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Abstract : The logistic growth of a predator-prey interaction model is studied by using different growth
functions of prey and including a discrete time delay to model the time lags between the capture of the prey

and its conversion to viable biomass.

In this paper the equilibria and stability analysis of predator-prey model is discussed, considering the
different growth function of prey. If the growth function of prey is logistic then the co-existence equilibrium

is locally asymptotically stable if d, <p"K and it does not exit if d, >B"K . It is further shown that

periodic solution is possible through Hopf-bifurcation under the conditions
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Introduction :

In nature, an individual living organism of any species does not live in isolation. The organisms live in
groups, are called population. Ecological studies start at the population level. Since a population changes
over time, its time-rate of change is called the growth rate. The growth rate of a population is the rate of
change of its size or density per unit time. It is determined by the birth-rate and the death-rate. The growth
rate cannot be a constant, but it depends on the size or density of the population.

An important problem in ecology, the science which studies the interrelationship between living
organisms and their environment, is to investigate the question of coexistence of two species and to decide
what mankind to preserve this ecological balance of nature. In nature, there are many instances where the
species of animals (the predator) feeds on another species of animals ( the prey), which in turn feeds on
other things that readily available in the environment. For example, population of foxes and rabbits in a
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woodland; the foxes (predators) eat rabbits (the prey), while the rabbits eat certain vegetation in the
woodland. In the absence of the predators, the prey grows exponentially; at the same time in the absence of
the prey , the predator population dies out exponentially (due to lack of food). When both predator and prey
are present, there occurs, in combination with these natural rates of growth and decline is called system in
equilibrium i.e, a constant population of prey and of the predator that coexist with one another in the
environment. Geometrical analysis of prey-predator population follows an orbital path. Eliptic orbit are
obtained around the equilibrium point or critical point.

In the layer of the planet Earth, where life exists, the growth rate of different species mainly depend
on ecology and carrying capacity of environment etc. As a consequence the growth rate of prey species is an
important matter for the prey-predator interaction model. The co-existence of two species has been of great
interest for researchers and studied extensively using mathematical models by several researchers in
particularly by [2], [3]. In many existing prey-predator models, the time delay for conversion of biomass i.e
(organic material) from prey to the predator population were ignored. The delay is often caused by the
conversion of consumed prey biomass into the predator biomass due to the body size growth or
reproduction.

In this paper, our aim is to study and analyze the dynamics of prey-predator interacting population
model due to different growth functions including discrete time t for the capture of the prey and its
conversion to biomass and the term e~ , which accounts for predators those interact with prey at time t but
die before growth (given reproduction) t times units later, where & is the constant death rate for those
predators that survive in gestation period i.e, the time interval between the moments when an individual
prey is killed and when the corresponding biomass is added to the predator population.

For convenience, we consider the functional form
h(x(t))=8"x(t), >0 and ne R .. (1)
for both monotonic growth function and logistic growth function of prey.

In this paper our proposed model is

%x(t) = g(x(¥))- h(x())y(t)

d ‘ .. (2)
3 YO =€ "hlxt=9)y(t=1)=doy(®

subject to the following initial conditions :
X(8) = ¢,(8),6 €[-1,0),4,(0) >0 } 3)
y(6) =9,(6),6 €[-7,0),¢,(0) >0 i

Here x(t) denote the density of prey population, y(t) is the density of the predator population,
g(x(t)) denote the growth function of prey population, h(x(t)) denote the functional response of the
predator on prey, d, is the death rate of the predator population, & is the constant death rate for predators.

Assume that the growth rate of predator depends only on the prey population, two growth functions for the
prey population are,

i) g(x(t)) =r"x(t), r>0

i) g(x(t))=r“x(t)( —%j r>0, K>0
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where K is the carrying capacity fo the environment
Section — |

Considering the monotonic growth function of prey and the functional form in (1), the model (2) becomes

%x(t) =r"x() - A" x(t)y(t)
% y(t) = B"e ™ x(t - 7)y(t - 1) — do ¥ (t)

(LD

For positivity of the solution (1.1), (i.e, the predator-prey population survive) we prove the theorem
following Zhu and Zou (see [12]) :

Theorem 1.1

Let (41(6), 4 (0)) eC([—r,O], Rf) and (x(t),y(t)) be any solution to system (1.1) with the initial conditions
(3), then

x(t)>0,y(t)>0 fort>0

Proof :

To prove x(t) >0 for t [0, ), from the first equation (1.1), it follows that

d n n
ax(t) =r"x(t) - B"x(t) y(t)

N %x(t) — (" =By X

X0

n
o y(0) dt

On integration, we have

j (r" —B"y(®) ot

o'—.~

X(t)

= In x(t)=Inx(0) :j(r“ —By(t) )t
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= X(t) =x(0) exp(j[ r" —p"y(t) dtJ

—  x(t)>0,forall t>0 (- x(0) = ¢(0) > 0)

Again to prove y(t)>0 for all t>0, if possible there exists £ >0 such that y(t)=0and y(t) >0 for
te[0,t].

Then y'(t) <0, see [8]

But from the second equation of (1.1) , we have

Y€)= B"e O x(E - )y(E - ) - dy(D)

= YO =" xE-yE-7) (y(E)=0)

= y'(6)=8"e%x( - 7)y(f - r)>0, which is a contradiction,
so y(t)>0,forall t>0

Equilibria and Stability Analysis

We have the model (1.1) as

%x(t) =r"x(t) - A" XMy ()

Lyt =g xt — 1)yt — )~ do y(t)

ay

we know from the predator-prey equations

dx
~_x(a-b
™ (a—hy)
dy

— = mx—n
it y( )

where a, b, m, n are positive constants; a and n are the growth rate of the prey and death rate of the
predator respectively, and b and m are measures of the effect of the interaction between the two species, the

critical (or equilibrium) points of the system are O(0,0) and E(ﬂ,%) Here O is a trivial equilibrium and
m
E(ﬂ,gj is a non-trivial one.
m b

The model (1.1) has two equilibrium points:

0O(0,0) is a trivial equilibrium and
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R d, r" d,e™ r" : . : I o
E=(x,y)= TB”B_" = 5 B_n iIs a non-trivial or co-existence equilibrium which is
e

biologically meaningful.

Our interest is to analyze the biologically meaningful co-existence equilibrium as it specifies a constant
_de” r o . .
population En of prey and B_n of predator that can co-exist with one another in the environment.

The linearization of (1.1) about equilibrium point (x,y") is

d
a® _{r”—s"v —B"Y}{ul(t)}

Suo| L O 4 w0
. 0 0 u,(t—r) -
B'e ™y B"e X | u,(t—1) 4
u ] [0"- " - "% 0
= - + or - n.—or -
U, (1) 0—douz(t) B upt=2)y+4"e “up(t-2)X
L |u O] -B"u 0 -Bxu, 1)
LUy O] [B'e™u,(t-1)¥ +B"e U, (t-1)X —dou, (t)
So,

u () =(r"=B"y)u,(t) - B"xu, (t)
Uy () =P"e ™ yu,(t—1)+B"e " yu, (t—1) —d,u, (t)

Here the matrix

al| BT - p"%
ﬂne—é're—/iry _d0+ﬁne—5re—lr)—(

The associated characteristic equation is given by

det(A—11)=0
= det r-py —PX —kO:O
Be ey —d,+p"e e x| |0 A

=0

rn_Bny_}L _Bn)—(
Bne—ﬁ‘ce—hy _do +Bne_&e_7ﬂ)_(—7\‘

= (" —p"y-1)—d, +B"e Te X1 )+BZ"X ye Fe T =0

U

(r" ="y = d, +B"e *e ™% )-A(r" —B"y)—A(—d, +B"e Fe X )+ 22 +B"X Yo Fe M =0
= N- (r” —B"y—d, + B“e‘&e‘”’i))n +R"Xye e + (r” —B”yX— d+ B“e‘f“e‘“i): 0
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Define
F(?\,) — 7\‘2 _ (rn _Bn y _ do + Bne—&:e—h)—()x + BZn)—( ye—&:e—h
+(r"—B"y)—d, +B"e Fe**%)=0 .. (1.3)

d,e”

ﬂ
B B

At the equilibrium point, E = (x*, y*):( ] the equation (1.3) becomes

n ot
F(L) =22 —(r” —B" [;—n—do +B"e e ™ dE:n j A

&t
2n dOe

L
B B

r" d,e”™
n_npn' _do nAy-0t o—At Y0 =0
J{r B an[ +B"e e 1 J

=  F()=2—(-d, +dee ™ +r"d,e™ =0

=0t 4 —AT

€ ¢

+P

=  FO) =2 +(dy—dee™ P+r"dpe™ =0 .(1.4)
or, equivalently
F() =02 +dgr)+(~dgr+r"d, e ™ =0
If t=0, then equation (1.4) becomes
M+r'd, =0
= N=-rd,
= A=t=iyr"d, =ip,, where B,=,/r"d, >0

We observe that, when t =0, there are no real roots and two purely imaginary roots.
Thus, it is a centre.

Now we test whether Hopf-bifurcation will occur or not
Let G(r",1)=2%+r"d, =0 .. (1.5)

Now, A*+r"d, =0

Differentiating both sides w.r.t r,
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we get 2%3—}% nr'd, =0
r

dr _ nr''d,

dr 2

dx} _h r"d,
A=tiB,

dr 2iB,

The transversality condition does not satisfy. So, if =0 then Hopf-bifurcation does not hold

If ©>0 then the characteristic equation for the linearized equation (1.4) around the point E = (x*, y*) IS

given by
P(L)+Q(\)e™ =0
where P(L) = 2% +d A

Q) =—-dyA+r"d,

...(1.6)

If A >0, let A=iw, w>0be a purely imaginary root of equation (1.6).

From equation (1.6),
P(A)+Q(\)e™ =0
= (0 +dgr)+(~dgr+r"d, e =0
= N +(d0 —doe‘“)>»+ r'd,e”™ =0
=  FM)=2+(dy—dee™ J+r"dge™ =0

Now substituting A =iw in F(L), we get

JETIR1811036 | Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 230


http://www.jetir.org/

© 2018 JETIR November 2018, Volume 5, Issue 11 www.jetir.org (ISSN-2349-5162)

F(iw) = (iw)? +(d, —d,e ™ Jiw+r"d,e ™ =0

= F(iw) =-w’ +iwd, —iwd, (coswt —isinwr) +r"d, (coswt —isinwr) =0
(e =cos®+isin®)
=  F(iw)= (— w? —wd, sinwt +r"d, c05W1)+ i(wd, —wd, coswt—r"d,sinwrt) =0
Equating real and imaginary parts, we obtain
—~w’ —wd, sinwt +r"d, coswr =0,
wd, —wd, coswt—r"d,sinwt =0
Let R(w)=-w"—wd,sinwt+r"d,coswt=0
and
S(w) =wd, —wd, coswt—r"d,sinwt =0
= wd,sinwr—r"d, coswrt =-w’ (L)
wd, coswrt +r"d, sinwt = wd, .. (1.8)
Squaring and adding (1.8) and (1.9), we get
(wd0 sinwt—r"d, COSW’E)Z +(Wd0 coswr +r"d, SinW’C)Z — (—W2 )2 +(wd,)?
= W2d02<sin2 Wt +COS’ W’C)+ (rz"dg(cos2 Wt +in’ W’c): w* +w?d?
= wWdZ+r*d; =w' +w’d?
= w'-r"d?=0
= (w2+r”d0Xw2—r”do):O
= w+r'd,=0, w"-r"d, =0
But w’+r"d,#0,as r>0,d, >0, w>0

So w'-r"d,=0

= w=,/r"d,,as w>0
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So, we have a positive w=w, >0 such that equation (1.6) has purely imaginary roots.
Eliminating sin(wt) from (1.7) and (1.8) , we get

r"d, coswt —w’

: from (1.7)
wd,

sinwrt =

wd, —wd, coswt —w?

. ,  from (1.8)
r'd,

sinwr =

r'd, coswr—w’ wd, —wd,coswr

So,
wd, r'd,

= r®d,coswt—r"w? =w’d, —w’d, coswr
= (rz”dO +W2dO)COSW'E =wd, +r"w’

wad, +r"w?
=  COSWT=——1~>%—"—
re'd, +wd,
= WT:COS& M
(W?+r*")d,
1 1[ Wz(r”+d0)]

=  T=-C0S
W (wW? +r?")d,

Then t,corresponding to w, is given by

2 n
e o M0

(W2 +r?")d,

1
= 1,=— arc cos
Wo

w§(r"+do)]

d, (W, +r°")

Hopf-bifurcation

To show {d(Rek)} >0

dt
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As all roots of (1.6) depend continuously on t and as t>0 increases, roots of (1.6) may cross the
imaginary axis only through a pair of non-zero purely imaginary roots.

For A =iw,,w, >0 be a purely imaginary roots of (1.6),
P(L)+Q(\)e™ =0
= P()=-Q)e ™

= [P(iwe)] = |- Q(iwg)e ™

= [P(iw,)| =|-Q(iw, )[coswr —isinwr|
= [P(iw,)| = |Q(iw,) ( lcoswr —isinwr| 1)
and this determines a set of possible values of L and 7 .

To determine the direction of motion of L as A is varied,

I.e, we determine
- [d . )’
sign —(ReX)|  =sign Re| —
dt A=iwg dr A=iwg

where sign is the signum function, defined by sgn(x) =< 0, x=0

1 x>0

-1, x<0
We have from equation (1.6),
P(A)+Q(A)e™ =0
= (W +dA)+(=dr+r"d)e ™ =0 ...(1.9)

To find d—k
dt

differentiating (1.7) with respect to t, we get

Oli[(x2 +dy2) + (~doh+rdy)e ™ ]=0
T
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So,

dit(xz +d,2) +%((—dox+ r'dy)e”)=0

20+ <a|0)‘;'l—i‘+e-M %(—dom r'd )+ (— g+ r"do)% (e7)=0
(2x+d0)3—1‘—d0e“ %+(— doh+ r"do)e“(—x—«:‘;—i‘j =0
(2x+d0)3—1“-d0e“‘;—i—r(-dour”do “%

~M-dgr+r"d e =0

(20 +d,)-dge™ — (- dyh+rd, o™ ]‘E'}l—X =A(—dor+rid e
T

dh _ 2r"dy — d2 e
dt  (2h+d,)-dee™ —1(r"d, —dyr
dr (2n+dy)-dee™ —lr"d, ~doA ™"
dr Mrid, —dgr e ™
(d_xj‘l_ Q+d, 0 dy 1
de)  alr'd, —dal™  Alr"d,—dyn) A
(d_/lj_l_ 24 +dg do T
dr) 2 Coaldn —deal A
- aga] £ 4802 | Ar"do~doz)
rndo—doﬂ
Using equation (1.9)
(d_xj‘l_ Q+d,  dy 1
dt) -2 +d) Ar'd,—dgr) A

i)

_sign | Re 2x+d,  d, _r
—7»(7»2+do7b) X(rndo_dok) A h=ivg

A=Wy
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_ sign Re[ _ 2iw, +d, d,
—iw,

2iw, +d, d, T

dow? +iwg  dowl +ir"d,w, iw,

oo 2]

T
(iPwZ +idgw, ) iw, (r"d, —idowo)_ﬁﬂ

(2iwg +d0)(d0w§ —iwg) do(dowg —irndowo) i

=sign | Re 5 5 —
w2 f -W3f (omo)? ~fraguo f 0
[ 2wt +d2w? diw}
=sign 2.4 6 4204 L 2nqy2.2
| dowg +w;  dgwg +rdgwg
[ 2wt +d? 1]
= sign o0

2.2 4 2 2n
_dowo+w0 Wy +1°" |

Wy +2Wor?" +r¥d?
2.,,2 4 2 2n
_(dow0 + W, XWO +r )_

=sign

(._ Wi +2wor?" 4+ r2"d? Oj

=1>0 ; >
(dng + W, XW(‘J2 + rZ“)
So,
i -1
sign Re(d—ﬂj ] >0
dr
- A=iwg
. [ d
= sign |—(Re /1)} >0
Ld7 A=iwQ
" -
= —(Re)) >0
_dT Jr=iwg
g _
= —(Re)) >0
L d’C Jw=wy, 1=1,

From the above, we conclude that the transversality condition holds and Hopf-bifurcation occurs at

W=W,, T=T,.

As 7 increases i.e T2 1,, a periodic solution will occur which is the case of Hopf-bifurcation.

Hence if t=0, there is a pair of purely imaginary roots and its represent centre. When t increases to t,,

i.e T (0,7,) there is another pair of purely imaginary zeros.
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Section — 11
Considering the logistic growth function of the prey and the functional form in (1), the model (2) becomes
d N x(t
Sx0 = 1-20 | -pxy

L@
—Y(t) e x(t—1) y(t—1) —dyy(t)

For the proof of positivity of the solution (2.1), we have the following theorem:

Theorem 2.1

Let (,(6),4,(0))eC((~7,01R?) and (x(t),y(t)) be any solution to system (2.1) with the initial condition
(3) then

x(t)>0,y(t)>0

Proof :

To prove x(t) >0 for t €[0,) , from the first equation in (2.1), it follows that
L@ =x0| " - x0-py0
dt K

0
x(t)

On integration

I%:I{r” —%x(t)—ﬁ”y(t)} dt

X(t) | | r .
- [x(O)J I[ T OP y(t)}dt

x(t) ei{r”—ix(t)—ﬁ”y(t)}dt
x(0)

= {r” —%x(t) —B”y(t)} dt

= X(t) = x(0) exp{@ r"— % x(t) -p" y(t)jdt}

= Xx({t)>0, for all t>0 ( x(0)=¢(0)>0)

Similarly, as in case of (1.1) it can be easily proved y(t) >0, for allt>0
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Equilibria and stability Analysis

we have the model (2.1) as

X(t)

d n n
xO=r x(t)( —?]—B X(t) y(t)

% y(t) =p"e T x(t— 1) y(t — 1) —d,y(t)

The model (2.1) has two equilibrium points; O (0,0) is a trivial equilibrium, which is biologically
meaningless and

_ =y [dee™ e, de™ ) . . R ¥ . .
ie, E=(x,9)= —|1- || s e co-existence equilibrium which would be biologically

meaningful iff
r—n(l— dno ef”j>0
p pK

ie if [1- dq e™ [>0
B"K

ie, if p'k>d,e”

ie if e™ <

i.e, if 81<In(B KJ
d

0

e, if r<lln p K
) d

B"K

0

For existence of the equilibrium point, we need to be assumed >1.
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Our interest is to analyze the biologically meaningful co-existence equilibrium.

The linearization of (2.1) about an equilibrium point (X, y) is given by

{”i ‘”Hr"[l%%@ﬂ“v —ﬁ”i__ul(t)}

uj (t) 0 ~do [U2()

0 0 [ (t-n)
i L&“e“* y Ble™ XLIZ (t—1)

u (t)| r“[1—§—ﬁ”yJ —B"X {Ul(t)}
uy 1] " i

{u{ (t)}= r“(1—2—K*—B“vjﬁl(t)—s“m(t)
ué (t) T douz (t)

0
" {B"e"ar yu, (t— 1)+ B"e XU, (t — 1) }

{u{ (t)} ( (1——] B"Vju (t) - B"XT, (t)

O a0+ pre o) +pre T, t—)

Therefore,
u, (t)= ( (l——j B”Vju (t) —B"XU, (1)

u; (t) =—d,U, (1) + Bnei& yu,(t—7)+ Bnei& XU, (t—1)

Here the matrix
2X
1__ _ ng _ ng
NI (R T
Bne—&: —kry _do_i_Bne—&:e—M)—(
The associated characteristic equation is given by

det(A—2l)=0
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2X
"1-22 | -py —B"% A0
= detr( KjBy px —{0 J:O
Bne—&:e—hy _d0+Bne’Me—Xr)—(
2X
n 1__ _ n—_}\‘ _ ng
= r( Kj & SN
Ble Te "y —d, +B"e e X -2
— rn_zxr _Bny_kJ(_do'i'Bne&eh)_(_}\«)'i'ﬁzn)_(ye&eh :0

= |r"- 2)|(<r —B”VJ(—dO +B”e‘&e‘*‘>?)—k[r" - 2T<r —[3”37]

—A=dy +Be e R)+ 22 +pFR ye Te M =0

_ﬁny_do +ﬁne—§fe—/lf)—(]/1+ﬂ2n )—(ye—é‘fe—AT

Now we define,

n

F(4) =42 —(r“ _2X_ pny_g, +ﬁne_5re_’h>‘<]/1
+R*"Xye e +(rn = 2>|<<r —B”y}(—do +[3"e’&e’“>?): 0 .. (2.3)

&t n
At the equilibrium point E = (X, y):(d"e ,r—(l— d;’( e™ B the equation (2.3) becomes

or . .n n or
If(ﬂ)=22 —(rn —Zdo%_ﬂn r_n 1_dn_0e57 ~dg +ﬁne—5re—/lr dOen )l
BK B B

+an doe& ﬂ(l— d e&rje&em

" B" B'K
+[rn _2 doeé‘rrn _ﬂn i 1_ dO e5T _do +ﬁ e—é‘Te—ﬂT doeé‘r =0
B K p" K B"
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n nd
=  F)=42-|-dg +d0e_’“——r do (o7 A+rNdge 7 -0 g0Tg=A7
BK BK
r.n
—nd° e (d,e ™ —dy)=0
B'K
_ n rNd2
=3 F(/I)zﬂ,z—[—doeroe_’“——r do 51]/1+r dge 47 ——0 9747
K K
_rndg Et—kt_i_r ge&:zo
B"K B"K
_ n r"d2
o E() =2 —|dge AT —dg - F0g07 {5, T Z0 gor
B"K B"K
2
(r d —2[; i e&je“ -0 .24
If =0, then (2.4) becomes
ngy2 ny2
- o PP %o + rndo—ﬂ =0
pK)  B"K B"K
n ny2
2 T do n r 0 . . . . 4
= A+ . A+|r do—T =0, which is a quadratic equation in A .
BK B K
2
n ngy2
r'do % -4 r"d S
K| B K B"K
A=
2
R
n rd
— =1l 1 0 | _4rNdy|1-
2 gk 2| pg"K B"K
We consider
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n n 2
and 2, =—-1f OI°+1 rd, —4r"d 1—d—0
2 28"k 2\l B"K 7 OBK

Here the real part of A, is negative, so the stability depends on another eigen value A, .

Theorem 2.2 :

If t=0,then E is locally asymptotically stable if d, <p"K and E does not exists if d, >B"K .

Proof :

In case of positive delay i.e, T> 0, the characteristic equation for the linearized equation around the

&t n
E[doi ,r—n(l— (:O e&D is given by
" B §

P()+Q(h)e™ =0 .@25)

point

where P(\) =22 + pA+p, and Q(L)=gr+q,

n

Here p,=d,+ andO e” >0,

If t>0,let A=iw, w>0 be a purely imaginary root of (2.5)

ie, POL)+Q)e™

ny2 ng2
rd 2r'd
= 12— doe —-dg———— dO &- ﬂ,+_oeaf+ I'ndo— 0 e5T e—/lz':O
B"K B"K B"K
ny2 ny2
= r d 2r''d
ﬁ K ﬁ K B"K

Now substituting A =iw in F (1) we get,
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n 2 2
F (w) = (iw)” —iw] dye ™ —d, -9 | Lo gor [ png 2o gir e _g
p"K B"K B"K

wr'dy s r'd; e
p"K B"K

= —w’ —iwd,(coswr —isinwt)+iwd, +

n

nA42
+(r"d0 _20dg g j(COSWr—iSinWT)Z 0

I,ndZ nA2
= —w? —wd, smwwB ” e¥ +r "d, coswt — 0 % coswt

n nA2
doeﬁr r'd, S|nWr+2r dq 0 e sinwr |=0
B K

( wd, coswt +wd, +

Equating the real and imaginary parts we get the system of transcendental equations

rndZ 2 nAd2
~w? —wd, sinwt+—2e” +r"d, COSWT—Bn—KOeSTCOSWTZO,

n nA2

wr"d ! .
—wd, coswt+wd, + 0% —r"d,sinwt+ ——2e*sinwt=0.
r‘IK BnK

kd
cos Wz —wd g sin wz =w? —Toe& ...(2.6)

B"K B"K

2r"g 2
— rndo_ 0 51'

2r'd;}

and r'd, — L O
[ 0T K (2.7)

. wr"d
eg‘t]smWde0 coswt = wd, +——

Squaring and adding (2.6) and (2.7), we get

2
2r" d 2r" d
0 52’ +W2d§_2 rndo O 52’

B"K B"K

rNdg -——— wd g sin Wz cos wr

2r”d2 :
r'd, - wd, sinwtcoswr
B"K

2 2
= w?— r'dy e™ | +| wd, + wr'd, e™
B"K B"K
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2 2 2
zrndz nq2 n
= [r“do— B”KO ef") +w?d? =(W2——;ndK0 ef"] +(Wd0+vgn£° ef"]
= w4+—[::i°22 e 2+[_4r2n”£§ e&—rznd§—3r;n£§ eZ&J:O,
which is a quadratic equation in w’
2n 42 2n 42 ’ 2n 43 2n 44
_BZanzo eZ&i\/([;zndKoz ezz‘n] _4(4;’3”20 e&_rzndg_zang 2&}
w? =
2
— W= —r;”doi Q25 ii rznd§ o2 | _4 4r*"dg ¥ _rzndg_3r22nd§ Q25
287K 2\ p"K B"K BIK
Since, w® >0, we have
2n 42 2n 42 2 2n 43 2n 4
_rz d°2 e 4 L r2 d°2 A d, e&—rz”doz—?’r2 dg e’™ |>0
2B"K 2\ pK B"K BK
r2ng2 2 ar2g? 3r2ng4 r2ng2 2
0 A28 | 0.a8t 2042 0 20t 0 A28
= [Zn 2e j 4{ n € r dO 2Ny 2 J>( 2n 2e J
pTK pK pTK pTK
-~ [4r2ndg e&_and2_3r2ndg e? |5 0
BnK 0 anKz
2n 43 2n 44
4r=d 3ared
— - Oe&'_rZHdg_ T (;e25r<0
BK pK
2n 44 2n,43
3red 4r<d
= geZ&——n 0e57+r2”d§>0
BK BK
2nq 2
r<'d n N
= S (3e2™d? — 48"Kd,e™ +B>"K?)> 0
= 3e¥d2 —4p"Kd,e™ +B"K? >0
25t 4 2 4 n ot l 2Ny 2
= e do_§B Kd,e +§B K*>0
n ot 2n 2
= o AP Ke” P Kz >0
3d, = 3d
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2 2
= (eg")z—Zef’r 28K + 2K ) _[ 28K +B2nK2>O
3d, | | 3d, 3d, | = 3d?

ZBHK 2 BZHKZ 4B2nK2
= e — +—- —>0
3d, 32 9d
p'KY (K
— e&r_ B _ B >O
3d, 3d,
'K (K
= e — B > p ...(2.8)
3d, 3d,
if e&—M<—% or eS’—2BK>BK
3d, 3d, 3d, 3d,
if e51<BK or e&>3l3K
3d, 3d,
if e51<BK or ei°“>l3K
3d, d,
Now, e&<B K
3d,
- BK>e6’>1,when8>0,r>0
3d,
= B K>1
3d,
= B"K>3d,

= d, <%B”K <B"K

= d,<B"K
ooe¥ >
Again, d
— BK<e&<1, when §<0,7>0

0

= B"K<d, when 6 <0,7 >0
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= d,>p"Kwhen 6<0,7>0

But 9 is not negative, so do >B"K is not possible.
Hopf-bifurcation

We will now show that

{%(Re x)} >0

T=Tq

This will signify that there exists at least one eigen value with positive real part for
conditions for Hopf bifurcation [6] are then satisfied giving the required periodic solution.

We first look for purely imaginary roots of A =W, of (2.5)

From equation (2.5)
P(\)=-Q()e™

= [P(iw)|=|-Q(iwp)e ™

N \5(iw0)\:\6(iwo)ue-i%f

= [P(iw,)| =|Q (iw,)|cos(wyt) —isin(w,q
= |P(iw,)| =|Q )|

and this determines a set of possible values of Wo.

Our, aim is to determine the direction of motion of 0 as 7 is varied.

i.e, we determine

1
sign{i(Re x)} = sign{Re(d—kj }
dt sing dt .

We have from (2.5),

PO)+Q()e™ =0

= (®+pr+p,)+(r+a,)e™ =0 .(2.9)
To find d—k
dt

differentiating (2.9) w.rt © , we get

T>71, Also the
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%[(7“2 +PA+ P, )+ (ql}\’ +4, )eikT ]: 0

dr
2\ ——+e—
= ( " pl) dt e dt dt

d?b -\t

= (2rp) e qld—x+(q1k+qz)9“(—%—r—
T dt d

d d /.
(g1 + )+ (g +0,)— (™)

—AT —AT d}\' —AT
20+ p,)+e g, —te™ (q17»+q2)]a=%(q17»+qz)e ’

., dr_ 22+ p)+ e~ (@2 + a)
dz PICTPRNPY i
-1 -\t
= (d_xj - 2)\’-"_ pl -t + qle —AT _l
dr)  Mar+g )™ Mar+a e A

&)
— oAy
dt

Therefore,

T

2h+py + G T

Mar+a,)e™  Agr+qg,) A

signLji (Re x)l_iwo

=sign

=sign

= sign|

=sign

=sign

-1
Re (—d}” ) }
dt _
A=iwg

Re =N
(_}\’(xz + pl7\‘+ pz) k(ql>\“+q2) A

2L+ Py + % T

ﬂx—i% (using (2.9))

[ 21w, + p, G T j
Re| —5— - + - - -
- 'Wo(l Wy + DIV, + pz) IWO(qIIWO +Q2) Wy

Re

Re

2iw, + p, G T ]
2 i3 + 2 T
P W ‘H(Wo - pzwo) — O Wo H10,W,  1IW,

(P2 f +(we—powy (a2 +(aw,)? W

(2iW0 + Pl)(IOle _i(Wg — pzWO))+ ql(_ qlwg _iqZWO) +i_T’

J]
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_ sign R({(Ziwo + P pws —iwg +ipw, ) 0y (-aws —iqzwo)+i_rﬂ

2 20t 1 22
pZw; +(W§ - pzwo) 4, Wo +0,Wo Wo

= sign

[ 3 2.2 2.2
2Wo(Wo — p2W0)+ P Wo _ Gy Wo

2 2,4 25,2

plzwg +(Wg - pzwo) q1W0 + 02 Wo

20,2

(208~ 200w + p7ud Jobwd + aZwd - a2 (ou

0 1Y

6. 2.2 4)
o tWp T PoW, —2p2W0

=sign
2
7w+ - pawo a2+ o)

82 . 6.2 2 4 224 2.2 4
Wodp +2Wdy —2P2d; Wy + Py Ay Wy — Po G Wy

2
20+ pavof | wi(a2ud a3 )

=sign

6.2 . 4.2 22 2292 229
Woly +2Wgdy = 2p2d; Wy + Pydy Wy — Pyty Wy

2
o7+ {3 - pawo f 20+ o)

=sign

wgq? +2wla2 (w? = p, )+ w? (pZq? — pZq?)

(p2we + (w2 = pow, ) Ja2w? +q2)

=sign

2

=1>0,ifand onlyif w? — p, >0 and p’q’ - p>g> > 0.
Therefore, the transversality condition will hold and hence Hopf-bifurcation will occur at

W=W,,T=1,

e, [di(Rek)} >0

T W=W,,T=1,

if and only if w5 — pp >0 and p7a; — p3a; >0.

2
Wy — P2 >0
2
= W>P;

nA2
-~ W ;‘:(0 e . (2.10)

and  p/q; — p;qf >0
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n 2 nq2 2 2 2
N d0+rd° rd, _2r'd, e | _g? r'd, e | =0
B"K 'K B"K
" ’ 2rd i r ’
= dg|1+ F e || =2 Soger —dg e” | >0
p"K B'K B'K K
h 2 2 St 2
= dg‘(r“)2 141 e | [1- 290 g —d? L 1150
B"K B"K B"K
n 2 2 5t 2
SO E UL 1- 200 g —d? © >0
B"K B"K B"K

= (1+ r e&J(l—&e& } >[d0e&j
7 pK B"K B"K

Conclusion :

In this paper, a mathematical model has been proposed and analyzed to study the dynamics of a
predator-prey system due to the time lags for the conversion of biomass and considering different growth
functions of prey. The model has been analyzed in two sections: first when growth function of prey is
monotonic and second when growth function of prey is logistic. Attempt have also been made to understand
the effect of gestation delay on dynamical behavior of predator-prey system. Linear stability analysis reveals

that for the monotonic growth rate of prey, in the absence of delay the co-existence equilibrium is a centre.

But for the logistic growth function of prey, it is locally asymptotically stable if d, <B"K and does not exist
if d,>p"K . For maintaining co-existence between the predator-prey interaction, balance growth rate of

prey and carrying capacity of an environment is necessary. Also we observed that for the monotonic growth
rate of prey, in absence of delay , Hopf -bifurcation is not possible but in case of positive delay Hop-f
bifurcations is possible without any condition and there is a periodic solution, which is the case of Hopf-

bifurcation. In case of logistic growth of prey, Hopf-bifurcation is possible under the condition

ny2 n 2 5 )2
w2 > o i and |14 e* 2o g || [ 9o
B"K B"K B"K B"K
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