ON # α Regular Generalized Continuous Functions in Topological Spaces

S. Thilaga Leelavathi ¹ and M. Mariasingam²

¹Assistant Professor, Department of Mathematics, Pope's College, (Affilated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli- 627012), Sawyerpuram, Thoothukudi, Tamilnadu – 628 251, India.

²Head and Associate Professor (Rtd), Post Graduate and Research Department of Mathematics, V.O.Chidambaram College,

(Affilated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli- 627012), Thoothukudi, Tamilnadu – 628 008, India.

Abstract : In this paper we introduce a new type of functions called the $\#\alpha$ - regular generalized continuous functions. Also we study some characterizations and basic properties of $\#\alpha$ - regular generalized continuous functions. Moreover we study $\#\alpha rg$ – irresulute functions by using $\#\alpha rg$ - closed sets.

Keywords : $\#\alpha$ rg-closed, $\#\alpha$ rg-open, $\#\alpha$ rg-continuous, $\#\alpha$ rg- irresolute

AMS subject Classification : 54A05, 54C08

1.Introduction :-The concept of regular continuous function was first introduced by Arya S.P and Gupta R, Later Palaniappan N and Rao, K.C{13} studied the concept of regular generalized continuous function. Syed Ali Fathima and Maria Singam {19} studied the concept of # regular generalized continuous function. Thilaga and Maria Singam {21} introduced and studied the properties of $\# \alpha r g$ -closed sets. The purpose of this paper is to introduce the concept of $\# \alpha r g$ -continuous and $\# \alpha r g$ -irresolute functions and we study the relation among them.

2. Preliminaries :- Throughout this paper (X,τ) represents a topological space on which no separation axiom is assumed. Unless otherwise mentioned. For a subset A of a topological space X, cl (A) and int (A) denote the closure of A and the interior of A respectively. X\A (or) A^c denotes the complement of A in X. We recall the following definition and results.

Definition : 2.1 A subset A of a space X is called.

1) a pre open set [11] of A \subseteq intcl(A) and preclosed set if clint(A) \subseteq A. 2) a semi open set [8] if A \subseteq clint(A) and semi closed set if int cl (A) \subseteq A. 3) a α -open set [21]if A \subseteq int (cl (intA)) and an α -closed set if cl (int(cl(A)) \subseteq A.

- 4) a regular open set [18] if A=int cl (A) and a regular closed set if A = cl(int(cl(A))).
- 5) a π -open set[19] if A is finite union of regular open sets.
- 6) regular semi open [4] if there is a regular open U such $U \subseteq A \subseteq cl(U)$.

Definition :2.2 A subset A of (X,τ) is called.

1) an α -generalized closed set [10] (briefly αg -closed) if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) .

2) a generalized pre-closed set [21] (briefly gp-closed) if $pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) .

3) a generalized semi pre-closed set [21](briefly gsp-closed) if spcl (A) \subseteq U whenever A \subseteq U and U is open in (X, τ).

4) a generalized α -closed (g α -closed)[10] set if α cl(A) \subseteq U whenever A \subseteq U and U is open in (X, τ).

5) rw-closed [2] if $cl(A)\subseteq U$ whenever $A\subseteq U$ and U is regular semi open.

6) #rg-closed [19] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is rw-open.

7) # α rg-closed [21] if α cl(A) \subseteq U whenever A \subseteq U and U is rw-open.

The complements of the above mentioned closed sets are their respective open sets.

Definition:-2.3 A function f: $X \rightarrow Y$ from a topological space X into a topological space Y is called.

1) A α -generalized continuous [8] (briefly αg - continuous) if $f^{-1}(v)$ is αg -closed in X for every closed set V in Y.

2) A generalized pre continuous [1] (briefly gp-continuous) if $f^{-1}(V)$ is gp-closed in X for every closed set V in Y.

3) A generalized semi pre-continuous [10] (briefly gsp-continuous) if $f^{-1}(V)$ is gsp-closed in X for every closed set in V in Y.

4) A generalized α -continuous[12] (briefly $g\alpha$ -continuous) if $f^{-1}(V)$ is $g\alpha$ -closed in X for every closed set in V in Y.

5. A α -generalized pre continuous[12] (briefly α gp-continuous) if $f^{-1}(V)$ is α gp-called in X for every closed set V in Y.

Definition :2.4 For a subset A of a space X $\# \alpha rg - cl(A) = \cap \{F: A \subseteq F, F \text{ is } \# \alpha rg - closed in X\}$ is called the $\# \alpha rg - closure of A$.

Definition :2.5 Let (X,τ) be a topological space and $\tau_{\#\alpha rg} = \{V \subseteq X, \#\alpha rg - cl(X \setminus V) = X \setminus V\}$

Lemma :2.6 For any $x \in X, x \in \# \alpha \text{rg-cl}(A)$ if and only if $V \cap A \neq \emptyset$ for every $\# \alpha \text{rg-open set } V$ containing X.

Lemma :2.7 Let A and B be subsets of (X, τ) Then

1. $\# \alpha \operatorname{rg-cl}(\emptyset) = \emptyset$ and $\# \alpha \operatorname{rg-cl}(X) = X$

2. If $A \subseteq B$, then $\# \alpha rg - cl(A) \subseteq \# \alpha rg - cl(B)$

3. A⊆#αrg-cl(A)

4. if A is #arg-closed then #arg-cl(A)=A

5. #arg -closure of a set A is not always #arg -closed.

Remark :2.8 Suppose $\tau_{\#\alpha rg}$ is a topology, If A is $\#\alpha rg$ -closed in (X, τ)

Lemma:2.9 A set $A \subseteq X$ is $\# \alpha rg$ -open if and only if $F \subseteq intA$ whenever $F \subseteq A$, F is rw-closed.

3. #arg continuous Functions:

In this section we introduce and study # arg-continuous functions.

Definition :3.1.1 A function f: $(X, \tau) \rightarrow (y, \sigma)$ is called #arg-continuous if $f^{-1}(V)$ is #arg-closed in (X, τ) for every closed subset V of (y, σ) .

Theorem: 3.1.2 Every continuous map is # αrg-continuous.

Proof: Let f: $(X,\tau) \rightarrow (y,\sigma)$ be a continuous map then for every closed set A in y, $f^{-1}(A)$ is closed in X. Since every closed set is $\# \alpha rg$ -closed, $f^{-1}(A)$ is $\# \alpha rg$ -closed in X. Hence f is $\# \alpha rg$ -continuous map.

Theorem :3.1.3 Every #rg-continuous map is #αrg -continuous map .

Proof: Let f: $(X,\tau) \to (y,\sigma)$ is #rg-continuous map then for every closed set A in y, $f^{-1}(A)$ is #rg-closed in X. Since every #rg closed set is # α rg-closed, $f^{-1}(A)$ is # α rg-closed in X.Hence f is # α rg-continuous map.

The converse of the theorem 3.1.2 and 3.1.3 is not necessarily true as seen from the following example.

Example : 3.1.4 Let X {a,b,c}=y, $\tau = (\{\emptyset, X, \{c\}, \{b,c\}\}) \sigma = \{y, \emptyset, \{b\}\}$

Define : f: (X, τ)) \rightarrow (y, σ) by f(a)=a f(b)=c, f(c)=b clearly

i) f is #αrg - continuous but it is not continuous.
ii) f is #αrg - continuous but it is not #rg-continuous.

Corollary: 3.1.5 Every regular continuous map is #arg-continuous but converse is not true.

Proof : Follows from Theorem 3.1.2and the fact that every regular continuous map is #rg-continuous.

Theorem : 3.1.6 In a topological space(X, τ),

- (a) Every $\#\alpha rg$ -continuous map is gp-continuous map .
- (b) Every $\# \alpha rg$ -continuous map is αg -continuous map.
- (c) Every $\#\alpha rg$ -continuous map is gsp-continuous map.

Proof (a): Suppose f: $(X,\tau) \to (y,\sigma)$ is $\# \alpha rg$ - continuous. Let V be a closed set in (y,σ) . Since f is $\# \alpha rg$ - continuous then $f^{-1}(V)$ is $\# \alpha rg$ - closed set in (X,τ) . Since every $\# \alpha rg$ -closed set is gp-closed set, then $f^{-1}(V)$ is also gp-closed set in X. Thus f is gp-continuous.

Proof (b): Suppose f: $(X,\tau) \to (y,\sigma)$ is #arg-continuous. Let V be a closed set in (y,σ) since f is #arg-continuous then $f^{-1}(V)$ is #arg-closed set in (X,τ) . Since every #arg-closed set is ag-closed set then $f^{-1}(V)$ is also ag-closed set in X. Thus f is ag-continuous.

Proof (c): Suppose f: $(X,\tau) \to (y,\sigma)$ is #arg-continuous let V be a closed set in (y,σ) . Since f is #arg-continuous then $f^{-1}(V)$ is #arg-closed set in (X,τ) . Since every #arg-closed set is gsp closed set then $f^{-1}(V)$ is also gsp-closed set in X. Thus f is gsp-continuous.

Remark3.1.7: The following example shows that converses of Theorem3.1.6 (a),(b)and (c) are not true.

Example 3.1.8:Let $X = \{a, b, c\} = Y$ $\tau = (\{\emptyset, X, \{a\}\} \sigma = \{y, \emptyset, \{a\} \{a, b\}\})$

Define : f: (X, τ)) \rightarrow (*y*, σ) by f(a)=b, f(b)=c, f(c)=a, clearly

i) f is gp- continuous but it is not $\#\alpha rg$ ontinuous .

ii) f is $\,\alpha g\,\,$ - continuous but it is not $\# \alpha rg$ continuous.

ii) f is gsp - continuous but it is not $\#\alpha rg$ continuous .

Theorem3.1.9: Let f: $(X,\tau) \rightarrow (y,\sigma)$ be a function then the following are equivalent.

(i). f is #arg-continuous

(ii). The inverse image of each set in (y, σ) is #arg-open in (X, τ)

(iii). The inverse image of each closed set in (y, σ) is $\# \alpha rg$ - closed in (X, τ) .

Proof : Suppose (i) holds. Let G be open in Y. Then Y\G is closed in Y. By (i) $f^{-1}(Y \setminus G)$ is #arg-closed in X. But $f^{-1}(Y \setminus G) = X \setminus f^{-1}(G)$ which is #arg-closed in X. Therefore $f^{-1}(G)$ is #arg-open in X. The proves (i) \Rightarrow (ii).

Suppose (ii) holds. Let V be any closed set in (y, σ) . Then Y\V is open set in Y. By (ii) $f^{-1}(Y \setminus V)$ is #arg-open. But $f^{-1}(Y \setminus V) = X \setminus f^{-1}(V)$ which is #arg-open Therefore $f^{-1}(V)$ is #arg-closed. This prove (ii) \Rightarrow (iii).

The implication (iii) \Rightarrow (i) follows from definition.

Theorem3.1.10: If a function f: $(X,\tau) \rightarrow (y,\sigma)$ is $\# \alpha rg$ -continuous then f $(\# \alpha rg$ -cl(A)) \subseteq cl(f(A)) for every subset A of X.

Proof : Left: $(X,\tau) \rightarrow (y,\sigma)$ be #arg - continuous. Let $A \subseteq X$ then cl(f(A)) is closed in Y. Since f is #arg-continuous, $f^{-1}(cl(f(A)))$ is #arg-closed in X and $A \subseteq f^{-1}(f(A)) \subseteq f^{-1}(cl(f(A)))$ implies #arg-cl(A) $\subseteq f^{-1}(cl(f(A)))$ hence $f(\# arg-cl(A)) \subseteq cl(f(A))$.

Theorem 3.1.11: Let X be a space in which every singleton set is rw-closed. Then f: $(X,\tau) \rightarrow (y,\sigma)$ is $\#\alpha rg$ -continuous iff $x \in int(f^{-1}(V))$ for every open subset V of Y contains f (x).

Proof: Suppose f: $(X,\tau) \rightarrow (y,\sigma)$ is $\# \alpha rg$ -continuous. Fix $x \in X$ and an open set V in Y such that $f(x) \in V$. Then $f^{-1}(V)$ is $\# \alpha rg$ -open. Since $x \in f^{-1}(V)$ and $\{x\}$ is rw-closed, $x \in int (f^{-1}(V))$.

Conversely, assume that $x \in int(f^{-1}(V))$ for every open subset V of Y containing f(x). Let V be an open set in Y. Suppose $F \subseteq f^{-1}(V)$ and F is rw-closed. Let $x \in F$ then $f(X) \in V$ so that $x \in int(f^{-1}(V))$. That implies $F \subseteq x \in int(f^{-1}(V))$. Therefore $f^{-1}(V)$ is #arg-open. This proves f is #arg-continuous.

Theorem 3.1.12: Let $f: (X,\tau) \to (y,\sigma)$ be a function .Let (X,τ) and (y,σ) be any two spaces such that $\tau_{\#\alpha rg}$ is a topology on X. Then the following statement are equivalent.

(i) For every subset A of X, $f(\#\alpha rg-cl(A)) \subseteq cl(f(A))$ holds. ii) f: $(X, \tau_{\#\alpha rg}) \rightarrow (y, \sigma)$ is continuous.

Proof: Suppose (i) holds. Let A be closed in Y. By hypothesis $f(\# \alpha rg\text{-cl}(f^{-1}(A)) \subseteq cl(f(f^{-1}(A))) \subseteq cl(A) = A.(ie) \# \alpha rg\text{-cl}(f^{-1}(A)) \subseteq f^{-1}(A)$. Also $f^{-1}(A) \subseteq \# \alpha rg\text{-cl}(f^{-1}(A)) = f^{-1}(A)$. This implies $(f^{-1}(A))^c \in \tau_{\# \alpha rg}$. Thus $f^{-1}(A)$ is closed in $(X, \tau_{\# \alpha rg})$ and so f is continuous. This Proves (ii).

Suppose (ii) holds. For every subset A of X, cl(f(A)) is closed in Y. Since $f:(X,\tau_{\#\alpha rg}) \to (y,\sigma)$ is continuous, $f^{-1}(cl(f(A))$ is closed in $(X,\tau_{\#\alpha rg})$ that implies $\#\alpha rg-cl(f^{-1}(cl(f(A))) = f^{-1}(cl(f(A)))$. Now we have $A \subseteq f^{-1}((f(A))) \subseteq f^{-1}(cl(f(A)))$ and $\#\alpha rg-cl(A) \subseteq \#\alpha rg-cl(f^{-1}(cl(f(A))) = f^{-1}(cl(f(A)))$. Therefore $f(\#\alpha rg-cl(A) \subseteq cl(f(A))$.

Remark :3.1.13 The composition of two #arg-continuous maps need not be # arg -continuous shown by an example.

Example:3.1.14 Let $X=Y=Z=\{a,b,c\}, \tau=\{\phi, X, \{b\}, \{b,c\}\}$, $\sigma=\{\phi, X, \{a\}\}, \mu=\{\phi, X, \{b\}\}$. Define a map by f(a)=b, f(b)=a and f(c)=c

Theorem:3.1.15 Let (X,τ) (y,σ) and (z,μ) be topological space such that $\sigma_{\#\alpha rg} = \sigma$. Let $f:(X,\tau) \to (y,\sigma)$ and $g:(y,\sigma) \to (z,\mu)$ be $\#\alpha rg$ -continuous functions. Then the composition gof: $(X,\tau) \to (z,\mu)$ is $\#\alpha rg$ -continuous.

Proff: Let V be closed in (z,μ) . Since g is #arg-continuous, $g^{-1}(V)$ is #arg-closed in (y,σ) . Since $\sigma_{\#arg} = \sigma$, $g^{-1}(V)$ is closed in (y,σ) . Since f is #arg - continuous, $f^{-1}(g^{-1}(V))$ is #arg-closed. (ie) $(gof)^{-1}(v)$ is #arg - closed in (X,τ) . Therefore gof is #arg - continuous.

3.2.#αrg - irresolute functions.

In this section $\#\alpha rg$ - irresolute function is introduced and their basic properties are discussed.

Definition :3.2.1 A function f: $(X,\tau) \rightarrow (y,\sigma)$ is called #arg-irresolute if $f^{-1}(v)$ is # arg - closed in (X,τ) for every #arg-closed subset Vof (y,σ) .

Theorem : 3.2.2 Every #arg - irresolute function is #arg - continuous but converse is not necessarily true.

Proof : Suppose f: $(X,\tau) \rightarrow (y,\sigma)$ is called #arg-irresolute. Let V be any closed subset of Y. Then V is #arg-closed set in Y. Since f is #arg-irresolute, f⁻¹(v) is #arg-closed in X. Hence f is #arg-continuous.

The Converse of the theorem need not be true as seen from the following example.

Example.3.2.3 Let $X = \{a, b, c\} = Y$ $\tau = (\{\emptyset, X, \{b\}, \{a, c\}\} \sigma = \{y, \emptyset, \{a\}, \{a, b\}\}$

Define : f: (X, τ)) \rightarrow (y, σ) by f(a)=a, f(b)=b, f(c)=c, # α rg – continuous but not # α rg – irresolute.

Theorem :3.2.4 If a map f: $(X,\tau) \rightarrow (y,\sigma)$ is $\#\alpha rg$ - continuous map Y is $\tau_{\#\alpha rg}$ - space then f is $\#\alpha rg$ - irresolute.

Proof : Let f: $(X,\tau) \rightarrow (y,\sigma)$ is $\# \alpha rg$ - continuous map then inverse image of every closed set in Y is $\# \alpha rg$ -closed set is X. Since Y is $\tau_{\# \alpha rg}$ - space, inverse image of every $\# \alpha rg$ -closed set in Y is $\# \alpha rg$ -closed set in X. (ie) f is $\# \alpha rg$ - irresolute.

Theorem :3.2.5 Let f: $(X,\tau) \rightarrow (y,\sigma)$ be rw-irresolute and closed. Then f maps a $\#\alpha rg$ -closed set in (X,τ) into a $\#\alpha rg$ -closed set in (y,σ) .

Proof: Let A be $\#\alpha rg$ - closed in (X,τ) . Let $f(A) \subseteq U$ where U is rw-open. Then $A \subseteq f^{-1}(U)$. since f is rw-irresolute, $f^{-1}(U)$ is rw-open in X. Since A is $\# \alpha rg$ - closed, $\alpha cl(A) \subseteq f^{-1}(U)$, that implies $f(\alpha cl(A)) \subseteq U$ since f is closed, $f(\alpha cl(A))$ is closed that implies $\alpha cl(f(A)) \subseteq \alpha clf(\alpha cl(A)) \subseteq U$. Hence f (A) is $\# \alpha rg$ -closed in (y, σ) .

Theorem : 3.2.6Let f: $X \rightarrow Y$ and g: $Y \rightarrow Z$ be any two function. Let h = gof. Then

- (i) h is $\#\alpha rg$ continuous if f is $\#\alpha rg$ irresolute and g is $\#\alpha rg$ -continuous.
- (ii) h is $\#\alpha rg$ -irresolute. If both f and g are $\#\alpha rg$ irresolute and
- (iii) h is $\#\alpha rg$ continuous if g is continuous and f is $\#\alpha rg$ continuous.

Proof : Let V be closed in Z

(i) Suppose f is $\#\alpha rg$ - irresolute and g is $\#\alpha rg$ - continuous. since g is $\#\alpha rg$ - continuous, $g^{-1}(V)$ is $\#\alpha rg$ - closed in Y. Since f is $\#\alpha rg$ - irresolute, using the definition 3.2.1 $f^{-1}(g^{-1}(V))$ is $\#\alpha rg$ -closed in X. This prove (i)

(ii) Let f and g be $\#\alpha rg$ - irresolute. Then g⁻¹(V) is $\#\alpha rg$ -closed in Y. Since f is $\#\alpha rg$ - irresolute using the definition 3.2.1 f⁻¹(g⁻¹(v)) is $\#\alpha rg$ - closed in X. This proves (ii)

(iii) Let g be continuous and f be $\#\alpha rg$ - continuous. Then $g^{-1}(v)$ is closed in Y. Since f is $\#\alpha rg$ - continuous using definition _3.1.1 f⁻¹(g⁻¹(v)) is $\#\alpha rg$ -closed in X. This Proves (iii).

Theorem :3.2.7 A function f: $(X,\tau) \rightarrow (y,\sigma)$ is $\#\alpha rg$ - irresolute if and only if the inverse image of every $\#\alpha rg$ - open set in y is $\#\alpha rg$ - open in X.

Proof : If follows easily as a direct consequence of definition.

Theorem : 3.2.8 If a map f: $X \rightarrow Y$ is $\#\alpha rg$ - irresolute then for every subset A of X, f($\#\alpha rg$ - cl(A)) \subseteq cl(F(A)).

Proof : For every subset A of X, cl (f(A)) is closed in Y. Thus cl(f(A) is $\# \alpha rg$ - closed in Y. By hypothesis, f⁻¹(cl(f(A)) is $\# \alpha rg$ - closed in X, As $A \subseteq f^{-1}(f(A) \subseteq f^{-1}(cl(f(A)))$. We have $\# \alpha rg$ -cl($A \subseteq \# \alpha rg$ -cl($f^{-1}(cl(f(A))) = f^{-1}(cl(f(A)))$. Hence f ($\# \alpha rg$ -cl($A \subseteq \# \alpha rg$ -cl($A \subseteq \#$

Theorem :3.2.9 If a map f: $X \rightarrow Y$ is $\#\alpha rg$ - irresolute then for every $A \subseteq Y$, $\#\alpha rg$ -cl (f⁻¹(A) \subseteq f⁻¹(cl(f(A)))

Proof : For every subset A of Y, cl (A) is closed set in Y. Thus cl (A) is $\# \alpha rg$ -closed in Y. By hypothesis, $f^{-1}(cl(A))$ is $\# \alpha rg$ -closed in X, since $A \subseteq cl$ (A), $f^{-1}(A) \subseteq f^{-1}cl(A)$ which implies that $\# \alpha rg$ -cl($f^{-1}(A) \subseteq \# \alpha rg$ -cl($f^{-1}(cl(A)) = f^{-1}(cl(f(A)))$

REFERENCES

- [1] K. Balachandran, P. Sundram, and H. Maki. On generalized continuous maps in topological spaces. Mem.fac.Sci.kochi Univ (Math) 12:5:13:1991
- Benchalli, S.S., and Wali. R.S., on RW-Closed sets in topological spaces, Bull, Malays, Math.Sci.Soc(2) 30(2)(2007), 99-110.
- [3] Buswas, N., On Characterization of semi-continuous functions, Atti Accad, Naz. Lincei Rend, Cl.Sci.Fis.Mat. Natur. 48(8) (1970), 399-402.
- [4] Cameron, D.E., Properties of S-closed spaces, Proc.Amer Math.Soc.72(1978), 581-586.
- [5] Dontchev. J and Noiri. T Quasi-normal spaces and π g-closed sets, Acta Math. Hungar, 89(3)(2000), 211-219.
- [6] Gnanmbal Y., On generalized pre-regular closed sets in topological spaces, Indian J. Pure App. Math. 28 (1997), 351-360.
- [7] Gnanambal. Y. And Balachandran. K., On gpr-continuous functions in topological spaces, Indian J. Pure Appl. Math. 30(6)(1999), 581-593.
- [8] Levine. N., Semi-open sets and semi-continuity in topological spaces, Amer, Math. Monthly, 70(1973), 36-
- [9] Levine. N., Generalized closed sets in topology, Rend Circ. Mat. Palermo 19(1970), 89-96.
- [10] Maki. H. Devi. R and Balachandran, K., Associated topologies of generalized α-cloed and α-generalized closed sets, Mem.Sci. Kochi Univ. Ser. A. Math 15(1994), 51-63.
- [11] Mashhour. A.S., ABD. El-Monsef. M.e. and El-Deeb S.N., On pre continuous mappings and weak pre- continuous mappings, Proc Math, Phys. Soc. Egypt 53(1982), 47-53.
- [12] Nagaveni. N., Studies on Generalizations of Homeomorphisms in Topological Spaces., Ph.D. Thesis, Bharathiar University, Coimbatore, 1999.
- [13] Palaniappan N., and Rao. K.c., Regular generalized closed sets, Kyungpook Math. J. 33(1993),211-219.
- [14] Palaniappan N, Pious Missier S and Antony Rex Rodrigo αgp -closed sets in Topological Spaces, Acta Ciencia Indica Vol.XXXI M, No.1,243 (2006).
- [15] Park. J.K. and Park, J.H., Mildly generalized closed sets, almost normal and mildly normal spaces, Chaos Solitions and Fractals 20(2004), 1103-1111.
- [16] Pushpalatha. A., Studies on Generalizations of Mappings in Topological Spaces, Ph.D. Thesis, Bharathiar University, Coimbatore, 2000.
- [17] Sundaram. P and Shiek John. M., On w-closed sets in topology, Acta Ciencia Indica 4(2000), 389-392.
- [18] Stone. M., Application of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc.41(1937), 374-481.
- [19] Syed Ali Fathima S and Mariasingam M on #regular generalized closed sets in Topological Spaces, International Journal of Mathematical Archive -2(11),2011 2497-2502.
- [20] Syed Ali Fathima S and Mariasingam M on #regular generalized open sets in Topological Spaces, International Journal of Computer Applications (0795-8887)Volume 42-No.7 March 2012.
- [21] Thilaga Leelavathi S and Mariasingam M on #α-regular generalised closed in Topological Spaces, International Journal of Mathematical Trends and Technology (IJMTT) Volume 56 Number 8 – April 2018.
- [22] Tong.J., Weak almost continuous mapping and weak nearly compact spaces, Boll. Un.Mat.Ital. (1982),385-391.
- [23] Thakur C.K. Raman, Vidyottamma Kumari and Sharma M.K α--Generalized & α* Separation Axioma for Topological Spaces, IOSR Journal of Mathematics Volume 10, Issue 3 Ver.VI(May-Jun 2014) PP 32-36.