# MAGIC AND PARTIALLY MAGIC PYRAMIDAL GRAPHS 

H. Velwet Getzimah ${ }^{1}$, K. Palani ${ }^{2}$<br>${ }^{1}$ Assistant Professor, Department of Mathematics, Pope's College(Autonomous), Sawyerpuram-628251, Thoothukudi, Tamilnadu, India. . ${ }^{2}$ Associate Professor, Department of Mathematics, A.P.C. Mahalaxmi College for Women, Thoothukudi-628002, Tamilnadu, India ${ }^{12}$ Affiliated to Manonmaniam Sundaranar University, Tirunelveli-627012, Tamilnadu, India.


#### Abstract

: Let $\mathrm{G}=(V, E)$ be a graph with $p$ vertices and $q$ edges. The graph G is said to be a Magic Pyramidal graph if it admits both Vertex Magic Pyramidal labeling and Edge Magic Pyramidal labeling. In this paper we investigate graphs that do not satisfy Vertex Magic Pyramidal labeling but satisfy Edge Magic Pyramidal labeling and categorize those graphs as Partially Magic Pyramidal graphs.


Key words: Pyramidal, Magic, Vertex Magic, Edge Magic
AMS Subject Classification: 05C78.

## I. INTRODUCTION

Graph labeling is an assignment of labels to the vertices or edges or to both the vertices and edges of a graph subject to certain conditions. Magic labelings have their origin from magic squares and it was first introduced by Sedlacek. The concept of Vertex Magic Pyramidal and Edge Magic Pyramidal labelings are introduced with Pyramidal numbers. In a Vertex magic pyramidal labeling the weight of a vertex is the sum of the vertex label and the labels of the edges incident with that vertex. In Vertex magic pyramidal labeling the weight of each vertex is a constant and the constant must be a pyramidal number. For a particular graph there are many vertex magic constants. Analogous to vertex magic pyramidal labeling edge magic pyramidal labeling is defined in such a way that at each edge the sum of that edge label and the labels of the vertices incident with that edge is a constant and the constant must be a pyramidal number. In this paper we investigate graphs which admit both Vertex Magic Pyramidal labeling and Edge Magic Pyramidal labeling and also find Partially Magic Pyramidal graphs.

## II. MAGIC PYRAMIDAL GRAPHS

Definition 2.1: A Triangular number is a number obtained by adding all positive integers less than or equal to a given positive integer $n$ and is got from the formula $T_{n}=\frac{n(n+1)}{2}$. The sum of Consecutive triangular numbers is known as tetrahedral numbers. (i.e.) $1,4,10,20,35 \ldots$

Definition 2.2: The Pyramidal numbers or Square Pyramidal numbers are the sums of consecutive pairs of tetrahedral numbers. They are $1,5,14,30,55 \ldots$. They can be calculated from the formula $p_{n}=\frac{n(n+1)(2 n+1)}{6}$. The notation $p_{i}$ is used for each Pyramidal number where $i=1,2,3 \ldots$.

Definition 2.3. The Vertex Magic Pyramidal labeling of a Graph $G=(V, E)$ is defined as a one-to-one function f (we call Vertex Magic Pyramidal function) from $\mathrm{V}(\mathrm{G}) \cup \mathrm{U}(\mathrm{G})$ onto the integers $\left\{1,2,3, \ldots, p_{q}\right\}$ with the property that there is a constant $\lambda_{f}$ such that $\mathrm{f}(\mathrm{u})+\sum f(u v)=\lambda_{f}$ where the sum runs over all vertices v
adjacent to u and uv is the edge joining the vertices u and v and the constant $\lambda_{f}$ must be a Pyramidal number. Here $p_{q}$ denotes the $\mathrm{q}^{\text {th }}$ Pyramidal number. The constant $\lambda_{f}$ is called the Vertex Magic constant of the given graph. A graph $G$ which satisfies the above labeling is called a vertex magic pyramidal graph.

Definition 2.4. The Edge Magic Pyramidal labeling of a Graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is defined as a one-to-one function f (we call Edge Magic Pyramidal function) from $V(G) \cup E(G)$ onto the integers $\left\{1,2,3, \ldots, p_{q}\right\}$ with the property that there is a constant $\mu_{f}$ such that $\mathrm{f}(\mathrm{u})+\mathrm{f}(\mathrm{v})+\mathrm{f}(\mathrm{uv})=\mu_{f}$ where uv $\in E(G)$ and the constant $\mu_{f}$ must be a Pyramidal number. Here $p_{q}$ denotes the $q^{\text {th }}$ Pyramidal number. The constant $\mu_{f}$ is called the Edge Magic constant of the given graph. A graph $G$ which satisfies the above labeling is called an edge magic pyramidal graph.

Remark 2.5. For a graph G, there can be many Vertex Magic Pyramidal functions and for each function $f$ there is a Vertex Magic constant. Similarly for a graph G, there can be many Edge Magic Pyramidal functions and for each function f there is an Edge Magic constant.

Definition 2.6. A graph $G$ which admits both vertex magic pyramidal labeling and edge magic pyramidal labeling is said to be a Magic Pyramidal graph. In other words, if a graph is both vertex magic pyramidal and edge magic pyramidal then it is termed as a Magic Pyramidal graph.

Theorem 2.7. All Paths $\mathrm{P}_{\mathrm{n}}$ are Vertex Magic Pyramidal for $\mathrm{n} \geq 4$ and the vertex magic constants $\lambda_{f}$ range from $\left[\frac{5 n-1}{2}\right] \leq \lambda_{f} \leq p_{n-1}$ for $4 \leq \mathrm{n} \leq 9$ and $\left[\frac{5 n+7}{2}\right] \leq \lambda_{f} \leq p_{n-1}$ for all $\mathrm{n} \geq 10$ and they are Edge Magic Pyramidal for $\mathrm{n} \geq 4$ and the edge magic constants $\mu_{f}$ range from $3 \mathrm{n} \leq \mu_{f} \leq p_{n-1}$ for all $\mathrm{n} \geq 4$, where $p_{n-1}$ is the $(\mathrm{n}-1)^{\text {th }}$ Pyramidal number.

Proof. Case 1. n is odd, $\mathrm{n} \geq 5$. Let $\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}$ be the vertices of the Path, $e_{i}, \mathrm{i}=1$ to $\mathrm{n}-1$ be the edges of the Path. Define f:VU $E \rightarrow\left\{1,2,3, \ldots, p_{q}\right\}$ as follows:
$\mathrm{f}\left(\mathrm{v}_{1}\right)=\lambda_{f}-1$ where $\lambda_{f}$ is the magic constant.
$\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)= \begin{cases}f\left(v_{i-1}\right)-2 & \text { for } 2 \leq i \leq n-1 \\ \lambda_{f}-(i-1) & \text { for } i=n\end{cases}$
$\mathrm{f}\left(\mathrm{e}_{\mathrm{i}}\right)=\mathrm{i} \quad$ for $1 \leq \mathrm{i} \leq \mathrm{n}-1$
Case 2. n is even, $\mathrm{n} \geq 4$.
Define $\mathrm{f}\left(\mathrm{v}_{1}\right)=\lambda_{f}-2$ where $\lambda_{f}$ is the magic constant.
$f\left(v_{i}\right)= \begin{cases}f\left(v_{i-1}\right)-` 1 & \text { for } i=2 \\ f\left(v_{i-1}\right)-2 & \text { for } 3 \leq i \leq n-1 \\ \lambda_{f}-i & \text { for } i=n\end{cases}$
$f\left(e_{i}\right)= \begin{cases}i+1 & \text { for } i=1 \\ i-1 & \text { for } i=2 \\ f\left(e_{i-2}\right)+2 & \text { for } 3 \leq i \leq n-1\end{cases}$
By the labeling given in Case 1 and case 2 all Paths $P_{n}$ are Vertex Magic Pyramidal for $\mathrm{n} \geq 4$.
Case 3. Let $P_{n}$ be such that $\mathrm{n} \geq 4$. Define $\mathrm{f}: \mathrm{V} \cup E \rightarrow\left\{1,2,3, \ldots, p_{q}\right\}$ as follows:
$\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=\mathrm{i}$ for $1 \leq \mathrm{i} \leq \mathrm{n}$.
$\mathrm{f}\left(e_{i}\right)=\left\{\begin{array}{c}\mu_{f}-3 \quad \text { for } i=1 \\ f\left(e_{i-1}\right)-2 \quad \text { for } 2 \leq i \leq n-1\end{array}\right.$

By the labelling in case 3 all Paths $P_{n}$ are Edge Magic Pyramidal for $\mathrm{n} \geq 4$. Hence all Paths $P_{n}$ are Magic Pyramidal graphs for $n \geq 4$.

## Example:



Vertex Magic Pyramidal labeling of $P_{10}\left(\lambda_{f}=91=p_{6}\right)$.


Edge Magic Pyramidal labeling of $P_{10}\left(\mu_{f}=91=p_{6}\right)$.
Remark 2.8. For $\mathrm{P}_{10}$, in this example we have given $\lambda_{f}$ the value $p_{6}=91$, We have $\left[\frac{5 n+7}{2}\right] \leq \lambda_{f} \leq p_{n-1}$ and therefore $\lambda_{f}$ can take all the pyramidal numbers lying between $\left[\frac{5 n+7}{2}\right]$ and $\mathrm{p}_{\mathrm{n}-1}=\mathrm{p}_{9}=285$ and hence the possible values of $\lambda_{f}$ are 30,55, 91, 140, 204 and 285. For Edge Magic Pyramidal labelling we have $3 \mathrm{n} \leq$ $\mu_{f} \leq p_{n-1}$ and therefore $\mu_{f}$ can take all the pyramidal numbers lying between $3 \mathrm{n}=30$ and $p_{n-1}=p_{9}=$ 285 and hence the possible values of $\mu_{f}$ are also 30, 55, 91, 140, 204 and 285.

Remark 2.9. All Cycles, Stars, Complete bipartitite graphs, Peterson graph satisfy both vertex magic pyramidal and edge magic pyramidal labeling. Hence they are popularly termed as Magic Pyramidal graphs. All Cycles $C_{n}$ are Vertex as well as Edge Magic Pyramidal with
$4 \mathrm{n}+1 \leq \lambda_{f}=\mu_{f} \leq p_{n+1}$ for $3 \leq \mathrm{n} \leq 7$ and $5 \mathrm{n}+5<\lambda_{f}=\mu_{f} \leq p_{n+2} \forall \mathrm{n} \geq 8$, Stars with
$\frac{n^{2}+3 n}{2}<\lambda_{f} \leq p_{n}, 2 \mathrm{n}+3 \leq \mu_{f} \leq p_{n}$ for $n \geq 3$, Peterson graph with $p_{m-3} \leq \lambda_{f} \leq p_{n+2}$,
$p_{m-3} \leq \mu_{f} \leq p_{n}$.
Remark 2.10. All Complete bipartite graphs $K_{m, n}$, are Vertex Magic Pyramidal with $p_{m+1} \leq \lambda_{f} \leq p_{m n}$ for $\mathrm{m} \neq n, m>n$ and $p_{n+1} \leq \lambda_{f} \leq p_{m n}$ for $m \neq n, n>m$. For $m=n \lambda_{f}$ ranges from $p_{m+2} \leq \lambda_{f} \leq$ $p_{m n}$ and Edge Magic Pyramidal with $p_{m+2} \leq \mu_{f} \leq p_{m^{2}+i}$ for $\mathrm{m}=n$ where itakes the values $0,2,4,6 \ldots$ for each m ranging from $2,3,4 \ldots$ and for $\mathrm{m} \neq n, \mu_{f}$ approximately varies from $p_{m+2} \leq \mu_{f} \leq p_{m n+m \sim n}$.

## III. PARTIALLY MAGIC PYRAMIDAL GRAPHS

Definition 3.1. Graphs that are Edge magic pyramidal but not Vertex magic pyramidal are called as Partially magic Pyramidal graphs.

Lemma 3.2. If a graph $\mathrm{G}=(V, E)$ has atleast three Cycles such that $\mathrm{d}(\mathrm{v}) \geq 6$ for some $\mathrm{v} \in \mathrm{V}$ then G is not Vertex magic pyramidal. Also if $G$ has four or more Cycles such that $\mathrm{d}(\mathrm{v}) \geq 3$ for atleast three vertices then $G$ is not Vertex magic pyramidal.

Proof. Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a graph with p vertices and q edges. Assume that G has atleast three Cycles and $\mathrm{d}(\mathrm{v}) \geq 6$ for some $\mathrm{v} \in \mathrm{V}$. Since $\mathrm{d}(\mathrm{v}) \geq 6$ there are 6 edges adjacent to the vertex $v$. Hence including the vertex v , seven labels must be assigned altogether. In such a case a pyramidal number must be partitioned into seven distinct parts. Such a partition is possible. But G has atleast three Cycles. Without loss of generality assume that these three Cycles are of length 3. Therefore satisfying the condition of Vertex magic pyramidal labeling nine distinct labels are required to label the other vertices and edges. In such a case
distinct partition of the pyramidal number is not possible. Hence G is not Vertex magic pyramidal. Similar case is true for a graph with four or more Cycles.

Theorem 3.3. All Closed helms obtained from a helm by joining each pendent vertex to form a Cycle are Partially magic pyramidal graphs for $\mathrm{n} \geq 4$.

Proof. Let G be a Closed helm obtained from a helm by joining each pendent vertex to form a Cycle has $2 \mathrm{n}+1$ vertices and 4 n edges where $\mathrm{n} \geq 4$. Let $v_{0}$ be the central vertex. Let $v_{i}, 1 \leq i \leq n$ be the vertices of the Cycle $C_{n}$ in the Helm $H_{n}$. Let $w_{i}$ where $1 \leq i \leq n$ be the pendent vertices of the Helm joined together to form a Cycle.

Define $\mathrm{f}: \mathrm{V}(\mathrm{G}) \cup \mathrm{E}(\mathrm{G}) . \rightarrow\left\{1,2,3, \ldots, p_{q}\right\}$ as follows:
$\mathrm{f}\left(v_{0}\right)=2 \mathrm{n}$
$f\left(v_{i}\right)=i$ for $1 \leq i \leq n$
$f\left(w_{1}\right)=2 f\left(v_{0}\right)$
$\mathrm{f}\left(w_{i}\right)=f\left(w_{i-1}\right)-1$ for $2 \leq i \leq n$
$f\left(e_{i}\right)=\mu_{f}-\sum f(v)$ for $\mathrm{i}=1$ to q where $\sum f(v)$ denote the sum of the labels of the vertices incident with the edge $e_{i}$ and $\mu_{f}$ is the Edge magic constant. By the above labeling all Closed helms are Edge magic pyramidal but not Vertex magic pyramidal by lemma 3.2. Hence they are Partially magic pyramidal graphs.

Theorem 3.4. All Triangular Crocodiles with atleast four Cycles are partially magic Pyramidal graphs.
Proof. Let $G$ be a Triangular Crocodile with atleast four Cycles obtained from a Path $v_{1}, v_{2}, \ldots, v_{n}$ by joining $v_{i}$ and $v_{i+1}$ to new vertices $w_{i}$ for $\mathrm{i}=1,2, \ldots \mathrm{n}-1$ and $z_{i}$ for $\mathrm{i}=1,2, \ldots \mathrm{n}-1$. Let p denote the number of vertices and $q$ denote the number of edges in the graph. Define $f: V(G) \cup E(G) . \rightarrow\left\{1,2,3, \ldots, p_{q}\right\}$ as follows:
$\mathrm{f}\left(v_{i}\right)=\mathrm{i}$, for $1 \leq i \leq n$
$\mathrm{f}\left(w_{1}\right)=2 \mathrm{f}\left(v_{n}\right)$
$\mathrm{f}\left(w_{i}\right)=\mathrm{f}\left(w_{i-1}\right)+1$ for $2 \leq i \leq n-1$
$\mathrm{f}\left(z_{1}\right)=\mathrm{f}\left(w_{n-1}\right)+\mathrm{n}$
$\mathrm{f}\left(z_{i}\right)=\mathrm{f}\left(z_{i-1}\right)+1$ for $2 \leq i \leq n-1$
$\mathrm{f}\left(e_{i}\right)=\mu_{f}-\sum f(v)$ for $\mathrm{i}=1$ to q where $\sum f(v)$ denote the sum of the labels of the vertices incident with the edge $e_{i}$ and $\mu_{f}$ is the Edge magic constant. By the above labeling all Triangular Crocodiles with atleast four Cycles are Edge magic pyramidal but not Vertex magic pyramidal by lemma 3.2.. Hence they are Partially magic pyramidal graphs.


Partially Magic Pyramidal labeling of a Triangular Crocodile ( $\mu_{f}=91$ ).
Theorem 3.5. All book graphs $B_{m}, \mathrm{~m} \geq 4$ are Partially magic pyramidal graphs.
Proof. The Book graph $G=B_{m}$ is the graph $S_{m} \times P_{2}$ where $S_{m}$ is the Star with m+1 vertices. It resembles a book. Let $\mathrm{G}=B_{m}$ be such that $\mathrm{m} \geq 4$. Let $v_{1}, v_{2}$ be the vertices of the Path $P_{2}$. Let $v_{1, i}$ where $1 \leq i \leq m$ be the vertices of the Star incident with $v_{1} \ldots$ Let $v_{2, i}$ where $1 \leq i \leq m$ be the vertices of the Star incident with $v_{2}$.

Define $\mathrm{f}: \mathrm{V}(\mathrm{G}) \cup \mathrm{E}(\mathrm{G}) . \rightarrow\left\{1,2,3, \ldots, p_{q}\right\}$ as follows:
$\mathrm{f}\left(v_{i}\right)=\mathrm{i}$ for $\mathrm{i}=1,2$
$\mathrm{f}\left(v_{2,1}\right)=3 \mathrm{f}\left(v_{2}\right)$
$\mathrm{f}\left(v_{2, i}\right)=\mathrm{f}\left(v_{2, i-1}\right)+1$ for $2 \leq i \leq m$
$\mathrm{f}\left(v_{1,1}\right)=3 \mathrm{f}\left(v_{2, m}\right)$
$\mathrm{f}\left(v_{1, i}\right)=\mathrm{f}\left(v_{1, i-1}\right)+1$ for $2 \leq i \leq m$
$f\left(e_{i}\right)=\mu_{f}-\sum f(v)$ for $\mathrm{i}=1$ to q where $\sum f(v)$ denote the sum of the labels of the vertices incident with the edge $e_{i}$ and $\mu_{f}$ is the Edge magic constant. By the above labeling all Book graphs are Partially magic pyramidal graphs.

Theorem 3.6. The Sunflower graphs are Partially magic Pyramidal graphs.
Proof. Let G be a Sunflower graph obtained by taking a Wheel with the central vertex $v_{0}$ and the Cycle $v_{1}, v_{2}, \ldots, v_{n}, v_{1}$ and additional vertices $w_{1}, w_{2}, \ldots, w_{n}$ where $w_{i}$ is joined by edges to $v_{i,} v_{i+1}$ where (i+1) is taken modulo $n$. It has ( $2 \mathrm{n}+1$ ) vertices and 5 n edges.

Define $\mathrm{f}: \mathrm{V}(\mathrm{G}) \cup \mathrm{E}(\mathrm{G}) . \rightarrow\left\{1,2,3, \ldots, p_{q}\right\}$ as follows:
$\mathrm{f}\left(w_{i}\right)= \begin{cases}i+1 & \text { for } 1 \leq i \leq n-1 \\ 2 i+1 & \text { for } i=n\end{cases}$
$\mathrm{f}\left(v_{1}\right)=2 \mathrm{f}\left(w_{n}\right)$
$\mathrm{f}\left(v_{i}\right)=\mathrm{f}\left(v_{i-1}\right)+1$ for $2 \leq i \leq n-1$
$\mathrm{f}\left(v_{0}\right)=2 \mathrm{f}\left(v_{1}\right)$
$\mathrm{f}\left(e_{i}\right)=\mu_{f}-\sum f(v)$ for $\mathrm{i}=1$ to q where $\sum f(v)$ denote the sum of the labels of the vertices incident with the edge $e_{i}$ and $\mu_{f}$ is the Edge magic constant. By the above labeling the Sunflower graphs are Edge magic pyramidal but not Vertex magic pyramidal. Hence all Sunflower graphs are Partially magic pyramidal graphs.


Partially Magic Pyramidal labeling of a Sunflower graph ( $\mu_{f}=204$ ).

## IV. CONCLUSION

Whenever a graph has atleast three cycles with the degree of a vertex sufficiently large exceeding the number of cycles then the graph fails to be a vertex magic pyramidal graph, as the pyramidal number cannot be partitioned into as many distinct parts as the degree of a vertex. Since every edge in a graph is incident with two vertices, most of the graphs satisfy the condition of Edge magic pyramidal labeling. Hence other classes of Partially magic pyramidal graphs may also be investigated and the range of the magic constants can be determined for those graphs.

## References:

[1] M. Apostal, Introduction to Analytic Number Theory, Narosa Publishing House, Second edition, 1991.
[2] J.A. Bondy and U.S.R. Murty, Graph Theory with applications, Macmillan press,London(1976).
[3] J.A. Gallian, A Dynamic Survey of Graph Labeling, The Electronic Journal of Combinatorics (2014).
[4] M. Baca, On magic and consecutive labeling for the special class of plane graphs, utilitas math, 32 (1987) 59-65.
[5] W.D. Wallis,Edy T. Baskoro and Mirka Miller Slamin, Edge Magic Total Labelings, The Australasian Journal of Combinatorics. 22(2000).pp.177-190.

