Some New Results On Helm Graphs

${ }^{1}$ Dr.G.Ramesh, ${ }^{2}$ A.Sathiya
${ }^{1}$ Associate Professor, Department of Mathematics, Government Arts College(Autonomous), Kumbakonam, Tamilnadu, India.
${ }^{2}$ Assistant Professor, Department of Mathematics, Thanthai HansRoeverCollege(Autonomous), Perambalur, Tamilnadu, India.

Abstract

In a graph G two vertices of a graph are said to be radial to each other if the distance between them is equal to the radius of the graph. The radial graph of a graph G, denoted by $R(G)$, has the vertex set as in G and then two vertices are adjacent in $R(G)$ if and only if they are radial to each other in G.

The radial graph of helm graphs are obtained. The geodetic polynomials and detour geodetic polynomials of helm graphs are derived and some important results are proved.

Keywords: Distance, Detour geodetic polynomial, Geodetic polynomial, Helm graph, Radial graph.
AMS Classification : 05C12, 05C60, 05C75

I. Introduction

In this paper we discuss only finite simple and connected graph. For basic graph theoretical terminology we refer [1]. In [5] the concept of radial graph $R(G)$ is introduced and the characterization for $R(G)$ is proved. The concept of Geodetic polynomials of a graph using Geodetic sets of a graph are introduced in [8]. Geodetic polynomial, Detour geodetic polynomial of some radial graphs are discussed in [7]. Here we have derived some results, on radial graph of helm graphs and geodetic polynomial, detour geodetic polynomial of helm graphs

1.1. Preliminaries

For a graph G, the distance $d(u, v)$ between a pair of vertices u and v is the length of a shortest path joining them. The eccentricity $e(u)$ of a vertex u is the distance to a vertex farthest from u. The radius $r(G)$ of G is defined as the minimum eccentricity of all the vertices of G and the diameter $d(G)$ of G is defined as the maximum eccentricity of all the vertices of G.

A graph G for which $r(G)=d(G)$ is called a self centred graph. Two vertices of a graph are said to be radial to each other if the distance between them is equal to the radius of the graph. The radial graph of a graph G, denoted by $R(G)$, has the vertex set as in G and then two vertices are adjacent in $R(G)$ if and only if they are radial to each other in G.

II. Radial graph of Helm Graph

In this section we discuss radial graph of helm graphs and proved some theorems for finding the radial graphs of helm graphs.

Definition 2.1

The Helm graph H_{n} is the graph with $2 \mathrm{n}+1$ vertices obtained from an n -wheel graph by adjoining a pendant edge at each node of the cycle.

Example 2.2

The following is the example for helm graph H_{4} with 9 vertices.

Theorem 2.3

The radial graph of helm graph with $2 n+1$ vertices $n \geq 4$ has n vertices of degree 3 , n vertices has degree 4 and one vertex has degree n.

Proof:

Let us prove the theorem by induction on the number of vertices.
Let $\mathrm{n}=5$ then H_{5} is a helm graph with 11 vertices and it will be of the form,

$$
\mathbf{H}_{5} \text { : }
$$

The radial graph of the helm graph H_{5} is

From the radial graph of helm graph we observe that the vertices $\mathrm{v}_{1}, \mathrm{v}_{4}, \mathrm{v}_{6}, \mathrm{v}_{8}$ and v_{10} has degree 3 . The vertices $\mathrm{v}_{2}, \mathrm{v}_{5}, \mathrm{v}_{7}, \mathrm{v}_{9}$ and v_{11} has degree 4.The cut vertex v_{3} has degree 5 .

If $\mathrm{n}=6$, Let H_{6} is a helm graph with 13 vertices and it is of the form,

The radial graph of the above helm graph is,

Here the vertices $\mathrm{v}_{1}, \mathrm{v}_{4}, \mathrm{v}_{6}, \mathrm{v}_{8}, \mathrm{v}_{10}$ and v_{12} is of degree 3, the vertices $\mathrm{v}_{2}, \mathrm{v}_{5}, \mathrm{v}_{7}, \mathrm{v}_{9}, \mathrm{v}_{11}$ and v_{13} has degree 4 . The centre vertex v_{3} has degree n.

The theorem is true for $\mathrm{n}=5$ and $\mathrm{n}=6$.
Let us assume that the theorem is true for all the helm graph $\mathrm{H}_{\mathrm{n}-1}$ with $2 \mathrm{n}-1$ vertices (i. e) the radial graph of helm graph $\mathrm{H}_{\mathrm{n}-1}$ has $n-1$ vertices of degree 3 and $n-1$ vertices of degree 4 . one vertex has degree n.

Now we prove the theorem for helm graphs H_{n} with $2 n+1$ vertices.
Let H_{n} is the helm graph with $2 \mathrm{n}+1$ vertices

The radial graph of the above helm graph is

From the above radial graph of helm graph H_{n}, we observe that the degree of all inner vertices $\mathrm{v}_{2}, \mathrm{~V}_{4}, \mathrm{~V}_{6}, \mathrm{~V}_{8}, \mathrm{v}_{10}, \mathrm{~V}_{12}, \ldots \ldots, \mathrm{~V}_{\mathrm{n}-4}, \mathrm{~V}_{\mathrm{n}}-$ $2, \mathrm{v}_{\mathrm{n}}$ is greater than the degree of the corner vertices $\mathrm{v}_{1}, \mathrm{v}_{3}, \mathrm{v}_{5}, \mathrm{v}_{7}, \mathrm{~V}_{9}, \mathrm{v}_{11}, \ldots \ldots ., \mathrm{v}_{\mathrm{n}-5}, \mathrm{v}_{\mathrm{n}-3}, \mathrm{v}_{\mathrm{n}-1}$. In the radial graph of the helm graph , all the corner vertices has 3 , all the inner vertices except the centre vertex has degree 3 . The centre vertex has degree n.

Hence the radial graph of the helm graph has n vertices of degree 3 , and n vertices of degree 4 . One vertex has degree n.

III. Geodetic Polynomial of Helm Graphs

In this section we discuss geodetic polynomial of helm graphs

Definiton 3.1

Let $\mathcal{G}(\mathrm{G}, \mathrm{i})$ be the family of geodetic sets of the graph G with cardinality i and let
$g_{e}(G, i)=|\mathcal{G}(G, i)|$. Then the geodetic polynomial $\mathcal{G}(G, x)$ of G is defined as
$\mathcal{G}(G, x)=\sum_{i=g(G)}^{|V(G)|} g_{e}(G, i) x^{i}$ where $g(G)$ is the geodetic number of G .

Theorem 3.2

The geodetic polynomial of H_{n}, if $\mathrm{n} \geq 3$ is $\mathcal{G}\left(\mathrm{H}_{\mathrm{n}}, \mathrm{x}\right)=x^{n}(1+x)^{1+n}$.

Proof:

Let H_{n} be a helm graph with $2 \mathrm{n}+1$ vertices, without loss of generality we choose $\mathrm{n} \geq 3$.
Let $\mathrm{X}=\left\{v_{1}, v_{2}, v_{3}, \ldots \ldots \ldots . v_{n}\right\}$. Helm graph has n pendant vertices. The only geodetic set with minimum cardinality is n in X . Therefore $g_{e}\left(H_{n}, n\right)=1$.The geodetic set with cardinality $\mathrm{n}+1$ are $\left\{v_{1}, v_{2}, v_{3}, \ldots \ldots \ldots . v_{n+1}\right\}$.
$g_{e}(H, n+1)=(n+1) C_{1}$.
$g_{e}(H, n+2)=(n+2) C_{2}$.

Hence

$$
\begin{aligned}
\mathcal{G}\left(H_{n}, x\right) & =x^{n}+(n+1) C_{1} x^{n+1}+(n+1) C_{2} x^{n+2}+\ldots \ldots \ldots \ldots \ldots .+(n+1) C_{n+1} x^{2 n+1} \\
& =x^{n}\left\{1+(n+1) C_{1} x^{1}+(n+1) C_{2} x^{2}+\ldots \ldots \ldots \ldots \ldots .+(n+1) C_{n+1} x^{n+1}\right\} \\
\mathcal{G}\left(\mathrm{H}_{\mathrm{n}}, \mathrm{x}\right) & =x^{n}(1+x)^{1+n} .
\end{aligned}
$$

Hence The geodetic polynomial of H_{n}, if $\mathrm{n} \geq 3$ is $\mathcal{G}\left(\mathrm{H}_{\mathrm{n}}, \mathrm{x}\right)=x^{n}(1+x)^{1+n}$.

Example 3.3

Let H_{3} is the Helm graph with 7 vertices.

$g_{e}\left(H_{3}, 3\right)=\left\{\left(\mathrm{v}_{1} \mathrm{v}_{5} \mathrm{v}_{7}\right)\right\}$
$\left|g_{e}\left(H_{3}, 3\right)\right|=1$
$g_{e}\left(H_{3}, 4\right)=\left\{\left(\mathrm{v}_{1} \mathrm{v}_{2} \mathrm{v}_{5} \mathrm{v}_{7}\right),\left(\mathrm{v}_{1} \mathrm{v}_{3} \mathrm{v}_{5} \mathrm{v}_{7}\right),\left(\mathrm{v}_{1} \mathrm{v}_{4} \mathrm{v}_{5} \mathrm{v}_{7}\right),\left(\mathrm{v}_{1} \mathrm{v}_{5} \mathrm{v}_{6} \mathrm{v}_{7}\right)\right\}$
$\left|g_{e}\left(H_{3}, 4\right)\right|=4$
$g_{e}\left(H_{3}, 5\right)=\left\{\left(\mathrm{v}_{1} \mathrm{v}_{2} \mathrm{v}_{3} \mathrm{v}_{5} \mathrm{v}_{7}\right),\left(\mathrm{v}_{1} \mathrm{v}_{2} \mathrm{v}_{4} \mathrm{v}_{5} \mathrm{v}_{7}\right),\left(\mathrm{v}_{1} \mathrm{v}_{2} \mathrm{v}_{6} \mathrm{v}_{5} \mathrm{v}_{7}\right),\left(\mathrm{v}_{1} \mathrm{v}_{3} \mathrm{v}_{4} \mathrm{v}_{5} \mathrm{v}_{7}\right)\right.$,
$\left.\left(\mathrm{v}_{1} \mathrm{v}_{3} \mathrm{v}_{6} \mathrm{v}_{5} \mathrm{v}_{7}\right),\left(\mathrm{v}_{1} \mathrm{v}_{4} \mathrm{v}_{6} \mathrm{v}_{5} \mathrm{v}_{7}\right)\right\}$
$\left|g_{e}\left(H_{3}, 5\right)\right|=6$
$g_{e}\left(H_{3}, 6\right)=\left\{\left(\mathrm{v}_{1} \mathrm{v}_{2} \mathrm{v}_{3} \mathrm{v}_{4} \mathrm{v}_{5} \mathrm{v}_{7}\right),\left(\mathrm{v}_{1} \mathrm{v}_{2} \mathrm{v}_{3} \mathrm{v}_{5} \mathrm{v}_{6} \mathrm{v}_{7}\right),\left(\mathrm{v}_{1} \mathrm{v}_{2} \mathrm{v}_{4} \mathrm{v}_{6} \mathrm{v}_{5} \mathrm{v}_{7}\right),\left(\mathrm{v}_{1} \mathrm{v}_{3} \mathrm{v}_{4} \mathrm{v}_{5} \mathrm{v}_{6} \mathrm{v}_{7}\right)\right\}$
$\left|g_{e}\left(H_{3}, 6\right)\right|=4$
$g_{e}\left(H_{3}, 7\right)=\left\{\left(\begin{array}{lllll}\mathrm{v}_{1} \mathrm{v}_{2} \mathrm{v}_{3} \mathrm{~V}_{4} \mathrm{v}_{5} \mathrm{v}_{6} \mathrm{v}_{7}\end{array}\right)\right\}$
$\left|g_{e}\left(H_{3}, 7\right)\right|=1$
$\mathcal{G}\left(H_{3}, x\right)=\sum_{i=g(G)}^{|V(G)|} \quad g_{e}\left(H_{3}, i\right) x^{i}$
$\mathcal{G}\left(H_{3}, x\right)=g_{e}\left(H_{3}, 3\right) x^{3}+g_{e}\left(H_{3}, 4\right) x^{4}+g_{e}\left(H_{3}, 5\right) x^{5}+g_{e}\left(H_{3}, 6\right) x^{6}+g_{e}\left(H_{3}, 7\right) x^{7}$
$\mathcal{G}\left(H_{3}, x\right)=x^{4}+4 x^{5}+6 x^{6}+x^{7}$.
The geodetic polynomial of H_{3} is $\mathcal{G}\left(H_{3}, x\right)=x^{4}+4 x^{5}+6 x^{6}+x^{7}$.

IV. Detour geodetic polynomial of Helm Graphs

In this section we find detour geodetic polynomial of helm graphs

Defintion 4.1:

Let $\mathrm{D} \mathcal{G}(\mathrm{G}, \mathrm{i})$ be the family of detour Geodetic sets of the graph G with cardinality i and let $D g_{e}(G, i)=$ $|\mathrm{D} \mathcal{G}(G, i)|$. Then the Detour geodetic polynomial $D \mathcal{G}(G, x)$ of G is defined as $\quad \mathrm{D} \mathcal{G}(G, x)=\sum_{i=\mathrm{d} g(G)}^{\mathrm{dg}(\mathrm{G})} D g_{e}(G, i) x^{i}$ Where $\mathrm{d}_{\mathrm{g}}(\mathrm{G})$ is the Detour number of G .

Theorem 4.2

The Detour geodetic polynomial of the helm graph H_{n} is $n x^{2}+n x^{3}$
i.e $D \mathcal{G}\left(\mathrm{H}_{\mathrm{n}}, \mathrm{x}\right)=n x^{2}+n x^{3} \quad, \mathrm{n} \geq 4$

Proof:

The Helm graph H_{n} has $2 \mathrm{n}+1$ vertices, in which there is n pendant vertices and one centre vertex. There is n detour set with cardinality 2 , and n detour set with cardinality 3 . $\mathrm{d}_{\mathrm{g}}(\mathrm{G})=2, \mathrm{dg}^{+}(\mathrm{G})=3$.

Hence the detour geodetic polynomial of the helm graph is $n x^{2}+n x^{3}, \mathrm{n} \geq 4$.

> Hence the proof.

Example 4.3

Let H_{4} is the Helm graph with 9 vertices.

$\mathrm{DS}_{1}=\left\{\mathrm{v}_{1} \mathrm{v}_{4}\right\} \quad \mathrm{DS}_{2}=\left\{\mathrm{v}_{4} \mathrm{v}_{6}\right\} \mathrm{DS}_{3}=\left\{\mathrm{v}_{6} \mathrm{v}_{8}\right\}, \mathrm{DS}_{4}=\left\{\mathrm{v}_{8} \mathrm{v}_{1}\right\}$,
$\mathrm{DS}_{5}=\left\{\mathrm{v}_{1} \mathrm{v}_{9} \mathrm{v}_{4}\right\}, \mathrm{DS}_{6}=\left\{\mathrm{v}_{4} \mathrm{v}_{2} \mathrm{v}_{6}\right\}, \mathrm{DS}_{7}=\left\{\begin{array}{lll}\mathrm{v}_{6} & \mathrm{v}_{5} \mathrm{v}_{8}\end{array}\right\}, \mathrm{DS}_{8}=\left\{\begin{array}{lll}\mathrm{v}_{1} & \mathrm{v}_{7} \mathrm{v}_{8}\end{array}\right\}$,
$\mathrm{d}_{\mathrm{g}}(\mathrm{G})=2, \mathrm{dg}^{+}(\mathrm{G})=3$
$D g_{e}\left(H_{4}, 2\right)=\left[\left\{\begin{array}{ll}\left.\mathrm{v}_{1} \mathrm{v}_{4}\right\},\left\{\mathrm{v}_{4}\right. & \mathrm{v}_{6}\end{array}\right\},\left\{\mathrm{v}_{6} \mathrm{v}_{8}\right\},\left\{\begin{array}{ll}\mathrm{v}_{8} & \mathrm{v}_{1}\end{array}\right\}\right]$
$\left|D g_{e}\left(H_{4}, 2\right)\right|=4$
$D g_{e}\left(H_{4}, 3\right)=\left[\left\{\mathrm{v}_{1} \mathrm{v}_{6} \mathrm{v}_{5}\right\},\left\{\mathrm{v}_{5} \mathrm{v}_{6} \mathrm{v}_{9}\right\},\left\{\mathrm{v}_{9} \mathrm{v}_{2} \mathrm{v}_{7}\right\},\left\{\mathrm{v}_{7} \mathrm{v}_{4} \mathrm{v}_{1}\right\}\right]$
$\left|D g_{e}\left(H_{4}, 3\right)\right|=4$
Detour geodetic polynomial of Helm Graph H_{4} is
$\mathrm{D} \mathcal{G}\left(H_{4}, x\right)=\sum_{i=2}^{3} D g_{e}\left(H_{4}, i\right) x^{i}$
D $\mathcal{G}\left(H_{4}, x\right)=4 x^{2}+4 x^{3}$.
The detour geodetic polynomial of ladder graph H_{4} is
D $\mathcal{G}\left(H_{4}, x\right)=4 x^{2}+4 x^{3}$.

Conclusion

Here Radial graph of Helm graph and geodetic polynomial, detour geodetic polynomial of helm graph have been studied. Further we can find the detour geodetic polynomial of other graphs.

References:

[1] Buckley. F, Harary. F, Distance in graphs, Addition Wesley, Read city,CA, 1990.
[2] Chartrand.G,and Zhang.PDistance in graphs,In Hand Book of graph theory(ed.by.J.Gross and J.Yellen),CRC Press,Bocaraton,FL(2004) P 873-788
[3] Chartrand. C, and P. Zang,Distance in graphs-Taking a long view, AKCE. J.Graphs, Cokbin,1, 1(2004),1-13.
[4] Chartrand. G ,H. Escuadro and P .Zang, Detour distance in graphs, J.Combin. Math.Comput. 53 (2005),75-94.
[5] Kathiresan .K.M and Marimuthu. G, A study on radial graphs, ARS COMBINATORIA 96(2010) PP 353-356.
[6] Ramesh.G and Sathiya .A, Geodetic polynomial and detour geodetic polynomial of radial graphs, International journal for research in applied science and Engineering Technology, Volume 6 Issue II, Feb (2018),PP 1661-1668.
[7] Ramesh.G and Sathiya .A, A study on radial graph of stand graphs, International Journal for Research in Engineering Application \& Management, ISSN : 2454-9150,4(7): 596-600
[8] Ramesh.G and Sathiya .A, Some new results on ladder graphs, International journal of research and analytical reviews, ISSN2349-5138, 5(4):296-302 .
[9] Santhakumaran A.P, Detour number of a graph, NCGTGA-2012 P 25-37.
[10] Vijayan. A and Binuselin. T, An Introduction to Geodetic Polynomial of a graph,Bulletin of Pure and Applied Science volume 31 e (Math \& Stat).Issue(no.1) 2012.P 25-32.
[11] Chartrand. C, Harary. F Geodetic sets in graphs Discussiones Mathematicae Graph Theory 20 (2000) PP: 129-138.

