
© 2018 JETIR November 2018, Volume 5, Issue 11 www.jetir.org (ISSN-2349-5162)

JETIR1811315 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 117

PROXIMAX: A Measurement Based System for

Proxies Dissemination

HASEEBA HALEEM1, DR. S. SATHISH KUMAR2
1PG Scholar, Dept of CSE, Shadan Women’s College of Engineering and Technology, Hyderabad, TS, India,

2Associate Professor, Dept of CSE, Shadan Women’s College of Engineering and Technology, Hyderabad, TS, India.

Abstract: Open interchanges over the Internet present

genuine dangers to nations with severe administrations,

driving them to create and send oversight instruments inside

their systems. Lamentably, existing oversight circumvention

frameworks don't give high accessibility assurances to their

clients, as blue pencils can without much of a stretch

distinguish, henceforth upset, the movement having a place

with these frameworks utilizing the present propelled

restriction advancements. In this paper, we propose serving

the Web by Exploiting Email Tunnels (SWEET), an

exceedingly accessible restriction safe framework. SWEET

works by epitomizing an edited client's movement inside

email messages that are extended open email

administrations like Gmail and Yahoo Mail. As the activity

of SWEET isn't bound to a particular email supplier, we

contend that a control should square email correspondences

all together keeping in mind the end goal to disturb

SWEET, which is far-fetched as email comprises a critical

piece of the present Internet. Through trials with a model of

our framework, we locate that SWEET's execution is

adequate for Web perusing. Specifically, consistent

Websites are downloaded inside couple of seconds.

Keywords: Censorship Circumvention, Traffic

Encapsulation, Email Communications.

I. INTRODUCTION
 The Internet provides users from around the world with

an environment to freely communicate, exchange ideas and

information. However, free communication continues to

threaten repressive regimes, as the open circulation of

information and speech among their citizens can pose

serious threats to their existence. Recent unrest in the

middle east demonstrates that the Internet can be widely

used by citizens under these regimes as a very powerful tool

to spread censored news and information, inspire dissent,

and organize events and protests. As a result, repressive

regimes extensively monitor their citizens’ access to the

Internet and restrict open access to public networks [1] by

using different technologies, ranging from simple IP address

blocking and DNS hijacking to the more complicated and

resource-intensive Deep Packet Inspection (DPI) [2],

[3].With the use of censorship technologies, a number of

different systems were developed to retain the openness of

the Internet for the users living under repressive regimes

[4]–[9]. The earliest circumvention tools are HTTP proxies

[4], [9], [10] that simply intercept and manipulate client’s

HTTP requests, defeating IP address blocking and DNS

hijacking techniques. The use of more advanced censorship

technologies such as DPI [2], [11], rendered the use of

HTTP proxies ineffective for circumvention. This led to the

advent of more advanced tools such as Ultrasurf [5] and

Psiphon [6], designed to evade content filtering. While the

secircum vention tools have helped, they face several

challenges. We believe that the biggest one is their lack of

availability, meaning that a censor can disrupt their service

frequently or even disable them completely [12]–[16].

 The commoner as on is that the network traffic made by

these systems can be distinguished from regular Internet

traffic by censors, i.e., such systems are not unobservable.

For example, the popular Tor [8] network works by having

users connect to an ensemble of nodes with public IP

addresses, which proxy users’ traffic to the requested,

censored destinations. This public knowledge about Tor’s IP

addresses, which is required to make Tor usable by users

globally, can be and is being used by censors to block their

citizens from accessing Tor[17],[18]. To improve

availability, recent proposals for circumvention aim to make

their traffic unobservable to the censors by pre-sharing

secret with their clients [19]–[21]. Others [22]–[25] suggest

to conceal circumvention by making infrastructure

modification to the Internet. Nevertheless, deploying and

scaling these systems is a challenging problem, as discussed

in Section II.A more recent approach in designing

unobservable circumvention systems is to imitate popular

applications like Skype and HTTP, as suggested by Skype-

Morph [26],Censor Spoofer [27], and StegoTorus [28].

However, it has recently been shown [29] that these

systems’ un observe ability is breakable; this is because a

comprehensive imitation of today’s complex protocols is

sophisticated and infeasible in many cases.

 A promising alternative suggested [29], [30] is to not

mimic protocols, but run the actual protocols and find clever

ways to tunnel the hidden content into their genuine traffic;

this is the main motivation of the approach taken in this

paper. In this paper, we design and implement SWEET, a

censorship circumvention system that provides high

availability by leveraging the openness of email

communications. Fig. 1 shows the main architecture. A

SWEET client, confined by a censoring ISP, tunnels its

network traffic inside a series of email messages that are

exchanged between herself and an email server operated by

SWEET’s server. The SWEET server acts as an Internet

proxy [31] by proxying the encapsulated traffic to the

requested blocked destinations. The SWEET client uses an

oblivious, public mail provider (e.g., Gmail, Hotmail, etc.)

to exchange the encapsulating emails, rendering standard

email filtering mechanisms ineffective in identifying/

blocking SWEET-related emails. More specifically, to use

SWEET for circumvention a client needs to create an email

account with some public email provider; she also needs to

obtain SWEET’s client software from an out-of-bound

http://www.jetir.org/

© 2018 JETIR November 2018, Volume 5, Issue 11 www.jetir.org (ISSN-2349-5162)

JETIR1811315 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 118

channel(similar to other circumvention systems). The user

configures the installed SWEET software to use her public

email account, which sends/receives encapsulating emails

on behalf of the user to/from the email address of SWEET.

 SWEET’s un observ ability: We claim that a censor is

note asily able to distinguish between SWEET’s email

messages and benign email messages. As described later in

Section IV, a SWEET client has two options in choosing her

email account: Alien-Mail a non-domestic email that

encrypts emails (e.g., Gmail for users in China), and 2)

Domestic-Mail a domestic email account with no need for

encryption (e.g., 163.com for users in China). As described

in Section IV, when Alien-Mails used by a client all of its

SWEET emails are sent to a publicly known email address,

e.g., tunnel @sweet.org, encrypted; however, a censor will

not be able to identify these emails since they are proxied by

the Alien-Mail server running outside the censoring area. In

simpler words, the censor only observes that the client is

exchanging encrypted messages with the Alien-Mail server

(e.g., Gmail’s mail server in U.S.), but he will not be able to

observe neither the recipient’s email address

(tunnel@sweet.org), nor the IP address of the sweet.org

mail server. As a result, existing approaches for spam

filtering such as shooting the spamming SMTP servers and

dropping spam emails are entirely infeasible. In the case of

Domestic-Mail, the SWEET server uses a secondary secret

email account, which is only shared with that particular

client, for exchanging SWEET emails (i.e., my

otheremail@163.cominstead oftunnel@sweet.org address).

As a result, the censor will not be able to identify SWEET

messages from their recipient fields (since the censor does

not know the association of my other email @163.com with

SWEET).Also the use of steganography/encryption to

embed tunneled data renders DPI infeasible.

Fig.1. Overall architecture of SWEET.

SWEET’s Availability: Given SWEET’s unobserv ability

discussed above, a censor cannot efficiently distinguish

between SWEET emails and benign email messages. Hence,

in order to block SWEET a censor needs to block all email

messages to the outside world. However, email is an

essential service in today’s Internet and it is very unlikely

that a censorship authority will block all email

communications to the outside world, due to different

financial and political reasons. This, along the fact that

SWEET can be reached through a wide range of

domestic/non-domestic email providers provides a high

degree of availability for SWEET.

Prototype Implementation: We have built a prototype

implementation for SWEET and evaluated its performance.

We have also proposed and prototyped two different designs

for SWEET client. The first client design uses email

protocols, e.g., POP3 and SMTP, to communicate with the

SWEET system, and our second design is based on using

the web mail interface. Our measurements show that a

SWEET client is able to browse regular-sized web

destinations with download times in the order of couple of

seconds. In fact, the high availability of SWEET comes for

the price of higher, but bearable, communication latencies.

Fig.2 compares SWEET with several popular circumvention

systems regarding their availability and communication

latency. As our measurements in Section VII show, SWEET

provides communication latencies that are convenient for

latency-sensitive activities like web browsing (i.e., few

seconds). Such additional, tolerable latency of SWEET

comes with the bonus of better availability, as discussed in

Section V-B.

Fig.2. Availability and communication latency

comparison of circumvention systems.

 Our contributions: In summary, this paper makes the

following main contributions: i) we propose a novel

infrastructure for censorship circumvention, SWEET, which

provides high availability, a feature missing in existing

circumvention systems; ii) we develop two prototype

implementations for SWEET(one using webmail and the

other using email exchange protocols) that allow the use of

nearly all email providers by SWEET clients; and, iii) we

show the feasibility of SWEET for practical censorship

circumvention by measuring the communication latency of

SWEET for web browsing using our prototype

implementation. Paper’s organization: The rest of this paper

is organized as follows; in Section II, we discuss the related

work on unobservable censorship circumvention. In Section

III, we reviews our threat model. We provide the detailed

description of the proposed circumvention system, SWEET,

in Section IV.

II. RELATED WORK

 There has been much work on unobservable censorship

circumvention systems [23], [24], [26]–[28], [30], [32]–

[35].Similar to SWEET, Free-Wave [30], Cloud-Transport

[32], and Covert-Cast [35] also work by tunneling

circumvention traffic into the actual runs of popular network

protocols. For instance, Free-Wave [30] tunnels Internet

traffic inside VoIP communications. This tunneling

approach provides much stronger unobservability against

http://www.jetir.org/
mailto:myotheremail@163.com
mailto:myotheremail@163.com

© 2018 JETIR November 2018, Volume 5, Issue 11 www.jetir.org (ISSN-2349-5162)

JETIR1811315 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 119

the censors compared to imitation based circumvention

systems [26]–[28], as demonstrated by Houmansadret al.

[29].Several designs [19]–[21] seek unobservability by

sharing secret information with their clients, which are not

known to censors. For instance, the Tor network has

recently adopted the use of Tor Bridges, a set of volunteer

nodes connecting clients to the Tor network, whose IP

addresses are selectively distributed among Tor users by

Tor. As another example, In franet [19] shares a secret key

and some secret URL addresses with a client, which is then

used to establish an unobservable communication between

the client and the system. Collage [20] works by having a

client and the system secretly agree on some user-generated

content sharing websites, e.g., flickr.com, and communicate

using steganography. Unfortunately, sharing secrets with a

wide range of clients is a serious challenge, as a censor can

obtain the same secret information by pretending to be a

client. Some recent research suggests circumvention being

built into the Internet infrastructure to better provide

unobservability [22]–[24]. These systems rely on

collaboration from some Internet routers that intercept

users’ traffic to uncensored destinations to establish covert

communication between the users and the censored

destinations. Telex [23]and Cirripede [24] provide this

unobservable communication without the need for some

pre-shared secret information with the client, as the secret

keys are also covertly communicated inside the network

traffic. Cirripede [24] uses an additional client registration

stage that provides some advantages and limitations as

compared to Telex [23] and Decoy routing [22]systems.

Recent studies investigate the real-world deployment of

decoy routing systems by evaluating the placement of decoy

routers on the Internet in adversarial settings [36]–[38].

III. DESIGN OF SWEET

 In this section, we describe the detailed design of

SWEET .Fig.1 shows the overall architecture. SWEET

tunnels network connections between a client and a server,

called SWEET server, inside email communications. Upon

receiving the tunneled network packets, the SWEET server

acts as a transparent proxy between the client and the

network destinations requested by the client. A client’s

choices of email services: A SWEET client has two options

for his email provider: Alien-Mail, and Domestic-Mail.

Fig. 3.The main architecture of SWEET server.

Alien-Mail: An Alien-Mail is a mail provider whose mail

servers reside outside the censoring ISP, e.g., Gmail for the

Chinese clients. We only consider Alien-Mails that provide

email encryption, e.g., Gmail and Hush-mail. A SWEET

client who uses an Alien-Mail does not need to apply any

additional encryption/steganography to her encapsulated

contents. Also, she simply sends her emails to the publicly

advertised email address of SWEET server, e.g.,

tunnel@sweet.org, since the censors will not be able to

observe (and block)the tunnel@sweet.org address inside

SWEET messages, which are exchanged between the client

and the Alien-Mail server in an encrypted format.

Domestic-Mail: A Domestic-Mail is an email provider

hosted inside the censoring ISP and possibly collaborating

with the censors, e.g., 163.com for the Chinese clients.

Since the censors are able to observe the email contents, the

SWEET client using a Domestic-Mail should hide the

encapsulated contents through steganography (e.g., by doing

image/text steganography inside email messages). Also, the

client cannot send her SWEET emails to the public email

address of SWEET server (tunnel@sweet.org) since the

mail recipient field is observable to the Domestic-Mail

provider and/or the censor. Instead, the client generates a

secondary`email`address`myotheremail@somedomain.com(

which could be either Domestic-Mail or Alien-Mail), and

then provides the email credentials for this secondary

account only to SWEET server through an out-of-band

channel (e.g., through an online social network). The

SWEET server uses this email address to exchange SWEET

emails only with this particular client. In the following, we

describe the details of SWEET’s server and client

architectures. To avoid confusion and without loss of

generality, we only consider the case of Alien-Mail being

used by the client. If Domestic-Mail is used, the client and

server should also perform some steganography operations

to hide the encapsulated traffic, as well as they should

exchange a secondary email address, as described above.

A. SWEET Server

 The SWEET server is the part of SWEET running

outside the censoring region. It helps SWEET clients to

evade censor ship by proxying their traffic to blocked

destinations. More specifically, a SWEET server

communicates with censored users by exchanging emails

that carry tunneled network packets. Fig. 3 shows the main

design of SWEET server, which is composed of the

following elements:

 Email Agent: The email agent is an IMAP and

SMTP server that receives emails that contain the

tunneled Internet traffic, sent by SWEET clients to

SWEET’s email address. The email agent passes

the received emails to another components of the

SWEET server, the converter and the registration

gent. The email agent also sends emails to SWEET

clients, which are generated by other components

of SWEET server and contain tunneled network

packets or client registration information.

 Converter: The converter processes the emails

passed by the email agent, and extracts the

tunneled network packets. It then forwards the

extracted data to another component, the proxy

agent. Also, the converter receives network packets

from the proxy agent and converts them into emails

that are targeted to the email address of

corresponding clients. The converter then passes

these emails to the email agent for delivery to their

intended recipients. As described later, the

http://www.jetir.org/

© 2018 JETIR November 2018, Volume 5, Issue 11 www.jetir.org (ISSN-2349-5162)

JETIR1811315 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 120

converter encrypts/decrypts the email attachments

of a user using a secret key shared with that user.

 Proxy Agent: The proxy agent proxies the network

packets of clients that are extracted by the

converter, and sends them to the Internet

destination requested by the clients. It also sends

packets from the destination back to the converter.

 Registration Agent: This component is in charge

of registering the email addresses of the SWEET

clients, prior to their use of SWEET. The

information about the registered clients can be used

to ensure quality of service and to prevent denial-

of-service attacks on the server. Additionally, the

registration agent shares a secret key with the

client, which is used to encrypt the tunneled

information between the client and the server.

B. SWEET Client

 To use SWEET, a client needs to obtain a copy of

SWEET’s client software and install it on her machine. The

client also needs to create one or two email account

(depending on if she uses an Alien-Mail or a Domestic-Mail

for her primary email).A client needs to configure the

installed SWEET’s software with information about her

email account. Prior to the first use of SWEET by a client,

the client software registers the email address of its user

with the SWEET server and obtains a shared secret key kC,

R, as described in Section IV-A. We propose two designs

for SWEET client: a protocol-based design, which uses

standard email protocols to exchange email with client’s

email provider, and a webmail-based design, which uses the

webmail interface of the email provider. We describe these

two designs in the following.1) Protocol-Based Design: Fig.

4(a) shows the three main elements.

Web Browser: The client can use any web browser that

supports proxying of connections, e.g., Google Chrome,

Internet Explorer, or Mozilla Firefox. The client needs to

configure her browser to use a local proxy server, e.g., by

settinglocalhost:4444 as the HTTP/SOCKS proxy. The

client can use two different browsers for browsing with and

without SWEET to avoid the need for frequent re-

configurations of the browser. Alternatively, some browsers

(e.g., Chrome, and Mozilla Firefox) allow a user to have

multiple browsing profiles, hence, a user can setup two

profiles for browsing with and without SWEET.

Email Agent: It sends and receives SWEET emails

thorough the client’s email account. The client needs to

configure it with the settings of the SMTP and IMAP/POP3

servers of her email account. The client also needs to

provide it with the account login information.

Converter: It sits between the web browser and the email

agent, and converts SWEET emails into network packets

and vice versa. It uses the keys shared with SWEET, kC, R,

to encrypt/decrypt email content. Once the client enters a

URL into the configured browser(1), the browser makes a

proxy connection to the local port that the converter (3) is

listening on. The converter accepts the proxy connection

and keeps the state of the established TCP/IP connections.

For packets that are received from the browser, the

converter generates traffic emails, targeted to

tunnel@sweet.org, having the received packets as encrypted

email attachments (using the key kC,R). Such emails are

passed to the email agent (2) that sends the emails to the

SWEET server through the public email provider of the

client. The email agent is also configured to receive emails

from the client’s email account through an email retrieval

protocol, e.g., IMAP or POP3. This allows the email agent

to continuously look for new emails from the server. Once

new emails are received, the email agent passes them to the

converter, who in turn extracts the packets from the emails,

decrypts them, and sends them to the browser over the

existing TCP/IP connection.

Webmail-Based Design: Alternatively, the SWEET client

can use the webmail interface of the client’s public email

provider. as showed in Fig. 4(b). The main difference with

the protocol-based design is that in this case the email agent

(2)uses a web browser to exchange emails. More

specifically, the email agent uses its web browser to open a

webmail interface with the client’s email account, using the

user’s authentication credentials for logging in. Through this

HTTP/HTTPS connection, the email agent communicates

with the SWEET server by sending and receiving emails.

C. The Choice of the Proxy Protocol

 As mentioned before, the SWEET server uses a proxy

agent to receive the tunneled traffic of clients and to

establish connections to the requested destinations. We

consider the useof both SOCKS [31] and HTTP [43] proxies

in the design, as each provides unique advantages. Our

server’s proxy agent runs a SOCKS proxy and an HTTP

proxy in parallel, each on a different port. A user can choose

to use the type of proxy by configuring her client to connect

to the corresponding port. The use of the SOCKS proxy

allows the client to make any IP connection through the

SWEET system, including dynamic web communications,

such as Java script or AJAX, and instant messaging. In

contrast, an HTTP proxy only allows access to HTTP

destinations. However, an HTTP proxy may speedup

connections by using HTTP-layer optimizations such as

caching or pre-fetching of web objects.

http://www.jetir.org/

© 2018 JETIR November 2018, Volume 5, Issue 11 www.jetir.org (ISSN-2349-5162)

JETIR1811315 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 121

Fig.4. Design of SWEET client software. (a) The

protocol-based design. (b) The webmail-based design.

D. An Alternative Approach: Web Download

 A trivial approach in providing censorship

circumvention using email is to download an entire

webpage and attach it as an email attachment to emails that

are targeted to the requesting users. In fact, this approach is

under development by the open-source foe project [39], and

the for-profit service of MailMy Web [40]. Unfortunately,

this simple approach only provides a limited access to the

Internet: a user can only access static websites. In particular,

this approach cannot be used to access destinations that

require end-to-end encryption, contain dynamic web

applications like HTML5 and Java script sockets, or need

user login information. Also, this approach does not support

accessing web destinations that require a live Internet

connection, e.g., video streaming websites, instant

messaging, etc. In fact, the MailMy Web service uses some

heuristics to tackle some of these shortcomings partially,

which are privacy invasive and inefficient. For example, in

order to access login based websites MailMyWeb requests a

user to send her login credentials to MailMyWeb by email.

Also, a user can request for videos hosted only on the

YouTube video sharing website, which are then downloaded

by MailMyWeb and sent as email attachments; this causes a

large delay between the time a video is requested until it is

has received by the user. SWEET, on the other hand,

provides a comprehensive web browsing experience to its

users since it can tunnel any kind of IP traffic.

IV. PROTOTYPE IMPLEMENTATION

A. Server Implementation

 We implement the SWEET server on a Linux machine,

which runs Ubuntu 10.04 LTS and has a 2 GHz quad-core

CPU and 4 GB of memory. We run Postfix,1 a simple email

server that supports basic functions. Postfix listens for new

emails targeted to the register@sweet.org

andtunnel@sweet.org email addresses. Postfix stores the

received emails into designated file directories that are

continuously watched by the converter and registration

agent of SWEET server. Each stored email has a unique

name, concatenating the email id of its corresponding client

and an increasing counter.

Fig.5. The CDF of (a) the time that a SWEET email

takes to travel from the SWEET client to the SWEET

server; (b) the registration time.

 The converter agent is a simple Python based program

that runs in the background and continuously checks the

folder for new emails. The converter also converts proxied

packets, passed by SWEET’s proxy, into emails and sends

them to their intended clients. For the proxy agent, we use

Squid2 as our HTTP proxy and Suttree3 as our SOCKS

proxy. Squid listens on a local port for connections from the

converter.

B. Client Implementation

Protocol-Based Design: The client prototype is built on a

desktop machine, running Linux Ubuntu 10.04 TLS. We

setup a web browser to use the local port “local host: 9034”

as the SOCKS/HTTP proxy. The converter is a simple

python script that listens on port 9034 for connections, e.g.,

from our web browser. We implement the email agent of

SWEET client using Fetchmail,4 a popular client software

for sending and retrieval of emails through email protocols.

We generate a free Gmail account and configure Fetch-mail

to receive emails through IMAP5 and POP36 servers of

Gmail, and to send emails through the SMTP server of

Gmail.7 Note that our design does not rely on Gmail, and

the client software can beset up with any email account.

Webmail-based design: Our webmail-based implementation

also runs on Linux Ubuntu 10.04 TLS, and uses the same

converter as the one used in the protocol-based prototype. A

Google Chrome browser is used for making connections

through SWEET, configured to use “localhost:9034” as a

proxy. We prototype the web-based email agent by running

a UserScript8 inside the Mozilla Firefox9 browser. More

specifically, we install a Firefox extension, Greasemonkey,

10to allow a user to run her own JavaScript, i.e., User script,

while browsing certain destinations. We write a User Script

that runs in Gmail’s webmail interface and listens for the

receipt of new emails. Our User Script saves new emails in

a local directory, which is watched by the converter. Note

that the Firefox browser is directly connected to the Internet

and does not use any proxies (user needs to use the

configured Chrome browser to surf the web through

SWEET).

V. EVALUATION

 We evaluate SWEET using our prototype

implementation.

A. Performance

 We use Gmail as the oblivious mail provider in our

experiments. Our SWEET server is located in Urbana, IL,

resulting in approximately 2000 miles of geographic

distance between the SWEET server and Gmail’s email

server (we locate Gmail’s location from its IP address). Fig.

5(a) shows the CDF of the time that a SWEET email

(carrying the tunneled traffic) sent by a SWEET client takes

to reach our SWEET server (the reverse path takes a similar

time). As the figure shows, around 90% of emails take less

than 3 seconds to reach the server, which is very promising

considering the high data capacity of these emails. Note that

based on our measurements, most of this delay comes from

email handling(e.g, spam checks, making SMTP

connections, etc.) performed by the oblivious mail provider

(Gmail in our experiments),but not from the network

latency (the network latency and client latency constitute

only tens of milliseconds of the total latency). As a result,

http://www.jetir.org/

© 2018 JETIR November 2018, Volume 5, Issue 11 www.jetir.org (ISSN-2349-5162)

JETIR1811315 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 122

the latency would be very similar for users with an even

longer geographical distance from the oblivious mail server.

Fig.6. The CDF of (a) the time to the first appearance

(TFA) and (b) the total browsing time (TBT) using

SWEET.

Client Registration: Before being able to request data from

Internet destinations, a user needs to be registered by the

SWEET server. Fig. 5(b) shows the time taken to exchange

registration messages between a client and the SWEET

server. Note that the client registration needs to be

performed only once for a long period of time. The figure

shows that more than 90% of registrations establish in less

than 8 seconds (with an average of 6.4 seconds).We use two

metrics to evaluate the latency performance of SWEET in

browsing websites: the time to the first appearance (TFA)

and the total browsing time (TBT).The TFA is the time

taken to receive the first response from a requested web

destination. It is an important metric in measuring user

convenience during web browsing. For instance, suppose

that a client requests a URL, e.g., By the TFA time the

client receives the first HTTP RESPONSE(s) from the

destination, which include the URL’s text parts (perhaps the

new sarticle) along with the URLs of other objects on that

page, e.g., images, ads hosted by other websites, etc. At this

time the client can start reading the received portion of the

website(e.g., the news article), while her browser sends

requests for other objects on that webpage. On the other

hand, the total browsing time (TBT) is the time after which

the browser finishes fetching all of the objects in the

requested URL. Using our prototype we measure the end-to-

end web browsing latency for the client to reach different

web destinations. Fig.6(a) shows the TFA for the top 10

web URLs from Alexa’s most-visited sites ranking [46].

The median is about5 seconds across all experiments, which

is very promising to user convenience. On the other hand,

Fig. 6(b) shows the total browsing time (TBT) for the same

set of destinations (50 runs for each web site). As can be

seen, the destinations that contain more web objects (e.g.,

yahoo and linked in) take more time to get completely

fetched (note that after the TFA time the user can start

reading the webpage). We also run similar experiments

through the popular Tor [45] anonymous network to

compare its latency performance with SWEET. Fig. 7

compares the latency CDF for SWEET and Tor. As

expected, our simple implementation of SWEET takes more

time than Tor to browse web pages, however, it provides a

sufficient performance for normal web browsing. This is in

particular significant considering the strong availability of

SWEET compared to other circumvention systems.

Additionally, we believe that further optimizations on

SWEET server’s proxy (like those implemented by Tor exit

nodes) will further improve the performance.

Fig.7. Comparing the average latency of SWEET and

Tor.

 Our techniques are also amenable to standard methods

to improve web latency, such as plug in-based caching and

compression, which can make web browsing tolerable in

high delay environments [47].

B. Traffic Analysis

 A powerful censor can perform traffic analysis to detect

the use of SWEET, e.g., by comparing a user’s email

communications with that of a typical email user. As a

result, a SWEET user who is concerned about

unobservability needs to ensure that her SWEET email

communications mimic that of a normal user (a user who

does not fear reprisal from her government might opt to

have lower unobservability in order to gain a higher

communication bandwidth). It should be mentioned that

such traffic analysis is expensive for censors considering the

large volume of email communications; it is estimated11

that294 billion emails were sent per day in 2011.Fig. 8

shows the number of emails sent and received by a SWEET

client to browse different websites. We observe that for any

particular website the number of emails does not change at

different runs. As can be seen, most of the web sites finish

in less than three SWEET emails in each direction. The

exception is the Yahoo web page as it contains many web

objects, each hosted by different URLs (note that the

number of emails affects the latency performance only sub-

linearly, since some emails are sent and received

simultaneously.). Also, the average number in each way of a

connection is about 4 emails. A recent study [48] on email

statistics predicts that an average user will send 35 emails

and will receive75 emails per day in 2012 (the study

predicts the numbers to increase annually).

http://www.jetir.org/

© 2018 JETIR November 2018, Volume 5, Issue 11 www.jetir.org (ISSN-2349-5162)

JETIR1811315 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 123

Fig.8. The number of emails sent and received by a

SWEET client to get one of the websites from Alexa’s

top ten ranking.

 In addition, membership in mailinglists12 and Internet

groups13,14 is popular among Internet users, producing

even more emails by normal email users. As an indication

of the popularity of such services, Yahoo in

2010announced15 that 115 million unique users are

collectively members of more than 10 million Yahoo

Groups. Based on the mentioned statistics, we estimate that

a conservative SWEET user can perform 35-70 web

downloads per day, or make10-20 interactive web

connections, while ensuring unobservability of SWEET

usage. Note that the censored users use SWEET only to

browse “censored” Internet web pages and they use regular

web browsing for non-censored websites. Also, normal

citizens who do not fear being caught by the censors may

decide to ignore resistance against traffic analysis in order

to achieve higher bandwidths. The censors may also try to

detect SWEET users by analyzing the inter-arrival times of

the email messages exchanged between SWEET users and

their mail service providers. More specifically, a SWEET

client may send and receive multiple emails in a shorter

time interval compared to regular email clients. We,

however, argue that this is nota serious vulnerability for

SWEET. As discussed earlier, we require SWEET clients to

use mail service providers that encrypt email exchanges

(otherwise, the censors can simply filter SWEET emails by

searching for the email addresses of SWEET servers). The

use of encryption prevents the censors from identifying the

number of emails exchanged between a SWEET user and

her mail service provider.

VI. RESULTS

 Results of this is paper is as shown in bellow Figs. 9 to 16.

Fig.9. Registration Form.

Fig.10. Login Form.

Fig.11. User Sent Mails On Sweet Server.

http://www.jetir.org/

© 2018 JETIR November 2018, Volume 5, Issue 11 www.jetir.org (ISSN-2349-5162)

JETIR1811315 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 124

Fig.12. User Sent Mails On Gmail.

Fig.13. User Inbox On Sweet Server.

Fig.14. User Inbox On Gmail.

Fig.15. Profile Form.

Fig.16. Add Event Form.

VII. CONCLUSION

 A powerful censor can perform traffic analysis to detect the

use of SWEET, e.g., by comparing a user’s email

communications with that of a typical email user. As a

result, a SWEET user who is concerned about

unobservability needs to ensure that her SWEET email

communications mimic that of a normal user. It should be

mentioned that such traffic analysis is expensive for censors

considering the large volume of email communications; it is

estimated13 that 294 billion email messages were sent per

day in 2011. We observe that for any particular website the

number of emails does not change at different runs. As can

be seen, most of the web sites finish in less than three

SWEET emails in each direction. The exception is the

Yahoo web page as it contains many web objects, each

hosted by different URLs SWEET, a deployable system for

unobservable communication with Internet destinations.

SWEET works by tunneling network traffic through widely

used public email services such as Gmail, Yahoo Mail, and

Hotmail. Unlike recently-proposed schemes that require a

collection of ISPs to instrument router-level modifications

in support of covert communications, our approach can be

http://www.jetir.org/

© 2018 JETIR November 2018, Volume 5, Issue 11 www.jetir.org (ISSN-2349-5162)

JETIR1811315 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 125

deployed through a small applet running at the user’s end

host, and a remote email-based proxy, simplifying

deployment. Through an implementation and evaluation in a

wide-area deployment, we find that while SWEET incurs

some additional latency in communications, these overheads

are low enough to be used for interactive accesses to web

services. We feel our work may serve to accelerate

deployment of censorship-resistant services in the wide

area, guaranteeing high availability.

VIII. REFERENCES

[1] J. Zittrain and B. Edelman, “Internet filtering in China,”

IEEE InternetCompute., vol. 7, no. 2, pp. 70–77, Mar. 2003.

[2] (Nov. 2007). Defeat Internet Censorship: Overview

ofAdvanced Technologies and Products. [Online].

Available:

http://www.internetfreedom.org/archive/DefeatInternet

Censorship WhitePaper.pd

[3] C. S. Leberknight, M. Chiang, H. V. Poor, and F.

Wong.(2010).A Taxonomy of Internet Censorship and Anti-

Censorship. [Online].Available: http://www.princeton.edu/

chiangm/anticensorship.pdf

[4] I. Clarke, S. G. Miller, T. W. Hong, O. Sandberg, and B.

Wiley,“Protecting free expression online with freenet,”

IEEE Internet Compute.,vol. 6, no. 1, pp. 40–49, Jan. 2002.

[5] Ultrasurf, accessed on Jan. 7, 2017. [Online].

Available:https://ultrasurf.us/

[6] J. Jia and P. Smith. (2004). Psiphon: Analysis and

Estimation.[Online]. Available: http://www.cdf.toronto.edu/

csc494h/reports/2004-fall/psiphon_ae.html

[7] I. Cooper and J. Dilley, “Known HTTP proxy/caching

problems,” IETF,Fremont, CA, USA, Tech. Rep. Internet

RFC 3143, Jun. 2001.

[8] R. Dingledine, N. Mathewson, and P. Syverson, “Tor:

The secondgenerationonion router,” in Proc. USENIX

Secur. Symp., 2004,pp. 21–37.

[9] J. Boyan, “The anonymizer: Protecting user privacy on

the Web,”Comput.-Mediated Commun. Mag., vol. 4, no. 9,

pp. 1–6, Sep. 1997.

[10] DynaWeb, accessed on Jan. 7, 2017.

[Online].Available:http://www.dongtaiwang.com/home_en.

php

[11] R. Clayton, S. J. Murdoch, and R. N. M. Watson,

“Ignoring the greatfirewall of China,” in Proc. Int.

Workshop Privacy Enhancing Technol.,2006, pp. 20–35.

[12] Y. Sovran, A. Libonati, and J. Li, “Pass it on: Social

networks stymiecensors,” in Proc. 7th Int. Conf. Peer-to-

Peer Syst., Feb. 2008, p. 3.[Online]. Available:

http://www.iptps.org/papers-2008/73.pdf

[13] D. McCoy, J. A. Morales, and K. Levchenko,

“Proximax: A measurementbased system for proxies

dissemination,” Financial Cryptogr. DataSecur., vol. 5, no.

9, pp. 1–10, 2011.

[14] N. Feamster, M. Balazinska, W. Wang, H.

Balakrishnan, and D. Karger,“Thwarting Web censorship

with untrusted messenger discovery,” in Int.Workshop

Privacy Enhancing Technol., 2003, pp. 125–140.

[15] M. Mahdian, “Fighting censorship with algorithms,” in

Proc. Int.Conf. Fun Algorithms, 2010, pp. 296–306.

[Online]. Available:http://dx.doi.org/10.1007/978-3-642-

13122-6_29

[16] J. McLachlan and N. Hopper, “On the risks of serving

whenever yousurf: Vulnerabilities in Tor’s blocking

resistance design,” in Proc. 8thACM Workshop Privacy

Electron. Soc., Nov. 2009, pp. 31–40. [Online].Available:

http://portal.acm.org/citation.cfm?doid=1655188.1655193

[17] P. Winter and S. Lindskog. Apr. 2012. “How China is

blocking Tor.”[Online]. Available: https://arxiv.org/abs/

1204.0447

[18] (Sep. 2007). Tor Partially Blocked in China. [Online].

Available:https://blog.torproject.org/blog/tor-partially-

blocked-china[19] N. Feamster, M. Balazinska, G. Harfst,

H. Balakrishnan, andD. Karger, “Infranet: Circumventing

Web censorship and surveillance,”in Proc. 11th USENIX

Secur. Symp., Aug. 2002, pp. 247–262.[Online]. Available:

http://www.usenix.org/events/sec02/feamster.html

[20] S. Burnett, N. Feamster, and S. Vempala, “Chipping

awayat censorship firewalls with user-generated content,” in

Proc.USENIX Secur.Symp., 2010, pp. 463–468. [Online].

Available:http://www.usenix.org/events/sec10/tech/full_pap

ers/Burnett.pdf

[21] R. Dingledine and N. Mathewson, “Design of a

blocking-resistantanonymity system,” Tor Project, Tech.

Rep. 1, Nov. 2006.

[22] J. Karlinet al., “Decoy routing : Toward unblockable

Internet communication,”inProc. USENIX (FOCI), 2011,

pp. 1–6.

[23] E. Wustrow, S. Wolchok, I. Goldberg, and J. A.

Halderman, “Telex:Anticensorship in the network

infrastructure,” in Proc. 20th USENIXSecur. Symp., Aug.

2011, pp. 1–15.

[24] A. Houmansadr, G. T. K. Nguyen, M. Caesar, and N.

Borisov, “Cirripede:Circumvention infrastructure using

router redirection with plausibledeniability categories and

subject descriptors,” in ACM Conf.Compute.

Communication.Security.(CCS), Chicago, IL, USA, 2011,

pp. 187–200.

[25] H.-C. Hsiao et al., “LAP: Lightweight anonymity and

privacy,” in Proc.IEEE Symp. Secur. Privacy, May 2012,

pp. 506–520.

[26] H. M. Moghaddam, B. Li, M. Derakhshani, and I.

Goldberg, “Skypemorph:

Protocol obfuscation for Tor bridges,” in Proc. ACM

Conf.Compute.Communication.Security.(CCS), 2012, pp.

97–108.

[27] Q. Wang, X. Gong, G. Nguyen, A. Houmansadr, and

N. Borisov,“Censor Spoofer: Asymmetric communication

using IP spoofingfor censorship-resistant Web browsing,” in

Proc. ACM Conf.Comput. Commun.Secur.(CCS), 2012, pp.

121–132.

[28] Z. Weinberg et al., “Stego Torus: A camouflage proxy

for theTor anonymity system,” in Proc. ACM Conf.

Compute. Communication Security. (CCS), 2012, pp. 109–

120.

[29] A. Houmansadr, C. Brubaker, and V. Shmatikov, “The

parrot is dead:Observing unobservable network

communications,” in Proc. IEEE Symp.Secur. Privacy, May

2013, pp. 65–79.

Author’s Profile:

Ms. HASEEBA HALEEM has completed her B.Tech (IT)

from Shadan Women’s College of Engineering and

Technology, Khairtabad, JNTU University Hyderabad.

Presently, she is pursuing her M.Tech in Computer Science

from Shadan Women’s College of Engineering and

Technology, Hyderabad, TS. India.

http://www.jetir.org/
https://ultrasurf.us/

© 2018 JETIR November 2018, Volume 5, Issue 11 www.jetir.org (ISSN-2349-5162)

JETIR1811315 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 126

Mr. Dr. S. SATHISH KUMAR has completed B.E. (CSE)

from KSR College of Engineering, Anna University,

Tiruchengodu, Chennai. M.E (CSE) from Sri Krishna

Engineering College, Anna University, Chennai.PhD from

Annamalai University Chidambaram. Currently he is

working as an Associate Professor of CSE Department in

Shadan Women’s College of Engineering and Technology,

Hyderabad, TS. India. He is having 5 years of experience in

teaching and research.

http://www.jetir.org/

