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ABSTRACT  
The present paper proposes a Machine learning technique for defect forecasting and handling for SQA called appendage log training and 

analysis, can be referred as ALTA. The proposed defect forecasting of in-appendage software development logs works is to deal the forecasted 

defects accurately and spontaneously while developing the software. The present proposed mechanism helps in minimizing the difficulty of 

SQA. The overall study is conducted on evaluating the proposed model which indicates the defect forecasting in-appendage software 

development log training and analysis is significant growth to lessen the complexity of Software Quality Assessment. 
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1. INTRODUCTION  
Research is being prominent in all engineering and science disciplines. To raise the quality of soft ware research has been inevitable even for 

software development. 

 
According to the hierarchical models of Boehm et al. [1], for the last thirty years, a different types of models are developed to increase quality 

of software of which a few became standard. At present these models are being used, to specify the quality need and, to test present systems or 

to identify the defect density of a system in the field. 

 
A number of varieties of models have been engendered during the last three decades and named as ―quality models‖. For instance on the 

spectrum of diverse models include taxonomic models like the ISO 9126 [2], metric-based models like the maintainability index (MI) [3] and 

stochastic models like reliability growth models (RGMs) [4]., These models seems to have less similarities though they deal with software 

quality. This variation is due to the purposes the models pursue: The ISO 9126 defines quality, metric-based approaches, used for assessment of 

the quality of a particular system and reliability growth models tells quality. In order to avoid comparison various purposes like definition, 

assessment and prediction of quality, to classify quality models are used. Therefore, the ISO 9126 is defined as definition model, metric-based 

approaches as assessment models and RGMs as prediction models. Though definition, assessment and prediction of quality are various 

purposes, they are certainly dependent of each other: It is very difficulty for assessing quality without knowing it‘s actually constitutes and at 

the same time not easy to predict quality without knowing assessment process. Quality models relation is illustrated by the DAP classification 

shown in Fig. 1. 
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 Fig 1: DAP Classification [33] 
 
 
The DAP classification[33] points prediction models as one of the most advanced form of quality models because they can also be utilized to 

define and assess quality. Hence, this opinion only applies for ideal models. Fig. 1displays that present quality models do not include all aspects 

equally. If we observe the ISO 9126defines quality but to assess it is possible; the MI says assessment but can not define quality. RGMs also 

predicts without defining quality. 

 
Related Work  
Coming to the related works, the main forthcoming of present quality models is that they do not relate to an explicit meta model. Therefore the 

structure of the model elements is not clearly defined and the interpretation is left to the reader.Quality models must be central treasure for the 

information about quality. So the various tasks of quality engineering should depend upon one quality model. Now days, first problem is that 

quality models are used separately for specification of quality needs and the assessment of software quality. Second problem is that now a day‘s 

quality models are not addressing various opinions on quality. For software engineering, the value-based opinion is commonly considered of 

high importance [5]. Which is mostly missing in existing quality models [6]. 

 
Software systems consists a large variety which ranges from a large amount of business information systems to small embedded controllers. 

These variations must be accounted for in quality models by defined means of customization but is lacking in the present quality models, [7, 8, 

and 9].Present quality models lack clarity in defining the decomposition criteria which determine the difficult concepts of quality of 

decomposition. Most definition models base on a taxonomic, hierarchical decomposition of quality attributes. The decomposition model does 

not follow defined guidelines and can be arbitrary [10, 11, 12, 6]. Therefore, it is hard to identify similar quality attributes, like availability. In 

addition to large quality models, with unclear decomposition locating elements becomes difficult. Developers have to search for large parts of 

the model to assert that an element does not exist. This leads to redundancy because of presence of similar elements. 

 
The vague decomposition in most of the quality models will also be the cause of overlapping in various quality attributes. In addition to, these 

overlaps will not be considered explicitly. I f we observe security will be influenced by availability (denial of service attack), a part of 

reliability; code quality factor of maintainability is considered as an indicator for security [13]. 

 
Most quality model frameworks do not give ways for utilizing the quality models for constructive quality assurance. For instance , hoe the 

quality models communicated to project participants is not clear. Guidelines is a common method of communicating information. Pragmatically 

, guidelines which are meant for communicating the knowledge of a quality model face problems, which are directly related to corresponding 

problems of the quality models itself; e.g. the guidelines will not be concrete enough and the document structure of the guideline will not be 

aligned according to an evident schema. Rationales are often not provided for the rules the guidelines impose. Other problem is that the quality 

models are not define tailoring methods to use the guidelines to the application area.Unclear decomposition of quality attributes, which 

mentioned earlier, is one problem for analytical quality assurance. The given quality attributes are very much abstract rather than 

straightforward checkable in a concrete software system [3,5]. Due to the present quality models, define checkable attributes and refinement 

methods to get checkable attributes, they are difficult to utilize in measurement [14, 6]. 

 

http://www.jetir.org/


© 2018 JETIR  November 2018, Volume 5, Issue 11                               www.jetir.org  (ISSN-2349-5162) 
 

JETIR1811593 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 636 

 

In the realm of software quality, a huge number of metrics for measurement have been planned. But these metrics due to lack of structure in 

quality models faces problems. One such problem is that in spite of defining metrics, the quality models fail to provide a detailed account of the 

influence that specific metrics have on software quality [6]. Because of poor semantics, the total of metric values along the hierarchical levels 

will be problematic. Other problem is that the given metrics doesn‘t possess clear motivation and validation. A part from this, present 

approaches do no value the fundamental rules of measurement theory and, therefore, forced to create duplicate results [15].Because of the 

problems in constructive and analytical quality assurance, the possibility of certification on basis of quality models will face problems [14]. It 

should be stated that measurement is important for any control process. Hence the measurement quality attributes is necessary for an efficient 

quality assurance processes and for engineering needs.Predictive quality models don‘t possess definition of the concepts they are depend on. 

Many of them depend on regression using a set of software metrics. This regression results in equations that are difficult to interpret [16]. 

Pragmatically prediction models is context-dependent, also complicates broad application. Most factors influence the typical prediction goals 

and especially , factors that varies robustly. Generally in prediction models these context conditions will not be made explicitly.Service-oriented 

distributed systems evolve in size and complexity, assures that they conform to their specifications throughout the software life cycle becomes 

hard. This origins the problem of serialized- phasing development [17], where application- level entities are devised after infrastructure-level 

entities. Serialized-phasing improvement builds it difficult to evaluate end-to-end functional and quality-of-service (QoS) aspects until late in 

the software life cycle for example, at system integration time. 

 
Agile techniques addresses functional aspects of serialized-phasing development by authorizing software functionality throughout software life 

cycle[18, 19]. One such example is test-driven development and continuous integration are agile techniques that endorse functional quality by 

assuring that software work up to the mark. The advantage of utilizing agile techniques to develop QoS assurance of service-oriented distributed 

systems, despite, demonstration. Developers, hence, require new techniques to aid in exploring the indication of serialized-phasing development 

and enable evaluation of QoS that is considered throughout the software life cycle. 

 
Model-driven engineering (MDE) is a favorable solution for augmenting software development of service-oriented distributed systems [20]. 

MDE techniques like domain-specific modeling languages (DSMLs)[21], supply developers with visual representations of abstractions that 

holds key domain semantics and constraints. DSMLs also supply tools that transform models into stable artifacts, like source code or 

configuration files that are dread and error-prone to generate manually utilizing third-generation languages. These artifacts generally are not 

handy in the software life cycle let a proper evaluation of end-to-end QoS properties. 

 

 

3.SQA BY DEFECT PREDICTION 
  
The mentioned In-Appendage Software Development log Analysis by SVM works as an intelligent system to identify defects to enhance the 

Software Quality. In nut shell we refer ALTA. The fig 2 defines the proposed defect prediction process that mingles with software development 

and testing. In ALTA the defect prediction is strategic and helps to predict the defect that leverages the cost and targeted result. This forecast can 

help the adepts included to reform the current action to reduce the severity of the risk forecasted. Fig 3 explains the defect forecast strategy 

mentioned as key feature of the ALTA. In defect forecasting process we adapt to machine learning technique called least square support vector 

machines abbreviated as LSSVM. The Defect forecasting stage of the ALTA targets the improvement of logs handy as input to train the 
LSSVM for better forecasting. The feature bring out process that is part of SVM training process will be carried with help of mathematical 

model named Intensified worst particle based Quantum particle swarm optimization, details as follow.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

                                   Fig 2: Defect prediction and handling using Machine learning 
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                                                        Fig 3: Defect prediction Process 

 

4. DEFECT PREDICTION USING LS-SVM[25] AND IWP-QPSO[29] 
 
4.1 LS-SVM[25] 
 
For solving pattern recognition and classification problem using Support vector machine (SVM) tool proposed by Vapnik[22, 23] is beneficent. 

. It even can be applied to regression problems by the brining up other loss function. Because of its benefits and excellent generalization 

performance comparing to other methods, SVM caught the attention of user and won mammoth application [5]. SVM displays extraordinary 

performances due to the capacity of leading global models which are special with the structural risk minimization principle [24], showing 

superiority over traditional empirical risk minimization principle. In addition of specific formulation, sparse solutions will be found. Linear and 

nonlinear regression can be performed with LSSVM. Therefore finalizing the SVM model is computationally very hard because it needs the 

solution of a set of nonlinear equations (quadratic programming problem). According to simplification, Suykens and Vandewalle[25] proposed 

a modified version of SVM called least-squares SVM (LS-SVM[25]), that bring out in a set of linear equations in the place of a quadratic 

programming problem, that can be enlarge the applications of the SVM with a number of superb introductions of SVM [25, 26] and the theory 

of LS-SVM[25] is explained explicitly by Suykens et al[24, 25] and application of LS-SVM[25] in quantification and classification mention in 

a few works[27, 28]. 
 

Basically, LS-SVM[25] uses a linear relation (y = wx + b) between the regression (x) and the dependent variable (y). The best relation is the 

one that reduces the cost function (Q) containing a penalized regression error term: 
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The first part of cost function, weight decay useful in regularizing weight sizes and penalizes large weights. Because of regularization, the 

weights converge to similar value. Large weights dwindles the generalization ability of the LS-SVM [25] because of causing more variance. The 

regression error for all training data is in the second part of cost function the relative weight of the present part compared to the first part will be 

symbolized as ‗g‘ that should be used by the user.Likewise to other multivariate statistical models, the performances of LS-SVM [25]s bases on 

the combination of several parameters. Attaining of the kernel function is cumbersome and it will depend on each case. Whatever, the kernel 

function uses more radial basis function (RBF), a simple Gaussian function, and polynomial functions where width of the Gaussian function and 

the polynomial degree will be used, which should be optimized by the user, to obtain the support vector. For the RBF kernel and the polynomial 

kernel it should be stressed that it is very necessary to do a careful model selection of the tuning parameters, in combination with the 

regularization constant g, in order to achieve a good generalization model. 

 
4.2 IWP- QPSO (Intensifying the Worst Particle for QPSO)[29] 

 
S.Nagaraja Rao et al[12] did to optimize the QPSO by intensifying worst swarm particle with new swarm particle. An interpolate equation will 

be traced out by applying a quadratic polynomial model on existing best fit swarm particles. Depending on emerged interpellant, new particle 

will be find. If the new swarm particle found as better one in comparison to least good swarm particle then substitution takes place. 

 
The computational steps of optimized QPSO algorithm as follows: 

 
Step 1: Initialize the swarm. 
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Step 2: Calculate mbest 

 
Step 3: Update particles position 
 
Step 4: Evaluate the fitness value of each particle 

 
Step 5: If the current fitness value is better than the best fitness value (Pbest) in history Then Update Pbest by the current fitness value. 

 
Step 6: Update Pgbest (global best) 

 
Step 7: Find a new particle 

 
Step 8: If the new particle is better than the worst particle in the swarm, then replace the worst particle by the new particle. 

 
Step 9: Go to step 2 until maximum iterations reached. 

 
The swarm particle can be found using the fallowing. 
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In the mentioned math notations a‘ is best fit swarm particle a,b and c are randomly selected swarm particles xi is new swarm particle. 
 

4.3 LS-SVM [25] Regression and QPSO based hyper parameter selection 
 

Assume that a given training set of N data points  { xt , yt }t
N
1 

 

with input data  xt  Rd
 and output yt  R . In feature 

 
space LS-SVM [25] regression model take the form 

 

y (x) = wT (x) + b …………… (1) 

 

Where the input data is mapped (.) 

 
The solution of LS-SVM[25] for function estimation is given by the following set of linear equations: 
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Where K(xi ,xj ) = ( xi )
T (xj )

T  for i, j =1...L 
 

And the Mercer‘s condition has been applied. 

 
This finally results into the following LS-SVM[25] model for function estimation: 

 

f (x )  i K (x, xi )  b …….(3) i1
L 

 

Where  , b are the solution of the linear system, K(.,.) represents the high dimensional feature spaces that is 

 

 

nonlinearly mapped from the input space x. The LS-SVM[25] approximates the function using the Eq. (3). 

 
In present work, the radial basis function (RBF) is used as the kernel function: 

 

k ( xi , x j )  exp(  || x  xt  ||
2  / 2 ) 

 
In the training LS-SVM[25] problem, there are hyper-parameters, such as kernel width parameter σ and regularization parameter C, which may 

affect LS-SVM[25] generalization performance. So these parameters required perfectly in tuning of reducing the generalization error. An 

attempt is made to tune these parameters automatically by using QPSO. 

 

4.4 Hyper-Parameters Selection Based on IWP-QPSO[29] 

 
To surpass the usual L2 loss results in least-square SVR, we attempt to optimize hype parameter selection. 

 
The two key factors that finalize the optimized hyper-parameters through QPSO: First one is how to represent the hyper-parameters as the 

particle's position, namely encoding [13,14]. Second one is defining the fitness function, that evaluates the goodness of a particle.. 

 
4.4.1 Encoding Hyper-parameters: 
 
The optimized hyper-parameters for LS-SVM [25] consists kernel parameter and regularization parameter. To solve hyper-parameters selection 

by the proposed IWP-QPSO [29], every particle represents a potential solution, called hyper-parameters combination. A hyper-parameters 

combination of dimension m is represented in a vector of dimension m, such  

as xi  (, C) . The resultant Hyper-parameter optimization under IWP-QPSO [29] can found in fallowing fig 4. 

 
a. Fitness function: 

 
The fitness function is the generalization performance measure. For the generation performance measure, there are some other descriptions. In 

the present paper, the fitness function is: 

 

fitness  

1 

…. (12) 

 

 
 

RMSE( ,  ) 
 

 
Where RMSE (σ, γ) is the root-mean-square error of predicted results, which varies with the LS-SVM [25] parameters (σ ,γ ) . When the 

termination criterion is met, the individual with the biggest fitness corresponds to the optimal parameters of the LS-SVM [25]. 

 
The two alternatives for stop criterion of the algorithm are: First method is that the algorithm stops when the objective function value is less 

than a given threshold ε; the other is that it is terminated after executing a pre-specified number of iterations. The following steps describe the 

IWP-QPSO [29]- 
 
Trained LS-SVM [25] algorithm: 

 
(1) Initialize the population by randomly generating the position vector iX of each particle and set iP = iX; 

 

(2) Structure LS-SVM [25] by treating the position vector of each particle as a group of hyper-parameters; 

 
(3) Train LS-SVM[25] on the training set; 

 

(4) Evaluate the fitness value of each particle by Eq.(12), update the personal best position iP and obtain the global best position gP across the 

population; 

 

(5) If the stop criterion is met, go to step (7); or else go to step  

http://www.jetir.org/


© 2018 JETIR  November 2018, Volume 5, Issue 11                               www.jetir.org  (ISSN-2349-5162) 
 

JETIR1811593 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 640 

 

(6); 

 

(6) Update the position vector of each particle according to Eq.(7), Go to step (3); 

 

(7) Output the gP as a group of optimized parameters.  
 
 
 
 
 
 
 
 
 
 

 

Fig 4: Hyper-Parameter optimization response surface under IWP-QPSO[29] for LS-SVM[25] 

 

5. RISK PREDICTION IN ALTA  
This section explains the proposed algorithm for ALTA. The ALTA mainly backed by LS-SVM[25] regression that relies on IWP-QPSO[29] 

for feature extraction.  
 The Development log considered into multitude tuple.




 Collect the resultant detailed near features of each tuple




 Submit feature matrix as input to LS-SVM[25] regression under IWP-QPSO[29], which infers the data to be used for training by 
generating minimal required number of support vectors.



 Estimate the absolute levels of the features.




 Do risk prediction by evaluating the features of the current and subsequent dependent activities of the code tuple of the current 
development.



 Identify the risk status


 
6. EMPIRICAL STUDY AND RESULTS DISCUSSION  
The performance analysis of the proposed In-Appendage risk prediction using machine learning is done by performing wholesome study on 

different open source project development logs. It is opted to various logs that are of applications of various sizes ranging from low, mid to 

large level.The performance of the ALTA verified by applying on development log of the Gdownloader[30], which is tiny open source 

application, JPCAP[31], which is tiny open source application and LUCENE[32],which is large size open source application. Empirical analysis 

is conducted to check the performance of ALTA is as given below. 

 
The development, test phases and their process logs were partitioned into multitude tuple set. The extracted features from each process log 

tuple and generalized with IWP-QPSO, then trained with LS-SVM, then attempted to predict the risks in next tuple of actions. And then we 

analyzed performance of the ALTA by comparing the predicted risk ratio with actual risks of each tuple logged in process log. 

 
The results are observed are a bit intriguing. So it is concluded that ALTA influences in risk forecasting at Development and Testing 

stages.Table 1 represents the comparison of defects observed during development that are logged in process logs and predicted at In-

Appendage time of development and testing. The table 1, table 2 and table 3, Fig 5, fig 6 and fig 7 represents the accuracy of ALTA in risk 

prediction during development and testing. From the results it is clear that ALTA is significant and reliable to forecast defects during 

development and testing phases of the software development. 

 
To simplify the results analysis, each application and its log partitioned into multitude tuple set of 4 for development and 4 for testing. The 

results description fallows. 

ALTA’s performance report on tiny software development: 

 
performance of validation of ALTA on GDownloader[30] process log 

 
Risk prediction ratio at multitude tuple set of  
Gdownloader Development phase: 

 

 Block 1 Block 2 Block3 Block4 
     

Defects  in 3% 1% 0.30% 30% 

Process     

Log     
     

Defects 3% 0.20% 0.15% 27% 

Predicted     

by ALTA     
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Risk prediction ratio at multitude tuple set of  
Gdownloader Testing phase: 

 

 Block1 Block2 Block3 Block4 
     

Defects  in 14% 0% 0% 0% 

Process     

Log     
     

Defects 11% 0% 0% 0% 

Predicted     

by ALTA     
     

 
Table 1: Comparison of defects logged in process log and defects predicted by ALTA for small size software development  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig 5: Line chart comparison of defects logged in process log and defects predicted by ALTA for small size software development 

 
ALTA’s performance report on medium software development: 

 
(A) Performance validation on JPCAP[31] development process log 

 

  Block Block Block3 Block4 

  1 2   
      

Defects in     

development      

Process Log  9% 12% 21% 39% 
     

Defects  Predicted     

by ALTA  7.90% 7.60% 20.10% 36.78% 
      

(B) Performance validation on JPCAP[] Testing process log 

 

 Block1 Block2 Block3 Block4 
     

Defects  in     

Process     

Log 23% 1% 2% 2% 
     

Defects     

Predicted     

by ALTA 20.67% 0.90% 1% 0.90% 
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Table 2: Comparison of defects logged in process log and defects predicted by ALTA for mid size software development 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig 6: Line chart comparison of defects logged in process log and defects predicted by ALTA for mid size software development 

 

ALTA performance in LUCENE software Development log : 
     

    

      
  Block 1 Block 2 Block3 Block4 
        

Defects in       

development        

Process Log  22%  32% 20%  21% 
        

Defects 
predicted        

        

        

ALTA  19.40% 31.10% 19.40% 20.80% 
         

(B) Performance validation on LUCENE[] Testing process log 

 

 Block1 Block2 Block3 Block4 
     

Defects  in     

Process     

Log 14% 20% 11% 16% 
     

Defects     

Predicted     

by ALTA 12.70% 19.04% 10.60% 13.90% 
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Table 3: Comparison of defects logged in process log and defects predicted by ALTA for large size software development  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 7: Line chart comparison of defects logged in process log and defects predicted by ALTA for large size software development 

 
The results show that the performance of risk prediction in ALTA is proportional to the size of log entries. Though maximum number of log 

entries are entered but provides accurate results in generalizing features, Therefore the defect prediction in ALTA is accurate. With this we can 

come to the conclusion that ALTA as in appendage risk prediction model can lessen the cost because of defects in development and testing. 

 

7. CONCLUSION 
 
Depending upon the results of the empirical analysis mentioned in earlier section, it is to be concluded that irrespective of the size of the 

software to be developed the ALTA is best for minimizing cost, using of resources , balancing development and testing phases. It enables to 

work with any of the software development models .and leads to stable and scalable software development. The methodology used in defect 

prediction is stable in all types of software application sizes. 
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