Basic Techniques and Results on q-k-hermitian doubly Stochastic matrices and q-s- hermitian doubly Stochastic matrices

Dr.Gunasekaran K. and Mrs.Seethadevi R.
Department of Mathematics, Government arts College (Autonomous), Kumbakonam, Tamilnadu, India.

INTRODUCTION:

Ann Lee [1] has initiated the study of secondary hermitian matrices, and q-s-k hermitian doubly stochastic matrices are developed in quaternion matrices. Ann Lee [1] has initiated the study of secondary hermitian matrices, that is matrices whose entries are hermitian about the secondary diagonal. Ann Lee [1] has show that the matrix A, the usual transpose A^{T} and Secondary transpose A^{θ} are related as $A^{\theta}=V A^{T} V$ and $A^{T}=V A^{\theta} V$. where V is a modified unit matrix with units in the secondary diagonal.

Abstract

: The basic concepts and theorems of q -k-hermitian doubly stochastic matrices and q -s- hermitian doubly stochastic matrices are introduced with examples.

Keywords:

q-k-hermitian doubly stochastic matrix, q -s- hermitian doubly stochastic matrix.

I. INTRODUCTION:

Ann Lee [1] has initiated the study of secondary hermitian matrices, and q-k hermitian and q-s- hermitian doubly stochastic matrices are developed in quaternion matrices. Ann Lee
[1] has initiated the study of secondary hermitian matrices, that is matrices whose entries are hermitian about the secondary diagonal. Ann Lee [1] has show that the matrix A, the usual transpose A^{T} and Secondary transpose A^{θ} are related as $A^{\theta}=V^{T} V$ and $A^{T}=V^{\theta} V$. where V is a modified unit matrix with units in the secondary diagonal.

Definition:

A matrix $\quad A \in H^{n \times n}$ is said to be $q-k$-hermitian doubly stochastic matrix if $\mathrm{A}=\mathrm{KA} * \mathrm{~K}$.
Theorem: 1

$$
\text { If } A \in H^{n \times n} \text { is } \mathrm{q} \text {-k-hermitian doubly stochastic matrix then } \mathrm{A}=\mathrm{KA} * \mathrm{~K} \text {. }
$$

Proof:

KA*K=KAK where A*=A.
=AKK where KA=AK.
$=A K^{2}$ where $K^{2}=I$.
Theorem:2
Let $A^{*} \in H^{n \times n}$ is q -k-hermitian doubly stochastic matrix then $\mathrm{A} *=\mathrm{KAK}$.

Proof:

$$
\begin{aligned}
A *=(K A * K)=K A K= & K A * K \text { where } A=A * \\
& =A * K K \text { where } K A^{*}=A * K \\
& =A * K^{2} \text { where } K^{2}=I
\end{aligned}
$$

Theorem: 3

Let $A, B \in H^{n \times n} \quad$ q-k-hermitian doubly stochastic matrix then $1 / 2(\mathrm{~A}+\mathrm{B})$ is $\mathrm{q}-\mathrm{k}$ hermitian doubly stochastic matrix.
Proof:
Let A and B are q-k-hermitian doubly stochastic matrix if $A=K A * K$ and $B=K B * K$. To prove $1 / 2(A+B)$ is
q -k-hermitian doubly stochastic matrix we will show that
$\underline{1}^{1}(A+B)=K^{\underline{1}}(A+B)^{*} K$.
2

$$
\text { Now } K^{\frac{1}{2}}(A+B)_{2}^{*} K=K^{\underline{1}}\binom{*}{2} K=\frac{1}{2} K\left(A_{2}^{*}+B *\right) K
$$

$$
=\frac{1}{2}\left(K A^{*}+K B *\right) K
$$

Where KA*K=A

$$
=\frac{1}{2}(K A * K+K B * K)
$$

$$
\mathrm{KB} * \mathrm{~K}=\mathrm{B} \quad=\frac{1}{(}(A+B) \cdot 2
$$

Theorem: 4 [5]

Any q-k-hermitian doubly stochastic matrix can be represent as sum of q-k-hermitian doubly stochastic matrix and skew q -k-hermitian doubly stochastic matrix.

Proof:

To prove that $\frac{1}{2}(A+K A * K)$ and ${ }^{\underline{1}}(A-K A * K)$ are q-k-hermitian doubly stochastic 2
matrices. We will show that. $\quad \frac{1}{2}(A+K A * K)=K_{2}^{\underline{1}}(A+K A * K) * K$. and
$\frac{1}{2}(A-K A * K)=K \frac{1}{2}(A-K A * K) * K$.
Using (theorem 3)
$K \frac{1}{2}\left(A+K A^{*} K\right) * K=\frac{1}{2}\left(A+K A^{*} K\right) * K \quad$ and $K \frac{1}{2}\left(A-K A^{*} K\right) * K=\frac{1}{2}\left(A-K A^{*} K\right) * K$
Then $\quad \frac{1}{2}(A+K A * K)+\frac{1}{2}(A-K A * K)=\frac{2 A}{2}=A$ Hence proved.
Theorem: 5
If A and B are q-k-hermitian doubly stochastic matrix then $A B$ is not an q-k-hermitian doubly stochastic matrix.

Proof:

Let A and B are q-k-hermitian doubly stochastic matrix if $A=K A * K$ and $B=K B * K$. Since A^{*} and B^{*} are also q-k-hermitian doubly stochastic matrices then

$$
\mathrm{A}^{*}=\mathrm{KAK} \text { and } \mathrm{B}^{*}=\mathrm{KBK} \text {. }
$$

To prove $A B$ is not an $q-k$-hermitian doubly stochastic matrix. We will show that $A B=K(A B) * K$
$K(A B) * K=K B * A * K=K(K B K)(K A K) K$
Where $A^{*}=K A K$ and $B^{*}=K B K$
$=K^{2} B^{2} A K$. Where $K^{2}=I$
$=B A \neq A B$ where $A B \neq B A$.
Since Quaternion matrices does not satisfy commutative property.
Remark 5(a) Since theorem (5) the product of doubly stochastic matrices is doubly stochastic but not an khermitian and also q-k-hermitian doubly stochastic matrix.
Theorem: 6
If A and B are q -k-hermitian doubly stochastic matrices and K is the modified unit matrix, $\mathrm{K}=\{(1)(2$ 3)\}. Then KA is also q-k-hermitian doubly stochastic matrix.

Proof:

Let A and B are $q-k$-hermitian doubly stochastic matrix if $A=K A * K$ and $B=K B * K$. Since $A *$ and B^{*} are also $q-k$-hermitian doubly stochastic matrices then $A^{*}=K A K$ and
$B *=K B K$.
To prove KB is q-k-hermitian doubly stochastic matrix. We will show that $\mathrm{KA}=\mathrm{K}(\mathrm{KA}) * \mathrm{~K}$ Now $\mathrm{K}(\mathrm{KA}) * \mathrm{~K}=\mathrm{K}(\mathrm{A} * \mathrm{~K} *) \mathrm{K}=\mathrm{KA} * \mathrm{~K} * \mathrm{~K}=$
$=$ KA where KA^{*} where $\mathrm{KA} *=\mathrm{KA}$. $\mathrm{K} * \mathrm{~K}=\mathrm{I}$

RESULT:

For $\quad A \in H^{n \times n}$ is q -k-hermitian doubly stochastic matrices for the following are equivalent.
[1] $\mathrm{A}=\mathrm{KA} * \mathrm{~K}$.
[2] KA is q-k-hermitian doubly stochastic matrix.
[3] AK is q-k-hermitian doubly stochastic matrix. (1) \Rightarrow (2)

$$
\begin{aligned}
\mathrm{KA} * \mathrm{~K} & =\mathrm{A} * \mathrm{KK} \text { where } \mathrm{KA} *=A * K \\
& =\mathrm{A}^{*} \mathrm{~K}^{2} \\
& =\mathrm{A} *=\mathrm{A} \text { where } \mathrm{KA}=\mathrm{AK}=\mathrm{A} . \\
& =\mathrm{KA} .
\end{aligned}
$$

(2) $\Rightarrow(3)$

$$
\begin{aligned}
\mathrm{KA} & =\mathrm{KA} * \\
& =\mathrm{A} * \mathrm{~K} \text { where } \mathrm{KA}^{*}=\mathrm{A} * \mathrm{~K} \\
& =A K .
\end{aligned}
$$

(3) $\Rightarrow(1)$

$$
\begin{aligned}
A K & =A * K \\
& =A K=A . \text { where } K A=A K=A .
\end{aligned}
$$

(where k is a modified unit matrix units in the Secondary diagonal)

Example:

$$
A=\left(\begin{array}{ccc}
1 & 2+i-j & -2-i+j \\
2-i+j & 3^{2} & -4+i-j \\
-2+i-j & -4-i+j & 7
\end{array}\right)
$$

$$
\begin{aligned}
& A^{*}=\left|\begin{array}{ccc}
1 & 2-i+j & -2+i-j \\
2+i-j & 3 & -4-i+j \\
-2-i+j & -4+i-j & 7
\end{array}\right| \\
& \Rightarrow k=(1)(2 \quad 3)=\left|\begin{array}{lll}
0 & 0 & \left.\right|_{\mid} ^{1} \\
\left.\left\lvert\, \begin{array}{lll}
1 & 0 & 0
\end{array}\right.\right) \\
0 & 1 & 9
\end{array}\right|
\end{aligned}
$$

$$
\begin{aligned}
& =\left(\begin{array}{ccc}
1 & 2+i-j & -2-i+j \\
2-i+j & 3 & -4+i-j \\
-2+i-j & -4-i+j & 7
\end{array}\right) \\
& =A
\end{aligned}
$$

similarly $K A K=A^{*}$

$$
\text { (ii) } \begin{aligned}
\text { KA } & =\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)\left(\left.\begin{array}{cc}
2-i+j & 1 \\
-2+i-j & 2+i-j \\
-4-i+j & -4+i-j
\end{array} \right\rvert\,\right. \\
& =\left(\begin{array}{ccc}
1 & -2-i+j) \\
2-i+j & -2-i+j & 2+i-j \\
-2+i-j & 7 & -4-i+j
\end{array}\right) \\
& =(K A)
\end{aligned}
$$

KA is q-s hermitian doubly stochastic matrix.
Similarly KA* is also q-s hermitian doubly stochastic matrix.

$$
\text { (iii) } \begin{aligned}
\mathrm{AK} & =\left(\begin{array}{ccc}
1 & 2+i-j & -2-i+j \\
2-i+j & 3 & -4+i-j \\
-2+i-j & -4-i+j & 7
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) \\
& =\left(\begin{array}{ccc}
1 & -2-i+j & 2+i-j \\
2-i+j & -4+i-j & 3 \\
-2+i-j & 7 & -4-i+j
\end{array}\right) \\
& =(A K)
\end{aligned}
$$

AK is q -s hermitian doubly stochastic matrix.

Similarly A*K is also q-s hermitian doubly stochastic matrix.

Definition:

A matrix $\quad A \in H^{n \times n}{ }_{1 s}$ said to q-s-hermitian doubly stochastic matrix if $\mathrm{A}^{\theta}=\mathrm{VA}^{*} \mathrm{~V}$ where
V is a modified unit matrix with units in the secondary diagonal.
Theorem: 7
Let $A \in H^{n \times n}$ is q -s-hermitian doubly stochastic matrix then $A^{\theta}=V A^{*} V$.

Proof:

$$
\begin{aligned}
V A^{*} V & =V\left(V A^{\theta} V\right) V=V^{2} A^{\theta} V^{2} \\
=A^{\theta} \text { where } V^{2} & =I .
\end{aligned} \quad\left\lceil\left\lfloor Q A^{*}=V A^{\theta} V\right\rceil\right\rfloor
$$

Theorem: 8

Let $A^{*} \in H^{n \times n}$ is q -s-hermitian doubly stochastic matrix then $\mathrm{A}^{*}=\mathrm{VA}^{\theta} \mathrm{V}$
Proof:

$$
\begin{aligned}
& =V^{\theta}{ }^{\theta} V=V\left(V A^{*} V\right) V=V^{2} A^{*} V^{2} \\
& =A^{*} \text { where } V^{2}=1
\end{aligned}
$$

Theorem: 9

$$
\text { Let } A, \mathrm{~B} \in H^{n \times n} \text { is } \mathrm{q} \text {-s-hermitian doubly stochastic matrix then } \frac{1}{2}(A+B) \text { is }
$$ q-s-hermitian doubly stochastic matrix. Proof:

Let A and B are $q-s$-hermitian doubly stochastic matrices if $A^{\theta}=V A^{*} V$ and $B^{\theta}=V^{*} V$

To prove ${ }^{1}(A+B)$ is q-s-hermitian doubly stochastic matrix we will showthat 2
$\underline{2}_{2}^{1}(A+B)^{\theta}=V{ }_{2}^{\frac{1}{2}}(A+B)^{*} V$
Now $V \frac{1}{2}(A+B)^{*} V=V \frac{1}{2}\left(A^{*}+B^{*}\right) V$
$={ }_{2}^{1} V\left(A^{*} \neq B^{*}\right) V$

$$
\begin{aligned}
& =\frac{1}{2}\left(V A^{*}+V B^{*}\right) V \\
& =\frac{1}{2}\left(V A^{*} V+V B^{*} V\right) \\
& =\frac{1}{2}\left(A^{\theta}+B^{\theta}\right)
\end{aligned}
$$

Where,

$$
\begin{aligned}
A^{\theta}= & V A^{*} V \\
B^{\theta}= & V B^{*} V \\
& =\frac{1}{2}(A+B)^{\theta}
\end{aligned}
$$

Theorem: 10
If A and B are q-s-hermitian doubly stochastic matrices then $A B$ is not an $q-s$ - hermitian doubly stochastic matrix.

Proof:

Let A and B are q-s-hermitian doubly stochastic matrices if $A^{\theta}=V A^{*} V$ and $B^{\theta}=V B^{*} V$ since A^{*} andB* are also q -s-hermitian doubly stochastic matrices then $\mathrm{A}^{*}=\mathrm{VA}^{\theta} \mathrm{V}$ and $B^{*}=\mathrm{VB}^{\theta} \mathrm{V}$

To prove AB is q -s-hermitian doubly stochastic matrix we will show that

$$
\begin{equation*}
{ }^{\theta}=V(A B)^{*} V=V\left(V B^{\theta} V\right)\left(V A^{\theta} V\right) V \tag{AB}
\end{equation*}
$$

Where,

$$
A^{*}=V A^{\theta} V \text { and } B^{*}=V B^{\theta} V
$$

$$
=V^{2} B^{\theta} V^{2} A^{\theta} V^{2}=B^{\theta} A^{\theta}
$$

Where, $\quad \neq(A B)^{\theta}$ Where $A B \neq B A . V^{2}=I$
Quaternions does not satisfy commutative property

Theorem:11

If A is q -s-hermitian doubly stochastic matrix and V is a modified unit matrix with units in the secondary diagonal then VA is also. q-s hermitian doubly stochastic matrix.

Proof:

Let A is q -s-hermitian doubly stochastic matrices if

$$
A^{\theta}=V A^{*} V \text { since } \mathrm{A}^{*} \text { is } \mathrm{q}-\mathrm{s}
$$ hermitian doubly stochastic matrices then

$$
A^{*}=V A^{\theta} V
$$

To prove VA is q-s-hermitian doubly stochastic matrix we will show that.
$(V A)=V\left(V^{6} A\right) V$
Now $V(V A)^{*} V=V\left(A^{*} V^{*}\right) V=V\left(V A^{\theta} V\right) V^{2}$

$$
\begin{aligned}
& =A^{\theta} V^{\theta} \text { where } \\
& =(V A)^{\theta} V^{2}=I
\end{aligned}
$$

Result:

For $\quad A \in H^{n \times n}$ is q-s-hermitian doubly stochastic matrix for the following are equivalent.
[1] $A^{\theta}=V A^{*} V$
[2] $V A$ is q-s-hermitian doubly stochastic matrix.
[3] $A V$ is q-s -hermitian doubly stochastic matrix.
(1) \Rightarrow (2)

$$
\begin{aligned}
& \quad A^{\theta}=V A^{*} V \\
& \\
& =V\left(V A^{\theta} V\right) V A^{*}=V A^{\theta} V \\
& =V^{2} A^{\theta} V^{2} \text { Where } V^{2=} I \\
& =A \quad A^{\theta}=A=V A^{*} V \\
& =V A \text { Where } V A=A V=A
\end{aligned}
$$

$$
(2) \Rightarrow(3) V A=V\left(V A^{\theta} V\right)
$$

$$
=V^{2} A^{\theta} V
$$

Where $V^{2}=I$

$$
\begin{aligned}
=A^{\theta} V & \\
\text { Where } \quad & =A=A^{*}=V A^{\theta} V \\
& =A V
\end{aligned}
$$

Example:

$$
A=\left|\begin{array}{ccc}
1 & 2+i-j & -2 \\
2-i+j & 3 & -4+i-j \\
-2+i-j & -4-i+j & 7
\end{array}\right|
$$

$$
A^{*}=A^{\theta}=\left(\begin{array}{ccc}
1 & 2-i+j & -2+i-j \\
2+i-j & 3 & -4-i+j \\
-2-i+j & -4+i-j & 7
\end{array}\right)
$$

$$
\left.V=\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0
\end{array} \right\rvert\,
$$

$$
\begin{aligned}
& =\left(\begin{array}{ccc}
1 & 2-i+j & -2+i-j \\
2+i-j & 3 & -4-i+j \\
-2-i+j & -4+i-j & 7
\end{array}\right) \\
& =A^{\theta}
\end{aligned}
$$

(ii) $V A=\left(\left.\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array} \|_{\|} \begin{array}{ccc} & 1 & 2+i+j \\ 2+i-j & -4-i+j & 2+i-j \\ -2+i-j \\ -2+i+j\end{array} \right\rvert\,\right.$
$=\left(\begin{array}{ccc}-2-i+j & 2+i-j & 1 \\ -4+i-j & 3 & 2-i+j \\ 7 & -4-i+j & -2+i-j\end{array}\right)$
$=(V A)$
$\Rightarrow \mathrm{VA}$ is q -s-hermitian doubly stochastic matrix.
Similarly $\quad A^{*} V$ is also q-s-hermitian doubly stochastic matrix.

$$
\text { (iii) } \begin{aligned}
\mathrm{AV} & =\left(\begin{array}{cccc}
1 & 2+i-j & & -2-i+j \\
& 2-i+j & 3 & -4 \\
-2+i-j & -4-i+j & 7 & \left|\begin{array}{ccc}
i-j \\
1 & 0 & 0
\end{array}\right|
\end{array}\right)\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0
\end{array}\right) \\
& =\left(\left.\begin{array}{ccc}
-2-i+j & 2+i-j & 1 \\
-4+i-j & 3 & 2-i+j \\
7 & -4-i+j & -2+i-j
\end{array} \right\rvert\,\right. \\
& =(A V)
\end{aligned}
$$

$\Rightarrow \mathrm{AV}$ is q -s hermitian doubly stochastic matrix.
Similarly $\quad A^{*} V$ is also q -s hermitian doubly stochastic matrix.

REFERENCES:

[1] Ann.Lee. Secondary symmetric and Skew Symmetric Secondary, orthogonal matrices, period, math Hungary, 7, 63-70. (1976).
[2] Hill, R.D, and waters, S.R: On K-real and k-hermitian matrices; Lin. Alg. Appl., 169, 17-29 (1992).
[3] G.latoucke, V.Ramaswami, Introduction to matrix Analytic methods in Stochastic modeling, $1^{\text {st }}$ edition, Chapter2: PH distributions; ASASIAM, 1999.
[4] S.Krishnamoorthy, K.Gunasekaran, N.Mohana, "Characterization and theorems on doubly stochastic matrices".
Antartica Journal of mathematics, 11 (5) (2014).
[5] K.Gunasekaran, N.Mohana and R.Seethadevi, "Characterization and theorems
on quaternion doubly stochastic matrices" journal of ultra scientist and physical science" (2017).

