Difference cordial labeling of some graphs related to square graph

¹V.Mohan, ²A.Sugumaran ^{1, 2}Department of mathematics, Government Arts College, Thiruvannamalai-606603, Tamilnadu, India.

Abstract. A difference cordial labeling of a graph G with p vertices is a bijective assignment of labels from $\{1, 2, ..., p\}$ to the vertices of G so that each edge e = uv is assigned the label $|f(u) - f(v)| \pmod{2}$, if the number of edges labeled with 1 and the number of edges labeled with 0 are differ by at most 1. In this paper we show that the graphs $P(r . P_n^2)$, $C(r . P_n^2)$, $S(r . P_n^2)$, $C_n^2 \odot v_n P_k$ and $C_n^2 \odot v_n P_k^2$ admit difference coordial labeling.

Mathematics subject classification. 05C78

Keywords. Path union of graphs; cycle union of graphs; open star of graphs; difference cordial graphs.

- 1. Introduction. All graphs considered in this paper are simple, finite and undirected graphs. By the expression G = (p, q) we mean a simple undirected graph with order p and size q. Labeling of have been used in several fields such as, astronomy, radar and circuit design and database management[1]. In [3, 4, 5, 6, 7, 8], the difference cordial labeling behavior of Path, Cycle, Complete graph, Complete bipartite graph, Bistar, Wheel and Web graphs have been investigated. Seoud and Salman [9, 10] have studied the difference cordial labeling behavior of the families of graphs such as Ladder, Triangular ladder, Grid, Step ladder and Two sided step ladder graphs. In this paper we investigate the difference cordial labeling behavior of P(r. P_n^2), C(r. P_n^2), S(r. P_n^2), C_n^2 O v_n P_k and C_n^2 O v_n P_k.
- 2. Basic definitions and notations. In this section we recall some of the basic definitions and notations.

Let $f: V(G) \rightarrow \{1, 2, 3, ..., p\}$ be any bijective vertex labeling map. We denote $e_f(i)$ is the number of edges of G labeled with i under f.

Definition 2.1. Let G = (V(G), E(G)) be a (p, q) graph and let $f : V(G) \rightarrow \{1, 2, 3, ..., p\}$ be bijective. The mapping f is called a difference cordial labeling of graph G, if each edge e = uv is assigned the label |f(u)| $f(v) \pmod{2}$ and satisfying $|e_f(0) - e_f(1)| \le 1$. A graph which admits difference cordial labeling is called a difference cordial graph.

The concept of difference cordial labeling has been introduced by R. Ponraj et al.[3].

Definition 2.2. Let G be a graph and let G_1 , G_2 , G_3 , ..., G_n , be n copies of graph G. For each i = 1, 2, 3, ..., n-1, if we joining the graphs G_i and G_{i+1} by an edge, then the graph is called a *path union of graph* G and it is denoted by P(n.G).

Definition 2.3. Let G be any graph with n copies. For each i = 1, 2, 3, ..., n, if any one of the vertices of the ith copy of G is append with the ith vertex of cycle C_n, then the resulting graph is called a cycle union of graph G and it is denoted by C(n.G).

Definition 2.4. Let G be any graph with n copies. For each i = 1, 2, 3, ..., n, if any one of the vertices of the ith copy of G is append with the ith pendent vertex of cycle K_{1, n}, then the graph obtained is called an *open* star of graph G and it is denoted by S(n.G).

Definition 2.5. Let G be any simple connected graph. The square of graph G is denoted by G², defined as the graph with the same vertex set as that of G and any two vertices are adjacent in G² if they are at a distance 1 or 2 apart in G.

Definition 2.6. Let G, H be any two graphs and let v be a vertex of G. Suppose we append any one of the vertices of the graph H at vertex v, then the graph is denoted by $G O_V H$.

3. Main results.

Theorem 3.1. P(r . P_n^2) is difference cordial graph for n, $r \ge 2$.

Proof. Let $G = P(r, P_n^2)$. We denote v_i^k is the ith vertex of kth copy of P_n^2 , where $1 \le k \le r$ and $1 \le i \le n$. Note that |V(G)| = nr and |E(G)| = 2r(n-1)-1.

We define a vertex labeling function $f: V(G) \rightarrow \{1, 2, 3, ..., nr\}$ as follows:

$$f(v_i^k) = i+4(k-1)$$
 for $1 \le i \le n$ and $1 \le k \le r$.

Also we interchange the labels of the vertices v_1^k and v_2^k for each $2 \le k \le r$.

In view of the above labeling pattern, we have $|e_f(0) - e_f(1)| = 1$. Hence G is a difference cordial graph.

Example 3.2. Figure 1 illustrates that the path union of 3 copies of P_4^2 admits difference cordial labeling.

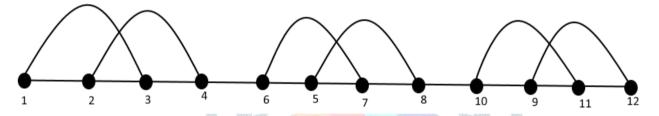


Figure 1. The graph $P(3. P_4^2)$.

Theorem 3.3. Cycle union of r copies of the graph P_n^2 is a difference cordial graph.

Proof. Let $G = P(r, P_n^2)$. We denote v_i^k is the i^{th} vertex of k^{th} copy of P_n^2 , where $1 \le k \le r$ and $1 \le i \le n$. Note that |V(G)| = nr and |E(G)| = 2(n-1)r. We define a vertex labeling function $f : V(G) \rightarrow \{1, 2, 3, ..., nr\}$ as follows:

$$f(v_i^k) = i+4(k-1)$$
 for $1 \le i \le n$ and $1 \le k \le r$.

Also we interchange the labels of the vertices v_1^k and v_2^k assigned by f, for each $2 \le k \le r$.

In view of the above labeling pattern, we have $|e_f(0) - e_f(1)| = 0$. Hence G is a difference cordial graph.

Example 3.4. Figure 2 illustrates that the cycle union of 4 copies of P_4^2 admits difference cordial labeling.

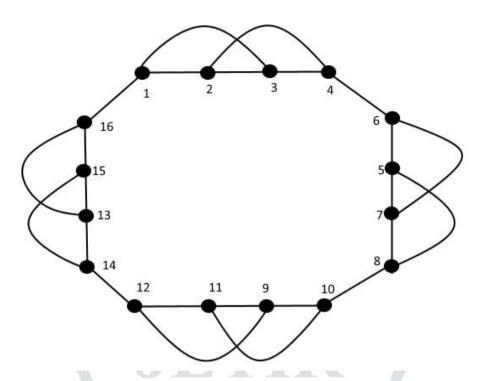


Figure 2. The graph $C(4, P_4^2)$.

Theorem 3.5. Open star of r copies of the square graph P_n^2 is a difference cordial graph.

Proof. Let $G = S(r, P_n^2)$. Let v be the apex vertex of star graph. Let $G = S(r, P_n^2)$. We denote v_i^k is the ith vertex of kth copy of P_n^2 , where $1 \le k \le r$ and $1 \le i \le n$. Note that |V(G)| = nr + 1 and |E(G)| = 2(n-1)r. We define a vertex labeling function $f: V(G) \rightarrow \{1, 2, 3, ..., nr + 1\}$ as follows:

$$f(v) = 1,$$

$$f(v_i^k) = (i + 1) + 4(k-1) \text{ for } 2 \le i \le n \text{ and } 1 \le k \le r.$$

Also we interchange the labels of the vertices v and v_1^1 which are assigned by f. In view of the above labeling pattern, we have $|e_f(0) - e_f(1)| = 0$. Hence G is a difference cordial graph.

Example 3.6. Figure 3 shows that the difference cordial labeling of the graph $S(4, P_4^2)$.

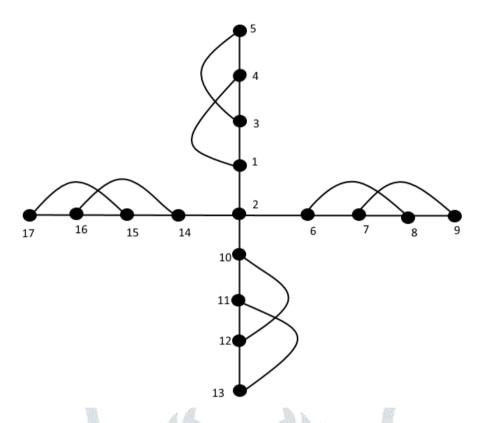


Figure 3. The graph $S(4. P_4^2)$.

Theorem 3.7. The graph $C_n^2 \odot v_n P_k$, (k = 2, 3, 4) is a difference cordial graph, (n > 4).

Proof. Let $G = C_n^2 \odot v_n P_k$. Let $v_1, v_2, v_3, \dots, v_n$ be the vertices of C_n^2 . We distinguish the difference cordial labeling into three cases.

Case 1. When k = 2.

Let u_1 , u_2 be the vertices of path P_2 and let $u_1 = v_n$. Note that |V(G)| = n + 1 and |E(G)| = 2n + 1. We define a vertex labeling function $f: V(G) \rightarrow \{1, 2, 3, ..., n+1\}$ as follows:

$$f(v_i) = i \text{ for } 1 \le i \le n;$$

$$f(u_2) = n + 1.$$

Case 2. When k = 3.

Let u_1 , u_2 , u_3 be the vertices of path P_3 and let $u_1 = v_n$. Note that |V(G)| = n + 2 and |E(G)| = 2n + 2. We define a vertex labeling function $f: V(G) \rightarrow \{1, 2, 3, ..., n+2\}$ as follows:

$$f(v_i) = i \text{ for } 1 \le i \le n;$$

$$f(u_2) = n + 1;$$

$$f(u_3) = n + 2$$
.

Case 3. When k = 4.

Let u_1 , u_2 , u_3 , u_4 be the vertices of path P_4 and let $u_1 = v_n$. Note that |V(G)| = n + 3 and |E(G)| = 2n + 3. We define a vertex labeling function $f: V(G) \rightarrow \{1, 2, 3, ..., n+3\}$ as follows:

$$f(v_i) = i \text{ for } 1 \le i \le n;$$

$$f(u_2) = n + 1;$$

$$f(u_3) = n + 2;$$

$$f(u_4) = n + 3.$$

In view of the above labeling pattern from all the cases, we have $|e_f(0) - e_f(1)| \le 1$. Hence G is a difference cordial graph.

Example 3.8. Figure 4 shows that the difference cordial labeling of the graph C_6^2 Ωv_6 P_3 .

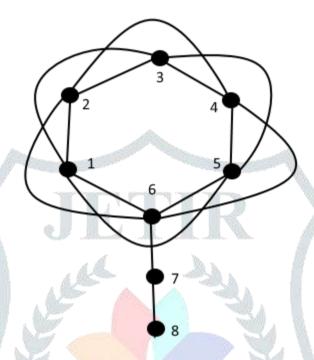


Figure 4. The graph $C_6^2 \odot v_6 P_3$.

Theorem 3.9. The graph $C_n^2 \odot v_n P_k^2$ is a difference cordial graph, where n > 4, m > 2.

Proof. Let $G = C_n^2 \odot v_n P_k^2$. Let $v_1, v_2, v_3, \ldots, v_n$ be the vertices of C_n^2 and let $u_1, u_2, u_3, \ldots, u_k$ be the vertices of P_k^2 and let $u_1 = v_n$. Note that |V(G)| = n + k - 1 and |E(G)| = 2n + 2k - 3. We define a vertex labeling function $f: V(G) \rightarrow \{1, 2, 3, \ldots, n + k - 1\}$ as follows:

$$f(v_i) = i \text{ for } 1 \le i \le n;$$

$$f(u_{i+1}) = i + n \text{ for } 1 \le i \le k - 1.$$

In view of the above labeling pattern, we have $|e_f(0) - e_f(1)| = 1$. Hence G is a difference cordial graph.

Example 3.10. Figure 5 shows that the difference cordial labeling of the graph $C_6^2 \odot v_6 P_3^2$.

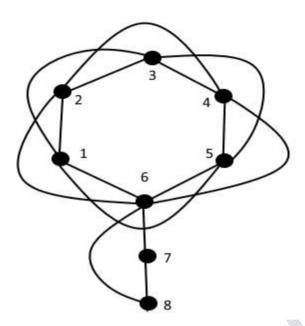


Figure 5. The graph C_6^2 O v_6 P_3^2 .

4. Conclusion. Difference cordial labeling concept has been investigated by many researchers. In this paper, we proved that the graphs $P(r . P_n^2)$, $C(r . P_n^2)$, $S(r . P_n^2)$, $C_n^2 \odot v_n$ P_k and $C_n^2 \odot v_n$ P_k^2 are difference cordial graphs.

Acknowledgement. We are indepted to anonymous referee for his valuable suggestions and improvement of this paper.

5. References.

- [1] J. A. Gallian. 2014. A dynamic survey of graph labeling, The Electronic Journal of Combinatorics, 17, #DS6.
- [2] F. Harary. 1969. Graph theory, Addision Wesley, New Delhi.
- [3] R. Ponraj, S. Sathish Narayanan and R. Kala. 2013. Difference cordial labeling of graphs, Global Journal of Mathematical Science: Theory and Practical, 5, 185-196.
- [4] R. Ponraj, S. Sathish Narayanan and R. Kala. 2013. Difference cordial labeling of Corona graphs, J. Math. Comput. Sci., 3, 1237-1251.
- [5] R. Ponraj, S. Sathish Narayanan. 2014. Difference cordial labeling of some derived graphs, International Journal of Mathematical Combinatorics, 4, 37-48.
- [6] R. Ponraj, S. Sathish Narayanan and R. Kala. 2015. A note on difference cordial graphs, Palestine journal of mathematics, 4(1), 189-197.
- [7] R. Ponraj, S. Sathish Narayanan and R. Kala. 2015. Difference cordiality of product related graphs, Tbilisi Mathematical Journal, 8(2), 41-47.
- [8] R. Ponraj, S. Sathish Narayanan and R. Kala. 2017. Difference cordial labeling of some special graphs, Palestine journal of mathematics, 6(2), 135-140.
- [9] M. A. Seoud and Shakir M. Salman. 2015. On difference cordial graphs, Mathematica Aeterna, 5(1), 105-124.
- [10] M. A. Seoud and Shakir M. Salman. 2016. Some results and examples on difference cordial graphs, Turkish Journal of Mathematics, 40, 417-427.