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Abstract: This research manuscript deals with investigation of the dynamics of discrete-time prey-predator 

model. The Stability analysis of the discrete model is discussed at all the fixed points. Furthermore, 

particular conditions dealing with the  existence of flip bifurcation and hopf bifurcation are discussed.  
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1.Introduction 

Great number of ecologists and mathematicians showing keen interest in the area of prey-predator 

modeling, in present times. Dynamics of the prey-predator system in ecology, is studied and discussed by 

many ecologists. Thorough their studies they contributed significantly for the development and growth of 

continuous models for large size populations [1-13]. As far as  small size population is considered, presently 

available discrete-time models are sufficiently appropriate and make available efficient results [18-26].  

Keeping in mind available literature, this piece of research work will study the stability of discrete-time 

prey-predator system. 

Consider a prey-predator model of the form  

{

𝑑𝑥

𝑑𝑡
= 𝑎𝑥(1 − 𝑥) − 𝑏𝑥𝑦,

 𝑑𝑦

𝑑𝑡
= 𝑚𝑏𝑥𝑦 − 𝑑𝑦,

        (1) 

here the densities of prey and predator populations are given by 𝑥 (𝑡) and 𝑦 (𝑡) respectively, the intrinsic 

growth rate of prey and predator are denoted by a, b respectively. Also, d denotes natural death  of predator 

species and m denotes the conversion rate for predator in a particular habitat.  

On applying forward Euler’s scheme to the system of equations in (1),  the discrete-time system is obtained 

as follows: 

{
𝑥 → 𝑥 + 𝛿[𝑎𝑥(1 − 𝑥) − 𝑏𝑥𝑦],

𝑦 → 𝑦 + 𝛿(𝑚𝑏𝑥𝑦 − 𝑑𝑦),
   (2) 

where 𝛿 is the step size.  

Stability of the fixed points 

The fixed points of the system (2) are O(0,0),  A(1,0) and C(𝑥∗ , 𝑦∗ ) , where  𝑥∗, 𝑦∗ satisfy 
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{
𝑎(1 − 𝑥∗) − 𝑏𝑦∗ = 0,

𝑚𝑏𝑥∗ − 𝑑 = 0,
        (3) 

The Jacobian matrix of (2) at the fixed point (𝑥, 𝑦) is written as  

 J=[
1 +  𝛿 (𝑎 − 2𝑎𝑥 − 𝑏𝑦) −𝛿𝑏𝑥

𝛿𝑚𝑏𝑦 1 +  𝛿 (𝑚𝑏𝑥 − 𝑑)
]. 

The characteristic equation of the Jacobian matrix is given by  

𝜆2 + p(𝑥, 𝑦) 𝜆 + q (𝑥, 𝑦) = 0,       (4) 

 where  

p(𝑥, 𝑦) = - tr(J) =  - 2 – 𝛿 ( (𝑎 − 2𝑎𝑥 − 𝑏𝑦 + 𝑚𝑑𝑥 − 𝑑), 

              q(𝑥, 𝑦) = det J = [ 1 + 𝛿 (𝑎 − 2𝑎𝑥 − 𝑏𝑦)][ 1 + 𝛿 (𝑚𝑏𝑥 − 𝑑)] + 𝛿2m𝑏2xy. 

Now we state a lemma as similar as in [14-17]: 

Lemma 2.1.  Let F(𝜆) =  𝜆2 + B 𝜆 + C .  Suppose F(1) > 0; 𝜆1 and 𝜆2 are roots of  F(𝜆) = 0. Then, we have  

(i) |𝜆1| < 1 and  |𝜆2| < 1  iff F(-1) > 0 and C < 1; 

(ii) |𝜆1| < 1 and |𝜆2| > 1  (or  |𝜆1| > 1 and |𝜆2| < 1) iff F(-1) < 0; 

(iii) |𝜆1| > 1 and |𝜆2 | > 1 iff  F(-1)>0 and C> 1; 

(iv) 𝜆1= -1  and |𝜆2|≠ 1 iff F(-1) and B ≠ 0,2; 

(v) 𝜆1 and𝜆2 are complex and |𝜆1| = |𝜆2| = 1 iff 𝐵2 -4C <0 and C = 1. 

Let  𝜆1 and 𝜆2 be the roots of (4), which are the eigenvalues of the fixed point  (𝑥, 𝑦 ). The fixed point (𝑥, 𝑦) 

is a sink or locally asymptotically stable if, |𝜆1| < 1 and  |𝜆2 | < 1. The fixed point (𝑥, 𝑦) is a source or 

locally unstable if, |𝜆1| > 1 and |𝜆2| > 1. The fixed point (𝑥, 𝑦) is non-hyperbolic if, either  |𝜆1| =1 or  |𝜆2| 

=1. The fixed point (𝑥, 𝑦)  is a saddle if, |𝜆1| > 1 and  |𝜆2| < 1 ( or |𝜆1| < 1 and |𝜆2| > 1).  

Proposition 2.2.  The fixed point O (0,0) is a sink. 

The Jacobian matrix of (2) at O (0,0) is given by 

J =    [
 1 +  𝛿𝑎 0

0 1 −  𝛿𝑑
]. 

The eigen values are 1 + δa , 1 - 𝛿𝑑. Now  

(i) |𝜆1| < 1 and |𝜆2| < 1 𝑡ℎ𝑒𝑛 
−2

𝑎
< 𝛿 < 0 𝑎𝑛𝑑 0 <  𝛿 <

2

𝑑
. 
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Therefore O(0,0) is a sink for  
−2

𝑎
< 𝛿 <

2

𝑑
. 

(ii) |𝜆1| > 1 𝑎𝑛𝑑 |𝜆2| > 1 𝑡ℎ𝑒𝑛 𝛿 > 0 𝑜𝑟 𝛿 <
−2

𝑎
and 𝛿 <  0 𝑜𝑟 𝛿 >

2

𝑑 
.  

Therefore O(0,0) is not a source . 

(iii) |𝜆1| = 1 or |𝜆2| =1 then 𝛿 = 0 or 𝛿 =  
−2

𝑎
 or 𝛿 = 0 or 𝛿 = 

−2

𝑑
. 

Therefore O(0,0) is not non-hyperbolic . 

(iv) |𝜆1| > 1 and |𝜆2| < 1 𝑜𝑟 |𝜆1| < 1 and |𝜆2| > 1 . Then 𝛿 > 0 𝑜𝑟 𝛿 <
−2

𝑎
 and 𝑜 <  𝛿 <

2

𝑑
  or  

−2

𝑎
<

𝛿 < 0 and 𝛿 < 0 or 𝛿 >
2

𝑑
 . Which is not possible. Therefore O (0, 0) is not saddle. 

Proposition 2.3.  The fixed point A(1,0) is not a sink, a source if, 𝛿 >
2

𝑎
 ,  non-hyperbolic if, 𝛿 = 0, a saddle 

if, 0 < 𝛿 <
2

𝑎
 .  

At (1,0) the Jacobian matrix of (2) is 

J    =    [
1 − 𝛿𝑎 −𝛿𝑏

0 1 + 𝛿(−𝑑 + 𝑚𝑏)
] 

The eigen values are 1 – 𝛿𝑎 , 1 + 𝛿 (−𝑑 + 𝑚𝑏).  Here  

(i) |𝜆1| < 1 𝑎𝑛𝑑 |𝜆2| < 1 then 
2

𝑎
<  𝛿 < 0 and 

−2

−𝑑+𝑚𝑏
< 𝛿 < 0, which is not possible Therefore  A 

(1,0) is not a sink. 

(ii) |𝜆1| > 1 and |𝜆2| > 1 then 𝛿 < 0 𝑜𝑟 𝛿 >
2

𝑎
  and 𝛿 > 0 𝑜𝑟 𝛿 <

−2

−𝑑+𝑚𝑏
 . Thus A (1, 0) is source if,  

𝛿 >
2

𝑎
 . 

(iii) |𝜆1| = 1 or |𝜆2| = 1 then 𝛿 = 0 or 𝛿 =  
2

𝑎
  or 𝛿 = 0 or 𝛿 =

−2

−𝑑+𝑚𝑏
 . Therefore A (1, 0) is non-

hyperbolic if, 𝛿 =  0. 

(iv) |𝜆1| > 1 and  |𝜆2| < 1 or |𝜆1| < 1 and |𝜆2| > 1. Then 𝛿 < 0 or 𝛿 >
 2

𝑎
  and  

             
−2

−𝑑+𝑚𝑏
< 𝛿 < 0 or  

2

𝑎
> 𝛿 > 0 and 𝛿 > 0 or 𝛿 <

−2 

−𝑑+𝑚𝑏 
 . Therefore A (1,0) is a    

            saddle if, 0< 𝛿 <
2

𝑎
. 

The Jacobian matrix of (2) at the fixed point C( 𝑥∗ , 𝑦∗ ) is given by  
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       J =  [
1 + 𝛿(𝑎 − 2𝑎𝑥∗ − 𝑏𝑦∗) −𝛿𝑏𝑥∗

𝛿𝑚𝑏𝑦∗ 1 + 𝛿(𝑚𝑏𝑥∗ − 𝑑)
] . 

    The characteristic equation for the above Jacobian matrix is  

𝜆2 + 𝑝(𝑥∗, 𝑦∗) 𝜆 + q (𝑥∗, 𝑦∗) = 0,      (5)  

    where  p(𝑥∗, 𝑦∗) = −2 − 𝛿(𝑎 − 2𝑎𝑥∗ − 𝑏𝑦∗ + 𝑚𝑏𝑥∗ − 𝑑) 

                               =  −2 − 𝛿𝐺, 

    q (𝑥∗,𝑦∗) = [ 1 + 𝛿(𝑎 − 2𝑎𝑥∗ − 𝑏𝑦∗) ] [1 +  𝛿(𝑚𝑏𝑥∗ − 𝑑) ] + 𝛿2m𝑏2𝑥∗𝑦∗ 

  = 1 + 𝛿𝐺 + 𝛿2𝐻, 

 and 

G = a −2a𝑥∗ − 𝑏𝑦∗ + 𝑚𝑏𝑥∗ − 𝑑, 

   H = ( 𝑎 − 2𝑎𝑥∗ − 𝑏𝑦∗) (𝑚𝑏𝑥∗ − 𝑑) + 𝑚𝑏2𝑥∗𝑦∗. 

Now F (𝜆) = 𝜆2 − (2 + 𝐺𝛿)𝜆 + (1 + 𝐺𝛿 + 𝐻𝛿2). So F(1) = H𝛿2 and F(-1) = 4 +2G𝛿+H𝛿2. 

The following proposition can be obtained by using the lemma 2.1, 

Proposition 2.4. There exist different topological types of D(𝑥∗, 𝑦∗) for all possible parameters.  

(i) D(𝑥∗, 𝑦∗) is a sink if either condition (i.1) or (i.2) holds: 

(i.1) 𝐺2 − 4𝐻 ≥ 0 and 0< 𝛿 <
−𝐺−√𝐺2− 4𝐻

𝐻
 

(i. 2)𝐺2 − 4H< 0 and 0< 𝛿 <
−𝐺

𝐻
 . 

(ii) D(𝑥∗ , 𝑦∗) is a source if either condition (ii.1) or (ii.2) holds: 

(ii.1) 𝐺2 − 4𝐻 ≥ 0 and 𝛿 >
−𝐺+ √𝐺2−4𝐻

𝐻
 , 

(ii.2) 𝐺2 − 4𝐻 < 0 and 𝛿 >
−𝐺

𝐻
. 

(iii)  D(𝑥∗, 𝑦∗) is a non-hyperbolic if either condition (iii.1) or (iii.2) h 

(iii.1) 𝐺2 − 4𝐻 ≥ 0 and 𝛿 =  
−𝐺±√𝐺2−4𝐻

𝐻
 ,  

(iii.2) 𝐺2 − 4𝐻 < 0 and 𝛿 =
−𝐺

𝐻
 . 

(iv) D (𝑥∗, 𝑦∗) is saddle for all values of the parameters, except for that values which lie in (i) to (iii). 
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If the condition (iii.1) of the proposition 2.5 holds, then one of the eigen values of the fixed point 

D(𝑥∗,𝑦∗) is −1 and the magnitude of the other is not unity. The condition (iii.1) of the proposition 2.5 may 

be expressed as follows: 

𝐹𝐷1 = { (a,b,d,m,𝛿) : 𝛿 =  
−𝐺−√𝐺2−4𝐻

𝐻
 , 𝐺2 − 4𝐻 ≥ 0 and a,b,d,m,𝛿 > 0 }, 

      𝐹𝐷2 = { (a,b,d,m,𝛿) : 𝛿 =  
−𝐺−√𝐺2−4𝐻

𝐻
 , 𝐺2 − 4𝐻 ≥ 0 and a,b,d,m,𝛿 > 0 }. 

If the term (iii.2) of proposition 2.5 holds, then the eigen values of the fixed point D(𝑥∗, 𝑦∗) occur as 

a conjugate pair of complex number with modulus unity. The condition (iii.2) of the proposition 2.5 may be 

expressed as follows: 

     𝐻𝐷 = {(a, b, d, m,𝛿): 𝛿=
−𝐺

𝐻
, 𝐺2-4H<0 and a,b,d,m, 𝛿 > 0 }. 

Here 𝐹𝐷1 and 𝐹𝐷1are the regions of existence of flip bifurcation, and 𝐻𝐷 is region for existence of Hopf 

bifurcation. 

Conclusion 

Present research study deals with the discrete dynamics of predator-prey system. The stability of the model 

at all the fixed points has been examined. The maps may undergo flip bifurcation and Hopf bifurcation at 

the fixed points under specific conditions when 𝛿 varies in small neighbourhood of their domain 

respectively. 
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