The Fermat Meet and Reciprocal Fermat Meet Matrices on A sets

Dr. N. ELUMALAI ${ }^{1}$ and R. KALPANA ${ }^{2}$
${ }^{1}$ Associate Professor of Mathematics, A.V.C.College (Autonomous), Mannampandal - 609 305, Mayiladuthurai, India
${ }^{2}$ Assistant Professor of Mathematics, Saradha Gangadharan College, Puducherry-605 004.

Abstract

Fermat meet and Reciprocal Fermat meet matrices on A sets are considered and their determinants, inverses and the matrices are expressed in terms of A-sets.

Key words : Meet Matrices, Fermat Meet Matrices, Reciprocal Meet Matrices, a- Set, A-Set

1 Introduction

Let $S=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be a set of distinct positive integesr , and let f be an arithmetical function. Then $n \times n$ matrix (S) whose i,j-entry is the greatest common divisor $\left(x_{i}, x_{j}\right)$ of x_{i} and x_{j} is called the GCD matrix on $\mathrm{S}[1$, $2,4,5]$.The set S is said to be factor-closed if it contains every divisor of any element of S ,and the set S is said to be GCD-closed if it contains the greatest common divisor of any two elements of $\mathrm{S}[2,3,7]$.
Let (P, \wedge) be a meet-semilattice and let $S=\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots \ldots \ldots . . \mathrm{x}_{\mathrm{n}}\right\}$ be a subset of P. Then S is an A-set if $A=\left\{\mathrm{x}_{\mathrm{i}} \wedge \mathrm{x}_{\mathrm{j}} / \mathrm{x}_{\mathrm{i}} \neq \mathrm{x}_{\mathrm{j}}\right\}$ is a chain. For example, chains and a-sets (with $A=\{\mathrm{a}\}$) are known trivial A sets. The meet matrix $(S)_{\mathrm{f}}$ on S with respect to a function $f: P \rightarrow \mathbf{C}$ is defined as
$\left((S)_{\mathrm{f}}\right)_{\mathrm{ij}}=f\left(x_{\mathrm{i}} \wedge x_{\mathrm{j}}\right)$.
If $f\left(x_{\mathrm{i}} \wedge x_{\mathrm{j}}\right)=2^{2^{x_{i} \wedge x_{j}}}+1$ then the $\mathrm{n} \times \mathrm{n}$ meet matrix obtained is called the Fermat meet matrix on S .
If $f\left(x_{\mathrm{i}} \wedge x_{\mathrm{j}}\right)=\frac{1}{2^{2^{x_{i} \wedge} x_{j}}+1}$ then the $\mathrm{n} \times \mathrm{n}$ meet matrix obtained is called the Reciprocal Fermat meet matrix on S .

We say that S is an \boldsymbol{A}-set if the set $A=\left\{x_{i} \wedge x_{j} / x_{i} \neq x_{j}\right\}$ is a chain (an A-set need not be meet-closed). For example, chains and a-sets (with $A=\{a\}$ are known trivial A sets. Since the method, presented in [10], adapted to A-sets might not be sufficiently effective, we give a new structure theorem for $(S)_{f}$ where S is an A-set. One of its features is that it supports recursive function calls.
By the structure theorem we obtain a recursive formula for $\operatorname{det}\left(S_{f}\right.$ and for $\left(\mathrm{S}_{f}\right)^{-1}$ on A-sets. By dissolving the recursion on certain sets we also obtain e.g. the known explicit determinant and inverse formulae on chains and a-sets.

Note that $(\mathbf{Z}+, \mid)=(\mathbf{Z}+, g c d$, lcm $)$ is a locally finite lattice, where \mid is the usual divisibility relation and gcd and 1 cm stand for the greatest common divisor and the least common multiple of integers. Thus meet matrices are generalizations of GCD matrices $\left(\left(S_{f}\right)_{i j}=f\left(\operatorname{gcd}\left(x_{i}, x_{j}\right)\right)\right.$ and therefore the results in this paper also hold for GCD. For general accounts of GCD matrices, see [11]. Meet matrices are also generalizations
of GCUD matrices, the unitary analogies of GCD matrices, see [12]. Thus the results also hold for GCUD matrices.

DEFINITIONS

Definition 2.1 The binary operation \square is defined by

$$
\begin{equation*}
S_{1} \sqcap S_{2}=\left[x \wedge y / x \in S_{1}, y \in S_{2}, x \neq y\right] \tag{2.1}
\end{equation*}
$$

where S_{1} and S_{2} are nonempty subsets of P. Let S be a subset of P and let $a \in P$. If $S \sqcap S=\{a\}$, then the set S is said to be an \boldsymbol{a}-set.

Definition 2.2 Let $S=\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots \ldots \ldots . . \mathrm{x}_{\mathrm{n}}\right\}$ be a subset of P with $x_{i}<x_{j} \Rightarrow i<j$ and let $A=\left\{\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots \ldots \ldots . . \mathrm{a}_{\mathrm{n}-1}\right\}$ be a multichain (i.e. a chain where duplicates are allowed) with $a_{1} \leq a_{2} \leq \ldots \ldots \ldots \leq a_{n-1}$. The set S is said to be an \boldsymbol{A}-set if $\left\{x_{k}\right\} \sqcap\left\{x_{k+1}, \ldots \ldots ., x_{n}\right\}=\left\{a_{k}\right\}$ for all $k=1,2, \ldots \ldots, n-1$.
Every chain $S=\left\{\mathrm{x}_{\mathrm{1}}, \mathrm{x}_{2}, \ldots \ldots \ldots . . \mathrm{x}_{\mathrm{n}}\right\}$ is an A-set with $A=S \backslash\left\{x_{n}\right\}$ and every a-set is always an A-set with $A=\{a\}$.

Definition 2.3 Let f be a complex-valued function on P. Then the $n \times n$ matrix $(S)_{f}$, where $\left((S)_{f}\right)_{i j}=f\left(x_{i} \wedge x_{j}\right)$, is called the meet matrix on S with respect to f. Also the $n \times n$ matrix $(S)_{f}$, where $\left((S)_{f}\right)_{i j}=f\left(x_{i} \wedge x_{j}\right)=2^{2^{x_{i} \wedge x_{j}}}+1$ is called the Fermat meet matrix on S .

Definition 2.4 Let f be a complex-valued function on P. Also the $n \times n$ matrix $(S)_{f}$, where $\left((S)_{f}\right)_{i j}=f\left(x_{i} \wedge x_{j}\right)=\frac{1}{2^{2^{x_{i} x_{j}}}+1}$ is called the Reciprocal Fermat meet matrix on S .

In what follows, let $S=\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots \ldots \ldots . . \mathrm{x}_{\mathrm{n}}\right\}$ always be a finite subset of P with $x_{i}<x_{j} \Rightarrow i<j$. Let also $A=\left\{\mathrm{a}_{\mathrm{l}}, \mathrm{a}_{2}, \ldots \ldots \ldots \ldots \mathrm{a}_{\mathrm{n}-1}\right\}$ with $a_{i}<a_{j} \Rightarrow i<j$. Note that S has always n distinct elements, but it is possible that the set A is a multiset. Let f be a complex-valued function on P.

3 FERMAT AND RECIPROCAL FERMAT MEET MATRICES ON A-SETS

3.1 Structure Theorem

Theorem 3.1 (Structure Theorem) Let $S=\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots \ldots \ldots . . \mathrm{x}_{\mathrm{n}}\right\}$ be an A-set, where $A=\left\{\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots \ldots \ldots . . \mathrm{a}_{\mathrm{n}-1}\right\}$ is a multichain. Let $f_{1}, f_{2}, \ldots \ldots, f_{n}$ denote the functions on P defined by $f_{1}=f$ and

$$
\begin{equation*}
f_{k+1}(x)=f_{k}(x)-\frac{f_{k}\left(a_{k}\right)^{2}}{f_{k}\left(x_{k}\right)} \tag{3.1}
\end{equation*}
$$

for $k=1,2$, \qquad , $n-1$.
Then

$$
\begin{equation*}
(S)_{f}=M^{T} D M, \tag{3.2}
\end{equation*}
$$

where $D=\operatorname{diag}\left(f_{1}\left(x_{1}\right), f_{2}\left(x_{2}\right)\right.$,. \qquad $\left.f_{n}\left(x_{n}\right)\right)$ and M is the $n \times n$ upper triangular matrix with 1 's on its main diagonal, and further

$$
\begin{equation*}
(M)_{i j}=\frac{f_{i}\left(a_{i}\right)}{f_{i}\left(x_{i}\right)} \tag{3.3}
\end{equation*}
$$

for all $i<j$. (Note that f_{1},. f_{n} exist if and only if $\left(f_{k}\left(x_{k}\right)=0, a_{k} \neq x_{k}\right) \Rightarrow f_{k}\left(a_{k}\right)=0$
holds for all $k=1,2, \ldots \ldots$, n-1. In the case $f_{k}\left(a_{k}\right)=f_{k}\left(x_{k}\right)=0$ we can write e.g. $(M)_{k j}=0$ for all $k<j$.
Proof: Let $i<j$. Then
$\left(M^{\mathrm{T}} D M\right)_{i j}=\sum_{k=1}^{n}(M)_{k i}(D)_{k k}(M)_{k j}=f_{i}\left(a_{i}\right)+\sum_{k=1}^{i-1} \frac{f_{k}\left(a_{k}\right)^{2}}{f_{k}\left(x_{k}\right)}$
$=f_{i}\left(a_{i}\right)+\sum_{k=1}^{i-1}\left(f_{k}\left(a_{i}\right)-f_{k+1}\left(a_{i}\right)\right)=f_{1}\left(a_{i}\right)=f\left(x_{i} \wedge x_{j}\right)$.
The case $i=j$ is similar, we only replace every a_{i} with x_{i} in (3.4). Since $M^{\mathrm{T}} D M$ is symmetric, we do not need to treat the case $i>j$.

3.2 Determinant of Fermat Meet and Reciprocal Fermat Meet matrices on A-sets

By Structure Theorem we obtain a new recursive formula for $\operatorname{det}(S)_{f}$ on A-sets.
Theorem 3.2 Let $S=\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots \ldots \ldots . \mathrm{x}_{\mathrm{n}}\right\}$ be an A-set, where $A=\left\{\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots \ldots \ldots . . \mathrm{a}_{\mathrm{n}-1}\right\}$
is a multichain. Let $f_{1}, f_{2, \ldots \ldots}, f_{n}$ be the functions defined in (3.1). Then

$$
\begin{equation*}
\operatorname{det}(S)_{f}=f_{1}\left(x_{1}\right) f_{2}\left(x_{2}\right) \ldots \ldots \ldots . f_{n}\left(x_{n}\right), \tag{3.5}
\end{equation*}
$$

By Theorem 3.2 we obtain a known explicit formula for $\operatorname{det}(S)_{f}$ on chains presented in [7, Corollary 3] and [13, Corollary 1].

Corollary 3.1 If $S=\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots \ldots \mathrm{x}_{\mathrm{n}}\right\}$ is a chain, then
$\operatorname{Det}\left(S_{f}=f\left(x_{1}\right) \quad \prod_{k=2}^{n}\left(f\left(x_{k}\right)-f\left(x_{k-1}\right)\right.\right.$
Proof: By Theorem 3.2 we have
$\operatorname{det}(S)_{f}=f_{1}\left(x_{1}\right) f_{2}\left(x_{2}\right) \ldots \ldots \ldots f_{n}\left(x_{n}\right)$, where $f_{1}=f$ and
$f_{k+1}(x)=f_{k}(x)-f_{k}\left(x_{k}\right)=f(x)-f\left(x_{k}\right)$ for all $k=1,2, \ldots \ldots \ldots \ldots \ldots \ldots, n$ - 1 . This completes the proof.
By Theorem 3.2 we also obtain a known explicit formula for $\operatorname{det}(S)_{f}$ on a-sets. This formula has been presented (with different notation) in [13, Corollary of Theorem 3] and [10,Corollaries 5.1 and 5.2], and also in [16, Theorem 3] in number-theoretic setting.
The case $f(a)=0$ is trivial, since then $(S)_{f}=\operatorname{diag}\left(f\left(x_{1}\right), f\left(x_{2}\right), \ldots \ldots, f\left(x_{n}\right)\right)$
and $\operatorname{det}(S)_{f}=f\left(x_{1}\right) f\left(x_{2}\right) \ldots \ldots f\left(x_{n}\right)$.
Corollary 3.2 Let $S=\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots \ldots \ldots . . \mathrm{x}_{\mathrm{n}}\right\}$ be an a-set, where $f(a) \neq 0$. If $a \in S$ (i.e. $a=x_{1}$),
Then $\operatorname{det}(S)_{f}=f(a)\left(f\left(x_{2}\right)-f(a)\right) \ldots\left(f\left(x_{n}\right)-f(a)\right)$.
If $a \notin S$, then

$$
\begin{align*}
& \operatorname{det}(S)_{f}=\quad \sum_{k=1}^{n} \frac{f(a)\left(f\left(x_{1}\right)-f(a)\right) \ldots\left(f\left(x_{n}\right)-f(a)\right)}{f\left(x_{k}\right)-f(a)} \tag{3.8}\\
&+\left(f\left(x_{1}\right)-f(a)\right) \ldots\left(f\left(x_{n}\right)-f(a)\right) .
\end{align*}
$$

Example 3.1 Fermat matrix

Let $(P, \leq \cdot)=(\mathbf{Z}+, \mid)$ and $S=\{1,2,3\}$.

Then $S=\left[\begin{array}{lll}2^{2^{1}}+1 & 2^{2^{1}}+1 & 2^{2^{1}}+1 \\ 2^{2^{1}}+1 & 2^{2^{2}}+1 & 2^{2^{1}}+1 \\ 2^{2^{1}}+1 & 2^{2^{1}}+1 & 2^{2^{3}}+1\end{array}\right]$ Since S is an A-set with the chain $A=\{1,1\}$ by (3.1) we have $f_{1}=$ $f, f_{2}(x)=f_{1}(x)-f_{1}(1)^{2} / f_{1}(1)$ and $f_{3}(x)=f_{2}(x)-f_{2}(1)^{2} / f_{2}(2)$. and. Let $f(x)=2^{2^{x}}+1$. Then $f_{1}(x)=2^{2^{x}}+1, f_{2}(x)=$ $2^{2^{x}}-4, \quad f_{3}(x)=2^{2^{x}}-4$
and by Theorem $3.1(S)_{f}=\mathrm{M}^{\mathrm{T}} \mathrm{DM}$, where $\mathrm{D}=\operatorname{diag}(5,12,252)$ and $\mathrm{M}=\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
and by Theorem 3.2 we have $\operatorname{det}(S)_{f}=f_{1}(1) f_{2}(2) f_{3}(3)=5(12)(252)=15120$.

Example 3.1 Reciprocal Fermat matrix

Let $(P, \leq)=(\mathbf{Z}+\mid)$ and $S=\{1,2,3\}$.
Then $S=\left[\begin{array}{ccc}\frac{1}{2^{2^{1}}+1} & \frac{1}{2^{2^{1}}+1} & \frac{1}{2^{2^{1}+1}} \\ \frac{1}{2^{2^{1}}+1} & \frac{1}{2^{2^{2}+1}} & \frac{1}{2^{2^{1}}+1} \\ \frac{1}{2^{2^{1}}+1} & \frac{1}{2^{2^{1}}+1} & \frac{1}{2^{2^{3}+1}}\end{array}\right] \quad$ Since S is an A-set with the chain
$A=\{1,1\}$ by (3.1) we have $f_{1}=f, f_{2}(x)=f_{1}(x)-f_{1}(1)^{2} / f_{1}(1)$ and $f_{3}(x)=f_{2}(x)-f_{2}(1)^{2} / f_{2}(2)$.
Let $f(x)=1 /\left(2^{2^{x}}+1\right)$. Then $f_{1}(x)=\frac{1}{2^{2^{x}}+1}, f_{2}(x)=\frac{1}{2^{2^{x}+1}}-\frac{1}{5}, \quad f_{3}(x)=\frac{1}{2^{2^{x}}+1}-\frac{1}{5}$
and by Theorem $3.1(S)_{f}=M^{T} D M$, where $D=\operatorname{diag}(1 / 5,-12 / 85,-252 / 1285)$ and $\mathrm{M}=\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
and by Theorem 3.2 we have $\operatorname{det}(S)_{f}=f_{1}(1) f_{2}(2) f_{3}(3)=(1 / 5)(-12 / 85)(-252 / 1285)=3024 / 5,46,125$.

3.3 Inverse of Fermat and Reciprocal Fermat meet matrices on A-sets

By Structure Theorem we obtain a new recursive formula for $\left(S_{f}\right)^{-1}$ on A-sets.
Theorem 3.3 Let $S=\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots \ldots \ldots . . \mathrm{x}_{\mathrm{n}}\right\}$ be an A-set, where $A=\left\{\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots \ldots \ldots . . \mathrm{a}_{\mathrm{n}-1}\right\}$ is a
multichain. Let $f_{1}, f_{2}, \ldots \ldots . ., f_{n}$ be the functions defined in (3.1), where $f_{i}\left(x_{i}\right) \neq 0$ for $i=1,2, \ldots \ldots, n$. Then $(S)_{f}$ is invertible and $\left(S_{f}\right)^{-1}=N \triangle N^{\mathrm{T}}$
where $\Delta=\operatorname{diag}\left(1 / f_{1}\left(\mathrm{x}_{1}\right), 1 / f_{2}\left(\mathrm{x}_{2}\right), \ldots, 1 / f_{n}\left(x_{n}\right)\right)$ and N is the $n \times n$ upper triangular matrix with 1's on its main diagonal, and further

$$
\begin{equation*}
(N)_{i j}=-\frac{f_{i}\left(a_{i}\right)}{f_{i}\left(x_{i}\right)} \prod_{k=i+1}^{j-1}\left(1-\frac{f_{k}\left(a_{k}\right)}{f_{k}\left(x_{k}\right)}\right) \tag{3.10}
\end{equation*}
$$

for all $i<j$.
Proof: By Structure Theorem $(S)_{f}=M^{\mathrm{T}} D M$, where M is the matrix defined in (3.3) and $D=\operatorname{diag}\left(f_{1}\left(x_{1}\right), f_{2}\left(x_{2}\right), \ldots \ldots ., f_{n}\left(x_{n}\right)\right)$. Therefore $\left(S_{f}\right)^{-1}=N \Delta N^{\mathrm{T}}$,
where $\mathrm{D}^{-1}=\operatorname{diag}\left(1 / f_{1}\left(\mathrm{x}_{1}\right), 1 / f_{2}\left(\mathrm{x}_{2}\right), \ldots, 1 / f_{n}\left(x_{n}\right)\right)$ and $M^{-1}=N$ is the $n \times n$ upper triangular matrix in 3.10.

Example 3.1.1

S is considered the same as in Example 3.1 and by $\left(S_{f}\right)^{-1}=N \triangle N^{\mathrm{T}}$, then for Fermat matrix
$\triangle=\operatorname{diag}(1 / 5,1 / 12,1 / 252)), \quad N=M^{-1}, \quad N=\left[\begin{array}{rrr}1 & -1 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$,

$$
\left(S_{f}\right)^{-1}=\left[\begin{array}{ccc}
\frac{362}{1260} & -\frac{1}{12} & -\frac{1}{252} \\
-\frac{1}{12} & \frac{1}{12} & 0 \\
-\frac{1}{252} & 0 & \frac{1}{252}
\end{array}\right]
$$

And for Reciprocal Fermat matrix,
$\triangle=\operatorname{diag}(5,-85 / 12,-1285 / 252)), \quad \mathrm{N}=\mathrm{M}^{-1}, \quad \mathrm{~N}=\left[\begin{array}{rrr}1 & -1 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$,

$$
\left(S_{f}\right)^{-1}=\left[\begin{array}{rrr}
-\frac{905}{126} & \frac{85}{12} & \frac{1285}{252} \\
\frac{85}{12} & -\frac{85}{12} & 0 \\
\frac{1285}{252} & 0 & -\frac{1285}{252}
\end{array}\right]
$$

Corollary 3.3 Let $S=\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots \ldots \ldots . . \mathrm{x}_{\mathrm{n}}\right\}$ be an a-set, where $f(a) \neq 0$ and $f\left(x_{k}\right) \neq f(a)$ for all $k=2, \ldots \ldots$. n. If $a \in S$ (i.e. $a=x_{1}$), then $(S)_{f}$ is invertible and

$$
\left(\left(S_{f}\right)^{-1}\right)_{i j}=\left\{\begin{array}{lc}
\frac{1}{f(a)}+\sum_{k=2}^{n} \frac{1}{f\left(x_{k}\right)-f(a)} & \text { if } i=j=1 \tag{3.11}\\
\frac{1}{f\left(x_{k}\right)-f(a)} & \text { if } 1<i=j \\
\frac{1}{f(a)-f\left(x_{k}\right)} & \text { if } 1=i<j=k \text { or } 1=j<i=k \\
0 & \text { otherwise }
\end{array}\right.
$$

If $a \notin S$ and further $f\left(x_{1}\right) \neq f(a)$ and $\frac{1}{f(a)} \neq \sum_{k=1}^{n} \frac{1}{f\left(x_{k}\right)-f(a)}$, then $\left(S_{)}\right.$fis invertible and

$$
\left(\left(S_{f}\right)^{-1}\right)_{i j}= \begin{cases}\frac{1}{f\left(x_{k}\right)-f(a)}-\frac{1}{\left[f\left(x_{k}\right)-f(a)\right]^{2}}\left(\frac{1}{f(a)}+\sum_{k=1}^{n} \frac{1}{f\left(x_{k}\right)-f(a)}\right)^{-1} & \text { if } i=j \tag{3.12}\\ \frac{1}{\left[f\left(x_{k}\right)-f(a)\right]\left[f\left(x_{k}\right)-f(a)\right]}\left(\frac{1}{f(a)}+\sum_{k=1}^{n} \frac{1}{f\left(x_{k}\right)-f(a)}\right)^{-1} & \text { if } i \neq j\end{cases}
$$

CONCLUSION:

In this paper we prove by examples that the Fermat Meet and Reciprocal Fermat matrices on A sets satisfies structure theorem and calculate the determinant and inverse of these matrices through results based on A sets.

REFERENCE :

[1] S. Beslin and S. Ligh, Greatest Common Disivor Matrices,Linear Algebra Appl., 118 (1989),69-76
[2] K. Bourque and S.Ligh, On GCD and LCM Matrices,Linear Algebra and Its Appl. 174:(1992), 65-74
[3] P. Haukkanen and J. Sillanpaa, Some Analogues of Smith's Determinant, Linear and Multilinear Algebra, 41 (1996), 233-244
[4] P.J. McCarthy, Introduction to Arithmetic Functions, New York, Springe Verlag (1986)
[5] T.M. Apostol, An Introduction to Analytic Number Theory, 1. st Ed. NewYork, Springer Verlag, 1976
[6] G.D. Godsil, An Introduction To The Mobius Function, University of Waterloo Canada (1986)
[7] P. Haukkanen, On Meet Matrices on Posets, Linear Algebra and Its Applications 249:111-123(1996)
[8] S. Buyukkose and D. Tasci, On The Mersenne GCUD Matrices, Inter Math. Journal, Vol. 3 No.1,(2003),101-105
[9] M. Rosen, Number Theory in Function Field, GTM 210,New York Springe Verlag, 2002
[10]I. Korkee and P. Haukkanen, On meet matrices with respect to reduced, extended and exchanged sets, JP J. Algebra Number Theory Appl., 4(3),559-575 (2004)
[11]P. Haukkanen, J.Wang and J. SillanpÄaÄa, On Smith's determinant, Linear Algebra Appl. 258: 251-269 (1997).
[12]P. Haukkanen and J. SillanpAaAa, Some analogues of Smith's determinant, Linear and Multilinear Algebra 41: 233-244 (1996).
[13]B. Wang, Explicit Expressions of Smith's Determinant on a Poset, Acta Math. Sin. (Engl. Ser.), 17(1): 161-168 (2001).
[14]S. Beslin and S. Ligh, GCD-closed sets and the determinants of GCD matrices, Fibonacci Quart., 30: 157-160 (1992).
[15] Serife Buyukkose, The Fermat Meet and Reciprocal Fermat Meet Matrices on Posets, Int. J. Contemp. Math. Sciences, Vol. 3, 2008, no. 35, 1739 - 1744
[16]Ismo Korkee,On meet and join matrices on A-sets and related sets,NNTDM10(2004),3,57-67

