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Abstract:  In the present paper we shall show that the modulational instability of an intense Laser beams 

of piezoelectric material BaTiO3 with SDDC using quantum hydrodynamic model.  

We analysis is carried out through the nonlinear dispersion relation of modulational and the threshold 

value of pump electric field (E0). An expression for the growth rate of acoustic wave through with the 

quantum and without quantum effect and also the compered the growth rate between them. 
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Introduction:  The study of frequency modulational instabilities of semiconductor plasma are became 

gradually visible as one of the most active field in solid state plasma. The modulational instability of 

propagation laser beams has been investigated   analytically and theoretically by many researchers. 

Microwave devices and its techniques are playing an important role for density of doping concentration 

noise amplifier oscillatiors and other optical devices and its measurement. Pantell and soohoo [1] has 

investigated the phenomena of piezoelectric effect.Ghosh and dixit [2] has explained the effect of 

Relativistic mass variation of the electron of M.I of laser beam in semiconductor plasma. Pekar[3] and  ogg 

[4]   shows that the dependency  of the  dielectric  constant on the  deforming of  the materials and also 

shows that the interaction of electron and phonon. Many authors are analytically explained that the 

modulational  instability amplification of acoustic wave  and  nondegenrate  plasma  in used  of 

piezoelectric  material  with SDDC however  in all  these  studies  quantum effect  are not taken due  to the  

account  of investigation. 

In recent years, quantum plasma is a relatively new and rapidly growing field of plasma research on 

account of its potential application in nanoparticles, semiconductor devices Fermi plasma particle. Laser  

solid interaction  the quantum effect may become  important  in a variety  of environment   when  the  

plasma temp is law and  particle density  high .the dispersion caused by strong  density correlation due to 

quantum  fluctuations can play  important role  on  propagation of quantum plasma. Using magneto 

hydrodynamic model  for  the  plasma  hass  and  manfried [5]  and  markland and shukla [6]  develop  the  

qhd model  of  quantum  plasma qhd  model is vastly used  in wave  instability and propagation  of 

quantum  plasma. 

In the fields of nonlinear optics and fluid dynamics, modulational instability or sideband instability is a 

phenomenon whereby deviations from a periodic waveform are reinforced by nonlinearity, leading to the 
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generation of spectral-sidebands and the eventual breakup of the waveform into a train of pulses. The 

instability is strongly dependent on the frequency of the perturbation. At certain frequencies, a 

perturbation will have little effect, whilst at other frequencies, a perturbation will grow exponentially. 

Theoretically Formulation 

In the present paper we have studied modulational instability of a laser beam in a piezoelectric material 
with SDDC using quantum hydrodynamic model. A high frequency laser beam  𝐸0  𝑒𝑥𝑝[𝑖(𝑘0𝑥 − 𝜔0𝑡)] is 
the applied parallel to the propagation of direction along x-axis and 𝜔0  and 𝑘0  are angular frequency and 
wave number of the laser beam are implicit that  𝜔0 (≈ 𝜔𝑝)≫ 𝑣. The basic equations following Guha et. al 

[8 ] and Manfried [ 6] are as follows: 
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⁄ = (𝑒
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Where 𝑣0  𝑎𝑛𝑑  𝑣1 are the  Zeroth and  first order oscillatory  fluid velocities of electron, m is effective 

mass of electron and e is the charge of electron, 𝜗 is the  electron  collision  frequency, 𝜌 is the mass 

density of crystal. 

Using equation   (1) -   (5)   the collision dominated regime (k𝜗0) we obtain, 

   𝑑𝑢2

𝑑𝑡2⁄ + 𝑣 𝑑𝑛
𝑑𝑡⁄  +𝜔𝑝

,2 + (
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𝑚휀0
⁄ )  𝑑2𝑢
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𝑑𝑡⁄ 𝐸                                       (6) 

  Where   in above equation p is the pressure, p = 
𝑚𝑉𝐹𝑛1

3

3𝑛0
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2𝑘𝐵𝑇𝐹

𝑚
   is the Fermi speed, 𝑘𝐵 is Boltzmann constant and  𝑇𝐹 Fermi temperature  of  

electron.     𝛾𝑒 =
ℏ2𝑘2

8𝑚𝑘𝛽𝑇𝐹

   ,  𝜔𝑝 = √𝑛0𝑒2

𝑚휀⁄                     

The density perturbation n in the plasma assumed to vary  𝐸0  exp[𝑖(𝑘0𝑥 − 𝜔0𝑡)]  , density perturbation 
are produced force wave disturbance at (𝜔0 + 𝜔)  the upper (antistoke) and  (𝜔0 − 𝜔)  the lower (stoke) 
wave side band frequencies. The upper  and  lower  side bands  frequencies  produced  are  forced  waves  
can be  expressed  after  simplification as. This modulation process under consideration must fulfill the 
phase matching conditions and using equation (6) the expression of modulational frequencies can be 
written as:           
 
𝜔 = 𝜔1 + 𝜔0 and 𝑘 = 𝑘1 + 𝑘0,     known as the momentum and energy conservation relations. 
 

𝑛(𝜔+ 𝑘+)  =  
𝑖𝑘3𝛽2𝑛0𝑒𝐸1

𝑚 𝜌(𝜔2−𝑘2𝑣2+2𝑖𝑋𝑒𝜔) ( −𝜔±
2  −𝑖𝜔±𝑣+𝜔𝑝

,2+𝑖𝑘±𝐸)
                                                             (7) 
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𝑛(𝜔− 𝑘−)  =  
𝑖𝑘3𝛽2𝑛0𝑒𝐸1

𝑚 𝜌(𝜔2−𝑘2𝑣2+2𝑖𝑋𝑒𝜔) ( −𝜔±
2  −𝑖𝜔±𝑣+𝜔𝑝

,2+𝑖𝑘±𝐸)
                                                              (8) 

We have assumed that the sideband waves n (𝜔±, 𝑘± ) vary as   𝐸0  𝑒𝑥𝑝[𝑖(𝑘0𝑥 − 𝜔0𝑡)]  equation (7) and 

(8) reveal that the sideband waves are coupled to the acoustic mode via the density perturbation under 

the influence of a strong pump field. 𝜔+ = 𝜔 + 𝜔0 , 𝜔− = 𝜔 − 𝜔0.  The density perturbation are producing 

the sideband frequencies and its effect on the dispersion and acoustic waves .in the present work, we shall 

try to analyze the modulational instability of laser beam. The expression of nonlinear current density of 

upper and lower band frequencies is given as: 

J (𝜔±) =     𝑛1(𝜔±)𝑒𝑣0  ,   

The induced polarization of the modulational frequencies P (𝜔±) as the time integral of nonlinear current 

density J (𝜔±) can be expressed as: 

P (𝜔±)  = ∫ 𝐽 (𝜔±) dt 

The diffusion polarization of modulational frequencies of upper and lower band frequencies can be 

expressed as 

Peff = 𝑃(𝜔+) + 𝑃(𝜔−)𝑑𝑡 

Peff  =  ∫ 𝐽 (𝜔+)𝑑𝑡  + ∫ 𝐽 (𝜔−)𝑑𝑡 

Since the total effective polarization are modulational frequencies of upper and lower band frequencies can be 

expressed as follow that 
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     𝛿 =  𝜔0 − 𝜔𝑝
,   ,   A  = 𝑘2𝐾2𝑉2  ,   k=

𝛽2

𝑐
 

The induced polarization due to cubic nonlinearities at modulational frequencies ( ) is defined as ; 
 

                  Peff  = 𝜖0𝑋𝑒𝑓𝑓
(3) |𝐸0|2𝐸                                            (10) 

From equations (9) and (10) are obtained the effective third order nonlinear susceptibility including 
quantum mechanical effects as 
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In order to explore the possibility of modulational amplification in a semiconductor, we employ the 
relation 

𝛼𝑒𝑓𝑓 =
𝑘

2 1
𝑋𝑒𝑓𝑓|𝐸0

2|                                                                                                                                                                                                 (13) 

In general, to determine the threshold value of the pump amplitude of the modulational amplification  Peff 

= 0 

 

𝐸𝑡ℎ =
𝑚

2𝑒𝑘
(𝜔0

2 − 𝑘2𝑣0
2)√𝛿2 + 𝑣2

                                                                                                                                                          (14) 

Thus the growth rate of the modulated beam for pump amplitudes well above the threshold electric 
field can be obtained from equations (12) and (13) as 
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2
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−1

                       (15) 

   

Figure1: shows the variation of the growth rate (E0) and g with the quantum and without quantum effect 

 

 

Figure2: shows the variation of the growth rate (k) and (g) with the quantum and without quantum effect 

Result:  

The above discussion reveals that the amplification of acoustic waves due to modulational of a laser beam 

can be obtained using QHD model. The growth rate of a crystal with SDDC in piezoelectric material. If we 
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compared the growth rate of piezoelectric and ferroelectric material. In ferroelectric material wave 

instability are not continuous its break at the point but in piezoelectric material wave instability are varied. 

The analytical results obtained are applied piezoelectric semiconductor like BatiO3 at 77k. The physical 

constant involve are  휀1 = 15.8,  𝑋𝑒 = 5 × 10−10𝐹𝑚−1, 𝜌 = 5.8 × 103𝑘𝑔𝑚−3,   𝜔 = 2 × 1011,    𝜔0 =

1.78 × 1014𝑠−1, 𝛽 = 0.054𝑐𝑚−1 𝜔𝑝 =  1.36 × 1016, V= 4 × 104 
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