Minimum Irregularity of Totally Segregated Bicyclic Graphs

${ }^{1}$ Jorry T.F., ${ }^{2}$ Parvathy K.S.
${ }^{1}$ Assistant Professor, ${ }^{2}$ Associate Professor.
${ }^{1}$ Department of Mathematics,
${ }^{1}$ Mercy College, Palakkad, Kerala, India. ${ }^{2}$ St. Mary’s College, Thrissur, Kerala, India.

Abstract

The irregularity of a simple graph $G=(V, E)$ is defined as $\operatorname{irr}(G)=\sum_{u v \in E(G)}\left|\operatorname{deg}_{G}(u)-\operatorname{deg} g_{G}\right|$, where deg ${ }_{G}(u)$ denote the degree of a vertex $u \in V(G)$. A graph in which any two adjacent vertices have distinct degrees is a Totally Segregated Graph. In this paper we determine minimum irregularity of three types of connected totally segregated bicyclic graph with n vertices. The extremal graphs are also presented.

IndexTerms - Irregularity, totally segregated bicyclic graph, minimum irregularity.

I. INTRODUCTION

In this paper we consider only simple undirected connected graphs. Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a graph of order $\mathrm{n}=|\mathrm{V}(\mathrm{G})|$ and size $\mathrm{m}=|\mathrm{E}(\mathrm{G})|$. For $u, v \in V(G)$, we denote the number of edges incident to v by $\operatorname{deg}_{G}(v)$ or $d_{G}(v)$. Let P_{n}, C_{n} and S_{n} be the path, cycle, and star on n vertices respectively. To identify non-adjacent vertices x with y of a graph G is to replace these two vertices by a single vertex incident to all the edges which were incident in G to either x or y.
As well known, a graph whose vertices have equal degrees is said to be regular. Then a graph in which all the vertices do not have equal degrees can be viewed as somehow deviating from regularity. In mathematical literature, several measures of such 'irregularity' were proposed [4] [8] [7] [5]. One among them is the total irregularity of a graph ($\operatorname{irr}_{t}(G)$) introduced by Abdo, Brandt and Dimitrov [2], which is defined as
$\operatorname{irr}_{\mathrm{t}}(\mathrm{G})=\frac{1}{2} \sum_{u, v \in V(G)}\left|d_{G}(u)-d_{G}(v)\right|$.
Another measure of 'irregularity' was put forward by Albertson [3]. Albertson defines the imbalance of an edge $\mathrm{e}=\mathrm{uv} \in \mathrm{E}(\mathrm{G})$ as $\mid \mathrm{deg}_{\mathrm{G}}(\mathrm{u})-$ $\operatorname{deg}_{\mathrm{G}}(\mathrm{v}) \mid$ and irregularity of G as $\operatorname{irr}(\mathrm{G})=\sum_{\mathrm{uv} \in \mathrm{E}(\mathrm{G})}\left|\operatorname{deg}_{\mathrm{G}}(\mathrm{u})-\operatorname{deg}_{\mathrm{G}}(\mathrm{v})\right|$. The graph invarient $\operatorname{irr}(\mathrm{G})$ was sometimes referred to as Albertson index [8] or the third Zagreb index [6]. In this work, we use the terminology accepted by majority of the contemporary researchers [7] [9] [10] [1], according to which $\operatorname{irr}(\mathrm{G})$ is the irregularity of the graph G. In [3] Albertson presented upper bounds on irregularity for bipartite graphs, triangle free graphs and arbitrary graphs; also a sharp upper bound for trees. Some results about bipartite graphs given in [3] have been provided in [11]. Related to Albertson, [3] is the work of Hansen and Melot [9], who characterized the graphs with n vertices and m edges with maximal irregularity. In [1] Abdo, Cohen and Dimitrov presented an upper bound for irregularity for general graphs with n vertices. Note that the irregularity of a given graph is not completely determined by its degree sequence. Graphs with same degree sequence may have different irregularity. For example, $(3,3,2,1,1,1,1)$ is the degree sequence of the non-isomorphic graphs G_{1} and G_{2} in Figure 1. They have different irregularities $\left(\operatorname{irr}\left(\mathrm{G}_{1}\right)=10\right.$ and $\left.\operatorname{irr}\left(\mathrm{G}_{2}\right)=8\right)$.

In this paper, we focus on totally segregated bicyclic graphs on n vertices. For the sake of convenience totally segregated bicyclic graph is called a TSB graph. The notion of totally segregated graph is defined in [11]. A connected graph G is said to be totally segregated, if uv \in $\mathrm{E}(\mathrm{G}), \operatorname{deg}_{\mathrm{G}}(\mathrm{u}) \neq \operatorname{deg}_{\mathrm{G}}(\mathrm{v})$. Sr. Jorry T.F. and Parvathy K.S. [12] studied a special case, by considering those graphs in which degrees of any two adjacent vertices are differed by a constant $k \neq 0$ and these graphs are named as k-segregated. Minimum total irregularity of totally segregated tree is found in [13]. In [14] authors investigated the total irregularity of bicyclic graphs and characterized the graph with the maximal total irregularity among the bicyclic graphs on n vertices. In this paper, minimum irregularity of totally segregated bicyclic graphs of order n are determined and those extremal graphs are presented.

II. Preliminaries

In [14] authors introduce different classes of bicyclic graphs. Here we refer those definitions.
A bicyclic graph is a simple connected graph in which the number of edges equals the number of vertices plus one. There are two basic bicyclic graphs: ∞ - graph and θ - graph. A ∞ - graph denoted by ∞ ($\mathrm{p}, \mathrm{q}, \mathrm{l}$) (see Figure 2), is obtained from two vertex-disjoint cycles C_{p} and C_{q} by connecting one vertex of C_{p} and one vertex of C_{q} with a path P_{1} of length $1-1$ (in the case of $1=1$, identifying the above two vertices, (see Figure 3) where $\mathrm{p}, \mathrm{q} \geq 3$ and $1 \geq 1$; and θ - graph, denoted by $\theta(\mathrm{p}, \mathrm{q}, 1)$ (see Figure 4), is a graph on $\mathrm{p}+\mathrm{q}-1$ vertices with the two cycles C_{p} and C_{q} having 1 common vertices, where $\mathrm{p}, \mathrm{q} \geq 3$ and $\mathrm{l} \geq 2$.

In Figure 2, let w_{1} be the common vertex of P_{1} and C_{p} and let w_{5} be the common vertex of P_{1} and C_{q}. Let $w_{2} \in V\left(C_{p}\right) \backslash\left\{w_{1}\right\}, w_{3} \in V\left(C_{q}\right)$ $\backslash\left\{\mathrm{w}_{5}\right\}$ and let $\mathrm{w}_{4} \in \mathrm{~V}\left(\mathrm{P}_{1}\right) \backslash\left\{\mathrm{w}_{1}, \mathrm{w}_{5}\right\}$ if $1 \geq 3$. In Figure 3, let $\mathrm{w}_{1}=\mathrm{V}\left(\mathrm{C}_{\mathrm{p}}\right) \cap \mathrm{V}\left(\mathrm{C}_{\mathrm{q}}\right) ; \mathrm{w}_{2} \in \mathrm{~V}\left(\mathrm{C}_{\mathrm{p}}\right) \backslash \mathrm{V}\left(\mathrm{C}_{\mathrm{q}}\right)$ and $\mathrm{w}_{3} \in \mathrm{~V}\left(\mathrm{C}_{\mathrm{q}}\right) \backslash \mathrm{V}\left(\mathrm{C}_{\mathrm{p}}\right)$. In Figure 4 , let $\mathrm{w}_{1}=\mathrm{z}_{1}, \mathrm{w}_{2} \in\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \cdots, \mathrm{x}_{\mathrm{p}-1}\right\}, \mathrm{w}_{4} \in\left\{\mathrm{z}_{2}, \cdots, \mathrm{z}_{1-1}\right\}$ if $\mathrm{l} \geq 3, \mathrm{w}_{3} \in\left\{\mathrm{y}_{1}, \mathrm{y}_{2}, \cdots, \mathrm{y}_{\mathrm{q}-1}\right\}$, and $\mathrm{w}_{5}=\mathrm{z}_{1}$.

A rooted graph has one of its vertices, called the root, distinguished from the others. Root of the star S_{n} is its central vertex.
Let G_{1} and G_{2} be two graphs: $v_{1} \in V\left(G_{1}\right)$ and $v_{2} \in V\left(G_{2}\right)$. The graph $G=\left(G_{1}, v_{1}\right) *\left(G_{2}, v_{2}\right)$ denotes the graph resulting from identifying v_{1} with v_{2}. Let $\mathrm{x} \in \mathrm{V}(\infty(\mathrm{p}, \mathrm{q}, \mathrm{l}))$ and v be the root of the rooted tree T . Take $\infty(\mathrm{p}, \mathrm{q}, 1, \mathrm{x} * \mathrm{~T})=(\infty(\mathrm{p}, \mathrm{q}, 1, \mathrm{x})) *(\mathrm{~T}, \mathrm{v})$. In this case we say that tree T is attached to the graph $\infty(\mathrm{p}, \mathrm{q}, \mathrm{l})$ at x . For example, see Figure 5.

Remark 2.1

If a star S_{2} is attached to $\infty(p, q, 1)$ at w_{2} the resulting graph G is denoted by $\infty\left(p, q, 1, w_{2} * S_{2}\right)$
Note that $\theta\left(\mathrm{p}, \mathrm{q}, \mathrm{l}, \mathrm{w}_{1} * \mathrm{~T}\right) \cong \theta\left(\mathrm{p}, \mathrm{q}, \mathrm{l}, \mathrm{w}_{5} * \mathrm{~T}\right)$
A totally segregated bicyclic (TSB) graph is a bicyclic graph which is totally segregated. See Figure 6.

Observe that any bicyclic graph G is obtained from an ∞-graph or a θ-graph (possibly) by attaching trees to some of its vertices. If G is obtained from $\infty(\mathrm{p}, \mathrm{q}, \mathrm{l})$ by attaching trees to some of its vertices then we call G as bicyclic graph with basic bicycle $\infty(\mathrm{p}, \mathrm{q}, \mathrm{l})$ and if G is obtained from $\theta(\mathrm{p}, \mathrm{q}, \mathrm{l})$ by attaching trees to some of its vertices then we call G as bicyclic graph with basic bicycle $\theta(\mathrm{p}, \mathrm{q}, \mathrm{l})$. Obviously $\mathbf{B}_{\mathbf{n}}$ consists of three types of bicyclic graphs of order n : first type, denoted by B_{n}, is the set of those graphs each of which is a bicyclic graph with basic bicycle $\infty(\mathrm{p}, \mathrm{q}, \mathrm{l}), \mathrm{p} \geq 3, \mathrm{q} \geq 3, \mathrm{l}=1$ which is called ∞ - bicyclic graph for convenience; second type, denoted by $\mathrm{B}_{\mathrm{n}}^{+}$, is the set of those graphs each of which is a bicyclic graph with basic bicycle ∞ ($\mathrm{p}, \mathrm{q}, \mathrm{l}$), $\mathrm{p} \geq 3, \mathrm{q} \geq 3,1 \geq 2$ which is called ∞^{+}- bicyclic graph ; third type, denoted by B^{++}, is the set of those graphs each of which is a bicyclic graph with basic bicycle $\theta(\mathrm{p}, \mathrm{q}, \mathrm{l}), \mathrm{p} \geq 3, \mathrm{q} \geq 3,1 \geq 2$ which is called θ bicyclic graph. Then, $\mathbf{B}_{n}=B_{-}\{n\} \cup B^{+}{ }_{n} \cup B^{++}$. In this paper, we determine minimum irregularity of three types of totally segregated bicyclic graphs on n vertices.

III. TSB Graphs with Minimum Irregylarity

3.1 Minimum Irregularity of Totally Segregated ∞ - Bicyclic Graph on n Vertices

In the following theorem we find totally segregated ∞ - bicyclic graphs on n vertices with minimum irregularity.

Theorem 3.1

Let B_{n} be the set of all totally segregated ∞ - bicyclic graphs on n vertices, ($\mathrm{n} \geq 7$) and $B_{n}=B_{1} \cup B_{2} \cup B_{3} \cup B_{4} \cup B_{5} \cup B$,

1. $B_{1}=\left\{G \in B_{n}: n=4 k, k=3,4, \cdots \cdots\right\}$
2. $B_{2}=\left\{G \in B_{n}: n=4 k+1, k=3,4,5.\right\}$
3. $B_{3}=\left\{G \in B_{n}: n=4 k+1, k=6,7, \cdots \cdots\right\}$
4. $B_{4}=\left\{G \in B_{n}: n=4 k+2, k=3,4, \cdots \cdots\right\}$
5. $B_{5}=\left\{G \in B_{n}: n=4 k+3, k=3,4, \cdots \cdots\right\}$
6. $B=\left\{G \in B_{n}: n=7,8,9,10,11.\right\}$

Then,

1. $\operatorname{Min}\left\{\operatorname{irr}(G)_{G \in B_{1}}\right\}=\mathrm{n}+2$
2. $\operatorname{Min}\left\{\operatorname{irr}(G)_{G \in B_{2}}\right\}=\mathrm{n}+3$
3. $\operatorname{Min}\left\{\operatorname{irr}(G)_{G \in B_{3}}\right\}=\mathrm{n}+1$
4. $\operatorname{Min}\left\{\operatorname{irr}(G)_{G \in B_{4}}\right\}=\mathrm{n}+2$
5. $\operatorname{Min}\left\{\operatorname{irr}(G)_{G \in B_{5}}\right\}=\mathrm{n}+1$
6. $\operatorname{Min}\left\{\operatorname{irr}(G)_{G \in B_{n}}\right\}=12$, when $\mathrm{n}=7,8,9$ and $\operatorname{Min}\left\{\operatorname{irr}(G)_{G \in B_{n}}\right\}=14$, when $\mathrm{n}=10,11$.

Proof

Let B_{n} be the set of all totally segregated ∞ - bicyclic graphs on n vertices. Any graph $\mathrm{G} \in B_{n}$ has $\mathrm{n}+1$ edges and $\operatorname{imb}(\mathrm{e}) \geq 1$ where $\mathrm{e} \in$ $\mathrm{E}(\mathrm{G})$. Hence $\operatorname{irr}(\mathrm{G}) \geq \mathrm{n}+1$.

Let $G \in B_{1}$. Since n is an even integer, G has odd number, $(n+1)$, of edges. But irregularity of any graph is always even [3]. Hence at least one edge has an imbalance greater than one. Hence $\operatorname{irr}(G) \geq n+2$. In Figure 5, TSB graphs of B_{1} with irregularity $\mathrm{n}+2$ are given.

Let $G \in B_{2}$. In this case totally segregated ∞ - bicyclic graphs with irregularity $n+1$ or $n+2$ does not exist.

$$
G_{13} \quad G_{17} \quad G_{21}
$$

In Figure 8, TSB grphs of B_{2} with irregularity $\mathrm{n}+3$ are presented.
Let $G \in B_{3}$. Since G is totally segregated, every edge of G has an imbalance of at least one. Hence $\operatorname{irr}(G) \geq n+1$.
TSB graphs of B_{3} with irregularity $\mathrm{n}+1$ is presented in Figure 9 .

Let $\quad G \in B_{4}$. In this case n is an even integer. Then the TSB graph G has odd number of edges ($n+1$). But irregularity of any graph is always even [3]. Hence $\operatorname{irr}(\mathrm{G}) \geq \mathrm{n}+2$. In Figure 10, TSB graphs of B_{4} with irregularity $\mathrm{n}+2$ are given.

Flgre 10
Let $G \in B_{5} . G_{15}$ is a 1 - segregated ∞ - bicyclic graph on 15 vertices which is presented in figure 11. Identify the central vertex of P_{5} with pendent vertex of G_{15}, whose adjacent vertex is the vertex with degree 2 , to form $G_{19}, 1$-segregated ∞ - bicyclic graph with 19 vertices. Repeat this process k times on G_{15} to get 1 - segregated ∞ - bicyclic graph on $4 k+3$ vertices, $k=3,4, \cdots$. Hence in this case $\operatorname{irr}(G)=n+1$. Totally segregated ∞ - bicyclic graph with minimum irregularity on $4 \mathrm{k}+3$ vertices, $\mathrm{k}=3,4, \cdots$ is given in Figure 11 .

For $\mathrm{n}=7,8,9,10,11$ totally segregated ∞ - bicyclic graph with minimum irregularity on n vertices is presented in Figure 12 .

3.2 Minimum Irregularity of Totally Segregated ∞^{+}- Bicyclic Graph on n Vertices

In the following theorem we find totally segregated ∞^{+}- bicyclic graphs on n vertices with minimum irregularity.

Theorem 3.2

Let $B^{+}{ }_{n}$ be the set of all totally segregated ∞^{+}- bicyclic graphs on n vertices, $(\mathrm{n} \geq 10)$
And $B^{+}{ }_{n}=B^{+}{ }_{1} \cup B^{+}{ }_{2} \cup B^{+}{ }_{3} \cup B^{+}{ }_{4} \cup B^{+}$,

1. $\mathrm{B}^{+}=\left\{\mathrm{G} \in \mathrm{B}_{\mathrm{n}}{ }_{\mathrm{n}}: \mathrm{n}=4 \mathrm{k}, \mathrm{k}=3,4, \cdots \cdots\right\}$
2. $B^{+}{ }_{2}=\left\{G \in B^{+}: n=4 k+1, k=3,4,5, \cdots \cdots\right.$. $\}$
3. $B^{+}{ }_{3}=\left\{G \in B^{+}{ }_{n}: n=4 k+2, k=4,5, \cdots \cdots\right\}$
4. $B^{+}{ }_{4}=\left\{G \in B^{+}{ }_{n}: n=4 k+3, k=4,5, \cdots \cdots\right\}$
5. $B^{+}=\left\{G \in B+{ }_{n}: n=10,11,14,15.\right\}$

Then,

1. $\operatorname{Min}\left\{\operatorname{irr}(G)_{G \in B_{1}^{+}}\right\}=\mathrm{n}+2$
2. $\operatorname{Min}\left\{\operatorname{irr}(G)_{G \in B_{2}^{+}}\right\}=\mathrm{n}+1$
3. $\operatorname{Min}\left\{\operatorname{irr}(G)_{G \in B_{3}^{+}}\right\}=\mathrm{n}+2$
4. $\operatorname{Min}\left\{\operatorname{irr}(G)_{G \in B_{4}^{+}}\right\}=\mathrm{n}+1$
5. $\operatorname{Min}\left\{\operatorname{irr}(G)_{G \in B_{n}^{+}}\right\}=20$ when $\mathrm{n}=10, \operatorname{Min}\left\{\operatorname{irr}(G)_{G \in B_{n}^{+}}\right\}=14$ when $\mathrm{n}=11$ and $\operatorname{Min}\left\{\operatorname{irr}(G)_{G \in B_{n}^{+}}\right\}=18$ when $\mathrm{n}=14,15$.

Proof

Let $G \in \mathrm{~B}^{+}{ }_{1}$. Since G is bicyclic graph G has odd number of edges $(n+1)$. But irregularity of any graph is always even [3]. Hence at least one edge has an imbalance greater than one. Hence $\operatorname{irr}(G) \geq n+2$.
TSB graphs of B^{+}with irregularity $\mathrm{n}+2$ are depicted in the Figure 13 .

Fgure 13
Let $G \in \mathrm{~B}^{+}$. Since G is a TSB graph, it has $\mathrm{n}+1$ edges. Hence $\operatorname{irr}(\mathrm{G}) \geq \mathrm{n}+1$. TSB graphs of B_{2}^{+}with irregularity $\mathrm{n}+1$ is presented in Figure 14.
G_{13} the 1 -segregated ∞^{+}- bicyclic graph with 13 vertices and 1-segregated graph of this type on $4 \mathrm{k}+1$ vertices, $\mathrm{k} \geq 3$ is constructed from G_{13} is given in Figure 14.

Figure 14
Let $G \in \mathrm{~B}_{3}^{+}$. In this case order of the graph G is even and hence it has odd number, $(\mathrm{n}+1)$, of edges. But irregularity of a graph is even [3]. Thus $\operatorname{irr}(\mathrm{G}) \geq \mathrm{n}+2$. TSB graph $\mathrm{G} \in \mathrm{B}^{+}{ }_{3}$ with irregularity $\mathrm{n}+2$ is presented in Figure 15 .

Let $G \in B^{+}{ }_{4}$. Since G is TSB graph, it has $n+1$ edges. Hence $\operatorname{irr}(G) \geq n+1$. TSB graphs of $B_{1}{ }_{1}$ with irregularity $n+1$ is given in Figure 16 .
G_{19} the 1 - segregated ∞^{+}bicyclic graph with 19 vertices and 1 - segregated ∞^{+}- bicyclic graph on $4 \mathrm{k}+3$ vertices, $\mathrm{k} \geq 4$ is constructed from G_{19} is depicted in Figure 16.

Let $\mathrm{G} \in \mathrm{B}^{+}$. Totally segregated ∞^{+}- bicyclic graph with minimum irregularity on n vertices, $\mathrm{n}=10,11,14,15$, is presented in Figure 17 .

Figure 17

3.3 Minimum Irregularity of Totally Segregated $\boldsymbol{\theta}$ - Bicyclic Graphs on \mathbf{n} vertices

In the following theorem we find totally segregated θ - bicyclic graphs on n vertices with minimum irregularity.

Theorem 3.3

Let $B^{++}{ }_{n}$ be the set of all totally segregated θ - bicyclic graphs on n vertices, ($\mathrm{n} \geq 5$)
And $B^{++}{ }_{n}=B^{++}{ }_{1} \cup B^{++}{ }_{2} \cup B^{++}{ }_{3} \cup B^{++}{ }_{4} \cup B^{++}$.

$$
\begin{array}{ll}
\text { 1. } & \mathrm{B}^{++}{ }_{1}=\left\{\mathrm{G} \in \mathrm{~B}^{++}{ }_{\mathrm{n}}: \mathrm{n}=4 \mathrm{k}, \mathrm{k}=3,4, \cdots \cdots\right\} \\
\text { 2. } & \mathrm{B}^{++}=\left\{\mathrm{G} \in \mathrm{~B}^{++}{ }_{\mathrm{n}}: \mathrm{n}=4 \mathrm{k}+1, \mathrm{k}=3,4,5, \cdots \cdots \cdot\right\} \\
3 . & \mathrm{B}^{++}=\left\{\mathrm{G} \in \mathrm{~B}^{++}: \mathrm{n}=4 \mathrm{k}+2, \mathrm{k}=3,4,5, \cdots \cdots,\right\} \\
4 . & \mathrm{B}^{++}{ }_{4}=\left\{\mathrm{G} \in \mathrm{~B}^{++}: \mathrm{n}: \mathrm{n}=4 \mathrm{k}+3, \mathrm{k}=3,4,5, \cdots \cdots\right\} \\
\text { 5. } & \mathrm{B}^{++}=\left\{\mathrm{G} \in \mathrm{~B}^{++}{ }_{\mathrm{n}}: \mathrm{n}=5,6,7,8,9,10,11 .\right\}
\end{array}
$$

Then,
6. $\operatorname{Min}\left\{\operatorname{irr}(G)_{G \in B_{1}^{++}}\right\}=\mathrm{n}+2$
7. $\operatorname{Min}\left\{\operatorname{irr}(G)_{G \in B_{2}^{++}}\right\}=\mathrm{n}+1$
8. $\operatorname{Min}\left\{\operatorname{irr}(G)_{G \in B_{3}^{++}}\right\}=\mathrm{n}+2$
9. $\operatorname{Min}\left\{\operatorname{irr}(G)_{G \in B_{4}^{++}}\right\}=\mathrm{n}+1$
10. $\operatorname{Min}\left\{\operatorname{irr}(G)_{G \in B_{n}^{++}}\right\}=6$ when $\mathrm{n}=5, \operatorname{Min}\left\{\operatorname{irr}(G)_{G \in B_{n}^{++}}\right\}=8$ when $\mathrm{n}=6,7, \operatorname{Min}\left\{\operatorname{irr}(G)_{G \in B_{n}^{++}}\right\}=10$ when $\mathrm{n}=8$, 9. and $\operatorname{Min}\left\{\operatorname{irr}(G)_{G \in B_{n}^{++}}\right\}=14$ when $\mathrm{n}=10,11$.
Proof. Let $G \in B^{++}{ }_{1}$. Since G is a bicyclic graph on n vertices, G has odd number, ($n+1$), of edges. But irregularity of any graph is always even [3]. Hence at least one edge has an imbalance greater than one. Hence $\operatorname{irr}(\mathrm{G}) \geq \mathrm{n}+2$.
TSB graphs of $\mathrm{B}^{++}{ }_{1}$ with irregularity $\mathrm{n}+2$ are depicted in Figure 18.

Let $\mathrm{G} \in \mathrm{B}^{++}$. Then $\operatorname{irr}(\mathrm{G}) \geq \mathrm{n}+1$. TSB-graphs of $\mathrm{B}^{++}{ }_{2}$ with minimum irregularity $\mathrm{n}+1$ are presented in the Figure 19 .

Figure 19

Let $\mathrm{G} \in \mathrm{B}^{++}{ }_{3}$. Then $\operatorname{irr}(\mathrm{G}) \geq \mathrm{n}+2$. TSB-graphs of $\mathrm{B}^{++}{ }_{3}$ with minimum irregularity $\mathrm{n}+2$ are presented in the Figure 20 .

Figure 20
Let $\mathrm{G} \in \mathrm{B}^{++}$. Then $\operatorname{irr}(\mathrm{G}) \geq \mathrm{n}+1$. TSB-graphs of $\mathrm{B}^{++}{ }_{4}$ with minimum irregularity $\mathrm{n}+1$ are presented in the Figure 21.

Figure 21
Let $\mathrm{G} \in \mathrm{B}^{++}$. Totally segregated θ - bicyclic graph with minimum irregularity are presented in Figure 22 .

Figure 22

References

[1] Abdo, H., Cohen, N and Dimitrov, D. 2014. Graphs with maximal irregularity. Filomat, 28(7):1315-1322.
[2] Abdo, H., Brandt, S and Dimitrov, D. 2015. The total irregularity of a graph. Discrete Mathematics and Theoretical Computer Science, 16(1): 201-206.
[3] Albertson, M.O. The irregularity of a graph. Ars.Combin., 46: 219-225.
[4] Bell, F.K. 1992. A note on the irregularity of graphs. Linear Algebra and its Applications, 161: 45-54.
[5] Chartrand, G., Erdos, P. and Ollermann, O.R. 1988. How to define an irregular graph. College Math. J., 19: 36-42.
[6] Fath-Tabar, G.H. 2011. Old and new Zagreb indices of graphs. MATCH Commun. Math. Comput. Chem., 65: 79-84.
[7] Fath-Tabar, G.H., Gutman, I and Nasiri, R. 2013. Extremely irregular trees. Bulletin T.CXLV de l'Academie Serbe des Sciences et des Arts(Cl. Sci. Math. Natur.), 38.
[8] Gutman, I., Hansen, P. and Melot, H. 2005. Variable neighborhood search for extremal graphs. 10. Comparison of irregularity indices for chemical trees. J. Chem. Inf. Model, 45(2): 222-230. [doi:10.1021/ci0342775]
[9] Hansen, P. and Melot, H. 2005. Variable neighborhood search for extremal graphs 9. Bounding the irregularity of a graph. DIMACS Ser. Discrete Math. Theoret. Comput. Sci., 69: 253-264.
[10] Henning, M.A. and Rautenbach, D. 2007. On the irregularity of bipartite graphs. Discrete Mathematics, 307: 1467-1472.
[11] Jackson, D.E. and Entringer, R. 1986. Totally segregated graphs. Congress. Numer., 55: 159-165.
[12] Jorry, T.F. and Parvathy, K.S. 2015. Uniformly segregated tree. Bulletin of Kerala Mathematical Association, 12(2): 135-143.
[13] Jorry, T.F. and Parvathy, K.S. 2017. Minimum total irregularity of totally segregated trees. International Journal of Mathematics Trends and Technology, 50(3): 139-146.
[14] You, L., Yang, J., Zhu, Y. and You, Z. 2014. The maximal total irregularity of bicyclic graphs. Journal of Applied Mathematics, 2014: 1-9. [doi.org/10.1155/2014/785084]

