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Abstract : The logistic growth of a predator-prey interaction model is studied by using different growth 

functions of prey and including a discrete time delay to model the time lags between the capture of the prey 

and its conversion to viable biomass. 

In this paper the equilibria and stability analysis of predator-prey model is discussed, considering the 

different growth function of prey. If the growth function of prey is logistic then the co-existence equilibrium 

is locally asymptotically stable if Kd n0  and it does not exit if Kd n0 . It is further shown that 

periodic solution is possible through Hopf-bifurcation under the conditions 
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Introduction :  

In nature, an individual living organism of any species does not live in isolation. The organisms live in 

groups, are called population. Ecological studies start at the population level. Since a population changes 

over time, its time-rate of change is called the growth rate. The growth rate of a population is the rate of 

change of its size or density per unit time. It is determined by the birth-rate and the death-rate. The growth 

rate cannot be a constant, but it depends on the size or density of the population. 

 An important problem in ecology, the science which studies the interrelationship between  living 

organisms and their environment, is to investigate the question of coexistence of two species and  to decide 

what mankind to preserve this ecological balance  of nature. In  nature, there are many instances where the 

species of animals  (the predator) feeds on another species of animals ( the prey), which in turn feeds on 

other things that readily available in the environment. For example, population of foxes  and rabbits in a 
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woodland; the foxes (predators) eat rabbits (the prey), while the rabbits eat certain vegetation in the 

woodland. In the absence of the predators, the prey grows exponentially; at the same time in the absence of 

the prey , the predator  population dies out exponentially (due to lack of food). When both predator and prey 

are present, there occurs, in combination with these natural rates of growth and  decline is called system  in 

equilibrium i.e, a constant population of prey and of the predator that coexist with one  another in the 

environment. Geometrical analysis of prey-predator population follows an orbital path. Eliptic orbit  are 

obtained around the equilibrium point or critical point. 

 In the layer of the planet Earth, where life exists, the growth rate of different species mainly depend 

on ecology and carrying capacity of environment etc. As a consequence the growth rate of prey species is an 

important matter for the prey-predator interaction model. The co-existence of two species has been of great 

interest for researchers  and studied  extensively using mathematical models by several researchers in 

particularly by [2], [3]. In many existing prey-predator models, the time delay for conversion of biomass i.e 

(organic material) from prey to the predator population were ignored. The delay is often caused by the 

conversion of consumed prey biomass into the predator biomass due to the body size growth or 

reproduction. 

 In this paper, our aim is to study and analyze the dynamics of prey-predator interacting population 

model due to different growth functions including discrete time   for the capture of the prey and its 

conversion to biomass and the term e , which accounts for predators those interact  with prey at time t but 

die before growth (given reproduction)    times units later, where   is the constant death rate for those 

predators that survive in gestation period i.e, the time interval between the moments when an individual 

prey is killed and when the corresponding biomass is added to the predator population. 

For convenience, we consider the functional form 

 0),())((   txtxh n  and Rn    … (1) 

for both monotonic growth function and logistic growth function  of prey. 

In this paper our proposed model is  
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subject to the following initial conditions : 
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Here )(tx  denote  the density of prey population, )(ty  is the density of the predator population, 

))(( txg denote the growth function of prey population,  ))(( txh  denote the functional response of the 

predator on prey, 0d  is the death rate of the predator population,   is the constant death rate for predators. 

Assume that the growth rate of predator depends only on the prey population, two growth functions for the 

prey population are, 

i) 0),())((  rtxrtxg n  

ii) 0,0,
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where K is the carrying capacity fo the environment 

Section – I 

Considering the monotonic growth function of prey and the functional form in (1), the model (2) becomes 
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    … (1.1) 

For positivity of the solution (1.1), (i.e, the predator-prey population survive) we prove the theorem 

following Zhu and Zou (see [12]) : 

Theorem 1.1 

Let  2
21 ],0,[))(),((  RC   and  )(),( tytx  be any solution to system (1.1) with the initial conditions 

(3), then  

 0)(,0)(  tytx   for 0t  

Proof : 

 To prove 0)( tx  for ),0[ t , from the first equation (1.1), it follows that  
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  0)( tx , for all 0t                  0)0()0( x  

Again to prove 0)( ty  for all 0t , if possible there exists 0t  such that 0)( ty and 0)( ty for 

],0[ tt . 

Then 0)(  ty  , see [8] 

But from the second equation of (1.1) , we have  

)()()()( tdytytxety n      

   0)()()()(   tytytxety n    

  0)()()(    tytxety n , which is a contradiction, 

so 0)( ty , for all 0t  

Equilibria and Stability Analysis 

We have the model (1.1) as  
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we know from the predator-prey equations 

)( byax
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)( nmxy
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where a, b, m, n   are positive constants; a and n  are the growth rate of the prey and death rate of the 

predator respectively, and b and m are measures of the effect of the interaction between the two species, the 

critical (or equilibrium) points of the system are O(0,0) and 
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E , . Here O is a trivial equilibrium and 
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E ,  is a non-trivial one. 

The model (1.1) has two equilibrium points: 

O(0,0) is a trivial equilibrium and  
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  is a non-trivial or co-existence equilibrium which is 

biologically meaningful. 

Our interest is to analyze the biologically meaningful co-existence equilibrium as it specifies a constant 
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 of predator  that can co-exist with one another in the environment.  

The linearization of (1.1) about equilibrium point ),( ** yx  is  
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The associated characteristic equation is given by 
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or, equivalently 

    0)( 000
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If 0 , then equation (1.4) becomes 

 00

2  dr n  

  0

2 drn  

  00  idri n , where   000  dr n  

We observe that, when 0 , there are no real roots and two purely imaginary roots. 

Thus, it is a centre. 

Now we test whether Hopf-bifurcation will occur or not 

Let   0, 0

2  drrG nn      … (1.5) 

Now, 00

2  dr n  

Differentiating both sides w.r.t  r,  

http://www.jetir.org/


© 2018 JETIR  November 2018, Volume 5, Issue 11                               www.jetir.org  (ISSN-2349-5162) 

 

JETIR1811036 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 230 

 

we get 02 0

1 


  dnr
dr

d n
 

  



 

2

0

1dnr

dr

d n

 

 
0

0

1

2
0









 i

dnr

dr

d n

i

  

 

0

0
1

2 dri

dnr

n

n

  

 

0

0
1

2 dr

dinr

n

n

  

 

0

0

1

2
0

dr

drin

n

n

  

 0Re

0






 idr

d
 

The transversality condition does not satisfy. So, if 0  then Hopf-bifurcation does not hold 

If 0  then the characteristic equation for the linearized equation (1.4) around the point  **, yxE   is 

given by  

 0)()(  eQP     …(1.6) 

where  0

2)( dP  

 00)( drdQ n  

If  0 , let  iw , 0w be a purely imaginary root of equation (1.6). 

From equation (1.6), 
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Now substituting iw  in )(F , we get 

http://www.jetir.org/


© 2018 JETIR  November 2018, Volume 5, Issue 11                               www.jetir.org  (ISSN-2349-5162) 

 

JETIR1811036 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 231 

 

   0)()( 000

2   iwniw edriweddiwiwF  

 

  0)sin(cos)sin(cos)( 000

2  wiwdrwiwiwdiwdwiwF n  

          sincos iei  

    0)sincos(cossin)( 00000

2  wdrwwdwdiwdrwwdwiwF nn  

Equating real and imaginary parts, we obtain  

 ,0cossin 00

2  wdrwwdw n  

 0sincos 000  wdrwwdwd n  

Let 0cossin)( 00

2  wdrwwdwwR n

 

and 
 

 0sincos)( 000  wdrwwdwdwS n  

  
2

00 cossin wwdrwwd n     … (1.7) 

 
000 sincos wdwdrwwd n     … (1.8) 

Squaring and adding (1.8) and (1.9), we get 

      2

0

222

00

2

00 )(sincoscossin wdwwdrwwdwdrwwd nn   

      2

0

24222

0

2222

0

2 sin(coscossin dwwwwdrwwdw n   

  
2

0

242

0

22

0

2 dwwdrdw n   

  02

0

24  drw n  

     00

2

0

2  drwdrw nn  

  00

2  drw n , 00

2  drw n  

But 00

2  drw n , as  0,0,0 0  wdr  

So 00

2  drw n  

  0drw n  

  ,0drw n as 0w  

http://www.jetir.org/


© 2018 JETIR  November 2018, Volume 5, Issue 11                               www.jetir.org  (ISSN-2349-5162) 

 

JETIR1811036 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 232 

 

  00 drww n  

So, we have a positive  00  ww  such that equation (1.6) has purely imaginary roots. 

Eliminating )sin( w  from (1.7) and (1.8) , we get 
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As all roots of (1.6) depend continuously on    and as 0  increases, roots of (1.6) may cross the 

imaginary axis only through a pair of non-zero purely imaginary roots. 

 

For 0, 00  wiw  be a purely imaginary roots of (1.6), 
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where sign is the signum function, defined by 


















0,1

0,0

0,1

)sgn(

x

x

x

x  

We have from equation (1.6), 
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From the above, we conclude that the transversality condition holds and Hopf-bifurcation occurs at 

0ww  , 0 . 

As   increases  i.e 0 , a periodic solution will occur which is the case of Hopf-bifurcation. 

Hence if 0 , there is a pair of purely imaginary roots and its represent centre. When   increases to 0 ,  

i.e ),0( 0  there is another pair of purely imaginary zeros. 
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Section – II 

Considering the logistic growth function of the prey and the functional form in (1), the model (2) becomes 
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For the proof of  positivity of the solution (2.1), we have the following theorem: 
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Similarly, as in case of (1.1) it can be easily proved  0)( ty , 0tallfor  
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Equilibria and stability Analysis 

we have the model (2.1) as  
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Our interest is to analyze the biologically meaningful co-existence equilibrium. 

The linearization of (2.1) about an equilibrium point ),( yx  is given by 
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The associated characteristic equation is given by 
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Here the real part of  
1  is negative, so the stability depends on another eigen value 2 . 

Theorem 2.2 : 

 If  0 , then E  is locally asymptotically stable if Kd n0
 and E  does not exists if Kd n0 . 
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Conclusion : 

 In this paper, a mathematical model has been proposed and analyzed to study the dynamics of a 

predator-prey system due to the time lags for the conversion of biomass and considering different growth 

functions of prey. The model has been analyzed in two sections: first when growth function of prey is 

monotonic and second when growth function of prey is logistic. Attempt have also been made to understand 

the effect of gestation delay on dynamical behavior of predator-prey system. Linear stability analysis reveals 

that for the monotonic growth rate of prey, in the absence of delay the co-existence equilibrium is a centre. 

But for the logistic growth function of prey, it is locally asymptotically stable if Kd n0
 and does not exist 

if Kd n0 . For maintaining co-existence between the predator-prey interaction, balance growth rate of 

prey and carrying capacity of an environment is necessary. Also we observed that for the monotonic growth 

rate of prey, in absence of delay , Hopf -bifurcation is not possible but in case of positive  delay Hop-f 

bifurcations is possible without any condition and  there is a periodic solution, which is the case of Hopf-

bifurcation. In case of logistic growth of prey, Hopf-bifurcation is possible under the condition 
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