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Abstract—suitable to the increasing usage of cloud 

computing applications, it is significant to reduce energy cost 

obsessive by a data midpoint, and simultaneously, to improve 

quality of repair via data midpoint organization. One capable 

advance is to switch some servers in a information midpoint 

to the idle mode for saving force while to keep a suitable 

number of servers in the energetic mode for providing timely 

service. In this paper designed both online and offline 

algorithms for this problem. For the offline algorithm, we 

formulate information midpoint administration as a outlay 

minimization problem by considering energy asking price, 

delay outlay (to measure service quality), and switching cost 

(to change servers’ active/idle mode). Then, we examine 

convinced properties of an optimal resolution which lead to a 

active programming based algorithm. Moreover, by revising 

the solution procedure, we successfully eliminate the 

recursive system and complete an optimal offline algorithm 

with a polynomial density. For the online algorithm, We 

propose it by considering the worst case scenario for 

potential workload. In simulation, we show this online 

algorithm can always present near-optimal solutions. 

 

Index Terms—information midpoint organization, offline 

algorithm, Runtime programming, Online Applications 

 

  I.INTRODUCTION   

 

 The goals of information midpoint organization may include 

minimizing energy cost and improving quality of service. 

Power cost is a major part of a data center’s budget, which 

should be minimized to decrease service provider’s cost, and 

more importantly, to keep our Earth green. One advance to 

reduce force price is to change several servers since dynamic 

mode to inactive type each time feasible. These switching 

decisions are entire based on location of the servers, such as 

system position or storage space position. Meanwhile, we 

desire to achieve superior service excellence, which can be 

careful by the standard wait of serves’ responding point. For 

this function, there must be sufficient dynamic servers in 

arrange to procedure tasks initiate by trade in point. To 

complete both goal of information midpoint organization, we 

should sustain a appropriate quantity of dynamic servers and 

then dispense jobs to these dynamic servers.  

      

We focal point on intra-center organization and consider 

active workload more than a interlude of point. In the 

minimization trouble, the price includes force price, 

interruption price and switching price.  

 

 
 

The we will design an offline algorithm with the 

consideration on integer requirement. The offline problem 

is an integer optimization, which is NP-hard in general. 

But we will show that our costume designed offline 

algorithm can optimally solve this problem in 

polynomial-time. We formulate the cost minimization 

problem as a mixed integer optimization model and we 

call it the Original Problem (OP) model. Then, in order to 

obtain a better formulation, we apply reformulation 

techniques and get an integer optimization model and we 

call it the Reformulated Problem (RP) model. The RP 

model has a much smaller problem size (much less 

numbers of variables and constraints). � We discuss two 

special cases. The first special case is that there is no 

switching cost and we call it the Zero Switching Cost 

(ZSC) model. 

 

                                 RELATED WORK 

 

We design a dynamic programming based optimal offline 

 Algorithm and we call it the Dynamic Programming 

(DP)- offline algorithm. We further discuss how to avoid 

the recursive process in dynamic programming, from 

which an optimal offline algorithm with a low complexity 

O(KN2) is obtained, where K is the number of local 

maximum points of xF  t and N is the number of servers 

in the data center. We call it the Non-Recursive DP (N 

RDP)-offline algorithm. We design an online algorithm, 

which makes decisions by considering the worst case 

scenario for future workload, and we call it the Worst 

Case (WC)-online algorithm. 
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In simulation, we compare solutions by this online algorithm 

with optimal offline solutions and show the nearoptimal 

performance of this online algorithm. Moreover, the cost 

achieved by another online solution xF t (with no 

consideration on switching cost) is more than twice of the 

minimum cost achieved by the optimal solution, which 

indicates the importance of taking the switching cost into the 

consideration.  

       

Considering a data center with multiple servers and time 

varying workload (measured by the number of jobs at different 

time), the data center management problem is on how to 

distribute jobs to each server in the data center. Servers with 

job assignment are in the active mode while servers without 

job assignment can be in the power-saving idle mode. For 

simplicity, we call switch operations between these two modes 

as “turn on” and “turn off,” although a server is not off when it 

is in the idle mode.      

 

 Denote the number of servers in a data center as N. We 

consider a time slot based scheme, i.e., at the beginning of 

each time slot, the workload is estimated and assigned to each 

server. Denote T as the number of all time slots and the 

workload in time slot t as γt. We set the initial workload γ0 = 0 

and the ending workload γT = 0. Consider homogenous 

servers in a data center, i.e., each server has the same capacity 

C (the maximum number of jobs that can be served in a time 

slot), the same operating cost function p(γ), where γ ∈  [0,C] is 

the assigned workload, and the same switching costs βon, βoff 

≥ 0 to turn on or off a server. Assume there are enough 

number of servers, i.e., γt ≤ NC. Operating cost function p(γ) 

should be non-negative and non-decreasing. We further 

assume that p(γ) is a convex function that may include energy 

cost and delay cost [11], where energy cost is consisted of 

costs for energy consumption, for cooling, and for power 

distribution, and delay cost measures  the quality of service. 

The operating cost when a server is in the idle mode, p(0), is 

usually not zero. 

 

III.METHODOLOGY 

 

The integer requirement is missing in problem formulation, 

algorithm design, and performance analysis.As a consequence, 

the obtained solution usually is infeasible. Even for the rare 

case that the obtained solution is feasible, that solution may 

not have a constant approximation bound as claimed in. This 

is because that the authors thought that the problem is convex 

and then made a performance analysis based on its dual 

problem. But any optimization problem with non-continuous 

variables is non-convex and cannot be analyzed by its dual 

problem due to unknown duality gap. where xt, xton, and xt 

off are integer variables; T, λt, βon, βoff, N, x0, and xT are 

constants. Comparing with the OP model, his Reformulated 

Problem (RP) model has less variables and  constraints and all 

its constraints are linear constraints. The RP  model is an 

integer optimization problem due to the integer  

requirement on xt (the number of active servers), xton and 

xt off. Such an integer optimization problem is NP-hard in 

the data center management problem is on how to 

distribute jobs to each server in the data center. Servers 

with job assignment are in the active mode while servers 

without job assignment can be in the power-saving idle 

mode. For simplicity, we call switch operations between 

these two modes as “turn on” and “turn off,” although a 

server is not off when it is in the idle mode. 

 

1. Problem Formulation 

 

 Denote the number of servers in a data center as N. 

We consider a time slot based scheme, i.e., at the 

beginning of each time slot, the workload is estimated and 

assigned to each server. Denote T as the number of all 

time slots and the workload in time slot t as γt. We set the 

initial workload γ0 = 0 and the ending workload γT = 0. 

Consider homogenous servers in a data center, i.e., each 

server has the same capacity C (the maximum number of 

jobs that can be served in a time slot), the same operating 

cost function p(γ), where γ ∈  [0,C] is the assigned 

workload, and the same switching costs βon, βoff ≥ 0 to 

turn on or off a server. Assume there are enough number 

of servers, i.e., γt ≤ NC.  

 

For a time slot t, the workload assignment constraint is 

ΣN i=1 γt;i = γt (1 ≤ t ≤ T − 1) , (1) where γt;i is the 

workload assigned to a server i. The number of active 

servers xt is equal to the number of positive γt;I values, 

i.e., xt = ΣN i=1 I(γt;i > 0) (1 ≤ t ≤ T − 1) , (2) where 

I(·) is the indicator function. Since γ0 = γT = 0 and (1), 

we have γ0;i = γT ;i = 0 and x0 = xT = 0. Denote xt on = 

max{xt − xt1, 0} (1 ≤ t ≤ T) (3) xt off = max{xt1 − 

xt, 0} (1 ≤ t ≤ T) (4) as the number of servers switched 

on/off at time t, respectively. Then the offline problem 

can be formulated as follows. Min ΣTt=1 [ΣN i=1 p(γt;i) 

+ βon · xton + βoff · xt Off ] (5) s.t. (1), (2), (3), (4) γt;i 

∈ [0,C], xt ∈ [⌈ t C ⌉,N] (1≤t≤T − 1, 1≤i≤N) xton, xt 

off ≥  0 (1 ≤  t ≤  T) , where γt;i are continuous 

variables; xt, xton, xt off are integer variables; T,N, βon, 

βoff, γt,C, γT ;i, x0, xT are constants. Eq. (5) is a 

straightforward nonlinear formulation. We call it the 

Original Problem (OP) model.   

 

2. Reformulation 

 

 The OP model is not in a good form for optimization. In 

particular, constraints (2), (3), and (4) are nonlinear. In 

this section, we apply several reformulation approaches 

to simplify the problem structure in terms of line arising 

all constraints, and to reduce the problem size in terms of 

reducing the number of constraints and variables. First 

define normalized workloads and a new cost for the 

developed minimization delay organization function we 

follows as to delay minimization of  data 

  

It’s easy to verify that f(0) = 0. Then we separate the objective 

function as the operating cost ΣT  t=1 ΣN i=1 p(γt;i) and the 

switching cost ΣT t=1(βon · xton + βoff · xt off). For the 

operating cost, we 
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where the first equation holds by (8), the second equation 

holds by f(0) = 0 and γT ;i = 0, and the third equation holds by 

the convexity of f(·) and (1), (2). Since TNp(0) is a constant, 

we can remove it from the objective 

function.

 
The RP model is an integer optimization problem due to the 

integer requirement on xt (the number of active servers), xton 

and xt off. 

 

3. Optimal Solution When No Switching Cost 

 

As a starting point, we consider a special case of βon = βoff = 

0 (i.e., no switching cost). The result on this special case can 

be used in developing an optimal offline algorithm for the 

general case of βon, βoff ≥  0. First let us denote 

 
Given that f(x) is a convex function, it can be verified that F(x) 

is also a convex function. Then the operating cost can 

 

IV. EXPERIMENTAL SETUP 

 

we will design the optimal offline algorithm and online 

algorithm based on the models and the lemmas we have 

concluded before. In this section, we assume that we 

know all γt values, 1 ≤ t ≤ T, to design the optimal offline 

algorithm. In Section V, we assume we only know the 

past and current γt values to design an online algorithm. 

Although the optimal offline algorithm cannot be 

implemented for online running, its solution can provide a 

performance benchmark for any online algorithm. Our 

optimal offline algorithm is based on the dynamic 

programming, which will be discussed in Section IV-A. 

We name this algorithm as the dynamic programming 

(DP) based offline algorithm. However, the DP-offline 

algorithm has an exponential complexity. So in Section 

IV-B we improve the solution procedure and get a 

polynomial complexity algorithm. We name the new 

offline algorithm as the non-recursive DP (NRDP) based 

offline algorithm. In Section V, we design the online 

algorithm based on considering the worst case scenario 

for future workload. 

 

Optimal offline algorithm based on dynamic 

programming 

       

The following is the design of the DP-offline algorithm, 

which contains a recursive process. First let us define a 

sub problems as follows. Consider a sub problem of  

minimizing the total cost for τ ∈  [0, t] under given 

workload γ_ and specified ending xt = h ≥ γt. Denote the 

minimum total cost for this sub problem as c(t, h). For our 

problem, we have xT = 0 and thus our problem is to 

determine c(T, 0). Note that lemmas proved in Section 

III-C also hold for a sub problem. 
 

The first step. We first develop a recursive formula for 

c(T, 0). By (14) and γT = 0, we have xF T = 0. Then we 
define that 

 
Since x_T = 0 = xF T , an optimal solution x_ t must fall into 

Zither one of the following two categories: 

(i) x_ t = xF t for all t ∈  [t1, T] (see Fig. 5(a)) or (ii) there 

is a τ1 ∈  [t1 + 1, T] and h1 ∈  [1, xF t1 − 1]  

(ii) such that x_ t = xF t for t ∈  [τ1, T] and x_ _11 = h1 < xF 

_11 (see Fig. 5(b)).  
Case (i): the minimum total cost for t ∈  [0, t1] with xt1 = 

xF t1 is c(t1, xF t1 ). For t ∈  [t1, T], we have x_ t = xF t and 

thus can calculate the total cost (not including the 

operating cost at time t1 since this cost is counted in c(t1, 

xF t1 ) already). Denote this cost as c(t1;xF t 1 );(T;0). Then for 

c(T, 0), we have c(T, 0) = c(t1, xF t1 ) + c(t1;xF t 1 );(T;0) . 

Case (ii): We define that 
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Note that although the range for h1 is [1, xF t1 ] in (17), some 

small value of h1 is impossible to yield an optimal solution due 

to the constraint set by γt. That is, if we assume a small value 

for h1, we can find a ^τ1 and xt = h1 for t ∈  [^τ1, τ1 − 1]. If γt > 

h1 for any t ∈  [^τ1, τ1−1], then this hypothetical optimal 

solution is in fact infeasible, i.e., this h1 is too small. As a 

result, we can skip the calculation of c(^τ1, h1)+c(^_1;h1);(T;0) for 

this h1. 

The second step. 

 

To calculate a particular c(^τ1, h1) in (17), we define  

that 

 

 
Non-recursive approach 

 

we designed the DP-offline algorithm. However, this 

algorithm contains recursive progress which may leads to 

large complexity. In this section, we will show how to avoid 

the recursive process in dynamic programming and analyze 

the developed NRDP-offline algorithm’s complexity. We first 

identify all c(t, h) that should be determined during the 

calculation of c(T, 0). The entire recursive process requires us 

to obtain some c(t, h) values, t ∈  [1, t1], that satisfy one of the 

following three cases: xF t = h ̸= xF t1, xF t1 < h < xF t , or xF 

t1 > h > xF t . Thus, if xF t = xF t1 for a particular t, we do not 

need to calculate any c(t, h) for this t; if xF t > xF t1, we need 

to calculate c(t, h) for h ∈  [xF t1 + 1, xF t ]; while if xF t < xF 

t1, we need to calculate c(t, h) for h ∈  [xF t , xF t1 −1]. For the 

example in Fig. 8, we have t1 = 14, i.e., we need some c(t, h) 

values for t ≤ 14. In particular, for t = 12,  since xF 11 = 9 and 

xF 12 = 6, we need to calculate c(12, 8), c(12, 7), and c(12, 6).  
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the convexity of F(·), it is clear that operating cost at time 

t is decreased because we move xt closer to xFt . 

 Numerical results for one simple network 

The first case has a linear function p(γ) = 2γ with zero 

switching cost, i.e., βon + βoff = 0.  This is the special 

case discussed in Section III-A. The second case has a 

linear function p(γ) = 2γ with fixed switching cost βon + 

βoff = 6. This is the special case discussed in Section III-

B. The third case was defined in [11], i.e., p(γ) = γ max { 1 

1 1.5, 0 } + 1 and βon + βoff = 6.  The forth case has p(γ) 

= γ3 and βon + βoff = 6. 

 
 

 Evaluation Measures 
 

For the first case, the total costs of the offline optimal 

solution and the online solution are both 13258.8, which 

means the performance ratio is 1. _ For the second case, 

the total cost of the offline optimal solution is 13666.8 

while the total cost of the online solution is 14050.8. So 

the performance ratio of the online solution is 14050:8 13666:8 

= 1.028. _ For the third case, the total cost of the offline 

optimal  solution is 14976.8 while the total cost of the 

online solution is 17748.5. So the performance ratio of the 

online solution is 17748:5 14976:8 = 1.185. _ For the fourth 

case, the total cost of the offline optimal solution is 

11080.4 while the total cost of the online solution is 

11389.8. So the performance ratio of the online solution is 

11389:8 11080:4 = 1.028. 

 

Numerical results for more networks 

 

Results for 100 randomly generated workload networks. For 

each network, we apply NRDP-offline algorithm to obtain an 

optimal solution with the minimum total cost and apply WC-

online algorithm to obtain a feasible solution with certain total 

cost. We still use the four different cost functions and 

calculate the performance ratio achieved by our online 

algorithm. We find for the first case, the performance ratios 

are always 1, and for the other three cases, the performance 

ratios are almost the same (all within [1.0, 1.2]). Thus, results 

for the third case in Fig. 12 are shown. Results for other three 

cases are similar and thus omitted. We can see that our WC-

online algorithm has the average performance ratio 1.151. 
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Note that we can use xF t as an online solution. However, the 

average performance ratio by xF t is 2.197 since such solutions 

only minimizes the operating cost. Thus, it is important to 

consider both operating cost and switching cost in an online 

algorithm such that the total cost can be close to the minimum 

total cost achieved by the optimal offline solution. 

 

V.CONCLUSION 

        We considered information midpoint organization 

problem to minimize energy cost and to improve value of 

service by adjusting the number of active servers and 

distributing workload to these active servers. We first 

formulated this problem as a cost minimization problem, 

with the consideration on energy cost, delay cost, and 

switching cost. Then after analyzed some properties of 

optimal solution, both online and offline algorithms are 

designed. To the offline solution, we designed a dynamic 

programming based algorithm (DP-offline algorithm) and 

further revised the solution procedure to have an optimal 

offline algorithm with a polynomial complexity (NRDP-

offline algorithm). To the online solution, we designed the 

WC-online algorithm by considering the worst case 

scenario and optimizing the performance for this case. 

The WC-online algorithm is shown to be able to achieve 

near-optimal performance in simulation. 
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