; i=1,2, \ldots, \frac{n-1}{2}, \\ 1 ; i=\frac{n+1}{2}, \ldots, n-1 .\end{array}\right.$
Hence $\frac{\mathrm{n}-1}{2}$ edges receive even labels and $\frac{\mathrm{n}-1}{2}$ edges receive odd labels.
Hence P_{n} is product integer cordial when n is odd.

Product integer cordial labeling of P_{9}

Theorem 2.6: Friendship graph $\mathrm{C}_{3}{ }^{(t)}$ is product integer cordial for all t .

Proof:

Case (i) :t is odd.
The graph $\mathrm{C}_{3}{ }^{(t)}$ has $2 \mathrm{t}+1$ vertices and 3 t edges. Let w be the apex vertex.
Define f: V $\rightarrow\{1,2, \ldots, 2 t+1\}$ by
$f\left(v_{i}\right)=\left\{\begin{array}{c}2 i-1 ; i=1,2, \ldots, t \\ 2 i-2 t ; i=t+1, \ldots, 2 t .\end{array}\right.$
$\mathrm{f}(\mathrm{w})=1$.
Then $\mathrm{f}^{*}\left(\mathrm{wv}_{\mathrm{i}}\right)=0$; if $\mathrm{i}=1,2, \ldots, \mathrm{t}$
$\mathrm{f}^{*}\left(\mathrm{wv}_{\mathrm{i}}\right)=1$; if $\mathrm{i}=\mathrm{t}+1, \ldots 2 \mathrm{t}$ and $\mathrm{f}(\mathrm{w})=1$.
Also $\mathrm{f}^{*}\left(\mathrm{v}_{\mathrm{i}} \mathrm{V}_{\mathrm{i}+1}\right)=\left\{\begin{array}{c}0 ; i=1,3, \ldots, t-2, \\ 1 ; i=t, t+2, \ldots,(2 t-1) .\end{array}\right.$
Then $\frac{3 t-1}{2}$ edges receive odd labels and $\frac{3 t+1}{2}$ edges receive even labels.
Hence $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$.
Hence $\mathrm{C}_{3}{ }^{(t)}$ is product integer cordial graph when t is odd.

Case (ii): t is even.
Let $\mathrm{f}(\mathrm{w})=1$
Define $\mathrm{f}: \mathrm{V} \rightarrow\{1,2, \ldots, 2 \mathrm{t}\}$ by
$f\left(v_{i}\right)=\left\{\begin{array}{c}2 i+1 ; i=1,2, \ldots, t, \\ 2 i-2 t ; i=t+1, \ldots, 2 t .\end{array}\right.$
Then the induced function f^{*} as follows:
$\mathrm{f}^{*}\left(\mathrm{v}_{\mathrm{i}} \mathrm{V}_{\mathrm{i}+1}\right)=\left\{\begin{array}{c}0 ; i=1,2, \ldots, t \\ 1 ; i=t+1, \ldots, 2 t .\end{array}\right.$
and $\mathrm{f}^{*}\left(\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1}\right)=\left\{\begin{array}{c}0 ; i=1,3, \ldots, t-1, \\ 1 ; i=t+1, t+3, \ldots, 2 t-1 .\end{array}\right.$
Thus, $\mathrm{e}_{\mathrm{f}}(0)=\frac{3 t}{2}$ and $\mathrm{e}_{\mathrm{f}}(1)=\frac{3 t-2}{2}$.
Hence $\left|e_{f}(0)-e_{f}(1)\right|=1$.

Hence $\mathrm{C}_{3}{ }^{(\mathrm{t})}$ is product integer cordial graph for all t .

F_{4}

F_{5}

Product integer cordial labeling of F_{4} and F_{5}

References:

[1] I.Cahit, (1987) Cordial graphs, A weaker version of graceful and harmonious graphs, Ars Combinatoria, Vol. 23, pp 201-208.
[2] I. Cahit, (1996) H-Cordial Graphs, Bull. Inst. Combin. Appl. ; 18 87-101.
[3] J.A. Gallian, (2000) A dynamic survey of graph labeling, Electron.J.Combin.5 1-79.
[4] Y.S.Ho, S.M. Lee, S.S. Shee, (1990) Cordial labeling of the Cartesian product and composition of graphs, Ars Combin. 29 169-180.
[5] Y.S. Ho, S.M. Lee, S.S. Shee, (1989) Cordial labeling of unicyclic graphs and generalized Peterson graphs, Congr. Numer. 68109-122.
[6] M. Hovey, (1991) A-Cordial Graphs, Discrete Math. (3), pp 183-194.
[7] F. Harary, (1972) Graph Theory, Addison- Wesly, Reading Mass.
[8] W. W.Kirchherr, (1993) NEPS Operations on Cordial graphs, Discrete Math. 115 201-209.
[9] W.W.Kirchherr, (1991) On the cordiality of certain specific graphs, Ars Combin. 31 127-138.
[10] W. W. Kirchherr, (1991) Algebraic approaches to cordial labeling, Graph Theory, Combinatorics Algorithms and applications, Y. Alavi, et. al. (Eds.) SIAM, Philadelphia, PA, , pp 294-299.
[11] S.Kuo, G.J. Chang, Y.H.H. Kwong, (1997) Cordial labeling of $m K_{n}$, Discrete Math. 169 1-3.
[12] S. M. Lee, A. Liu, (1991) A construction of cordial graphs from smaller cordial graphs, Ars Combin. 32 209-214.
[13] Y. H. Lee, H. M. Lee , G. J. Chang, (1992) Cordial labeling of graphs, Chinese J. Math 20263 - 273.
[14] T. Nicholas and P. Maya, (2016) Some results on I-cordial graph, Int. J. of Sci. and Res. (IJSR) ISSN (Online): 2319-7064 I.F.(2015): 6.391, Vol. 5 Issue 12, December 2016. (2015): 78-96.

