High Performance of 5G Systems using Massive MIMO

SNEHA MERIN PHILIP¹, NAVEEN RATHEE²

¹PG Scholar, Dept of ECE, Bharat Institute of Engineering and Technology, India, ²Professor & Project Incharge, Dept of ECE, Bharat Institute of Engineering and Technology, India,

Abstract: Massive MIMO (multiple-input multiple-output)antenna technology can provide significant performance improvement for cellular systems in terms of both throughput and energy efficiency. It is widely recognized that inter-user interference can be eliminated with a large number of antennas because of the asymptotical orthogonality among users when linear MF (Matched Filter) downlink precoding is used in thee NodeB. Due to the complexity and deployment consideration in practical scenarios at individual eNodeBs, cooperative massive MIMO [CM-MIMO] where multiple base stations cooperate together and form a distributed antenna array to serve multiple users simultaneously is an attractive alternative. Furthermore, cooperative massive MIMO can also help increase the system performance especially for cell edge users because of the cooperative transmission among neighboring cells. In this paper, system level simulation performance for the downlink, based upon current LTE systems, provides an indication of the achievable potential system performance improvement by employing CM-MIMO in future (5G) cellular networks. It is demonstrated that CM-MIMO can improve the system performance of cell edge users significantly even if the cell average performance is very slightly degraded or maintained caused by the power imbalance of received signal from different cooperative neighboring cells.

Keywords: Cooperative Massive MIMO, Cooperative Transmission, Matched Filter Pre-coding, Power Imbalance, Cell Edge System Performance.

I. INTRODUCTION

Massive MIMO (multiple-input multiple-output) wireless technology uses a very large number of antennas with an order of magnitude more antennas than current LTE systems and is a leading candidate for inclusion in 5G systems. This will offer significant improvements in both the throughput and energy efficiency. As the number of antennas increases without limit, it is known that the effects of uncorrelated noise and small scale n fading can be removed completely. That means when a large number of user terminals are scheduled simultaneously over the same physical layer resource, the channels of all the terminals are asymptotically orthogonal to each other, and both intra-cell and inter-cell user interference can be eliminated completely through linear signal processing methods, e.g., MF (Matched Filter) pre-coding or MF detection for the down link and uplink respectively. That also means each user will be presented with a flat fading channel, meaning that the channel is nearly identical in all subcarriers, so that each user may be scheduled with the full bandwidth, and the MAC (Media Access Control) resource allocation scheduling can be simplified and no control signaling of physical layer resource allocations will be required [1]–[3].Due to the complexity and deployment consideration in practical scenarios at individual base stations, each base station site cannot be deployed with a large number of antennas. That means with a limited number of antennas, the inter-cell and intra-cell interference still exist if simple non-cooperative linear pre-coding is used individually in each base station site[4]. Cooperative massive MIMO [CM-MIMO] where multiple base stations cooperate together and form a distributed antenna array to serve multiple users simultaneously is an attractive alternative.

In CM-MIMO, user data as well as CSI(channel state information) is shared among base stations that will provide more degrees of freedom for communication. Also, pre-coding can take into account inter-cell interference and thus mitigate inter-cell interference, which is especially critical for cell edge users that typically suffer more inter-cell interference. Furthermore, CM-MIMO, where multiple base stations coordinate through the backhaul network, the band width of the backhaul link and delay may create additional impairments on the system performance [5], [6].In this paper, system level simulation performance of cooperative massive MIMO and non-cooperative massive MIMO system performance is compared under the uniform framework of the LTE TDD system. Here MF pre-coding is adopted for comparison owing to the benefit of low complexity of MF pre-coding and also in order to reduce the impact on the backhaul since no channel state information needs to be exchanged among base stations. The system level simulation takes into account various numbers of antenna configured in each base station site. This analysis provides insight on the potential system performance that can be achieved by using cooperative massive MIMO. The rest of the paper is organized as follows. In Section II, massive MIMO systems for both cooperative and non cooperative implementations are described. Section III presents the system simulation setup and simulation results. Finally, our conclusions are presented in Section IV.

II. NON-COOPERATIVE AND COOPERATIVE SYSTEM

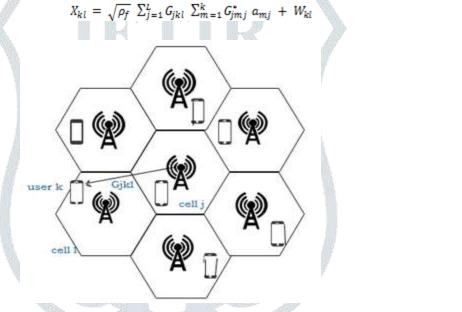
A. Non-Cooperative Massive MIMO System

This project considers a massive MIMO wireless cellular system with L cells denoted as 1,2,...,L respectively as shown in Fig.8. Each cell consists of one base station with M antennas and k users equipped with only one antenna for reduced complexity. In this paper, we assume users use orthogonal pilot resources to acquire the Channel State Information [CSI], so

(4)

pilot contamination is not considered. The base station j transmits a M * 1 pre-coded vector S_{fj}. The subscript f means forward link and the subscript j denotes the base station index. User k in base station l receives the signal from the transmitted vectors from all the base stations, which is written as:

$$X_{kl} = \sqrt{\rho_f} + \sum_{j=1}^{L} (G_{jkl} S_{fj}) + W_{kl}$$
(1)


Where P_f is the signal-to-noise ratio of the forward link, W_d is the complex independent and identically distributed (i.i.d.) white Gaussian noise, and Gki is the 1*M channel matrix between user k in base station 1 and M antennas in base station j (see Fig 1). The symbol G_{jkl} comprises the small-scale Rayleigh fading factors H_{jkl} and a large-scale factor $\beta_{jkl}^{1/2}$ that accounts for distance dependent attenuation and shadow fading and is assumed to be the same for all the M antennas in a base station.

$$G_{jkl} = H_{jkl} \beta_{jkl}^{2/2}$$
(2)

Assume linear MF pre-coding is used, and precise CSI is available in the base station, then the base station transmits. $S_{fj} = \sum_{m=1}^{k} G_{jmj}^* a_{mj}$

$$\sum_{m=1}^{n} G_{jmj} a_{mj}$$
(3)

Where G_{jmj} is the 1*M channel matrix between user m and M antennas in base station j. The superscript * denotes the conjugate transpose. The symbol a_{mj} is the transmitted symbols for user m in base station j. Substituting (3) into (1), then the received signal for user k in base station l is:

Fig.1. Block diagram.

 G_{ikl} is channel matrix between user in base station and antennas in base station. As the number of antennas M is increased to infinity, the channels will be orthogonal to each other, since according to random matrix theory.

$$G_{jkl} G_{jmj}^{*} = \beta_{jkl}^{*/2} \beta_{jmj}^{*/2} H_{jkl} H_{jmj}^{*} \to 0 \text{ when } 1^{\neq j} \text{ or } (l = j \text{ and } k^{\neq} m)$$
(5)

$$G_{jkl} G_{jmj} = \beta_{jkl} \| H_{jkl} \|^2 \to M \beta_{jkl} \text{ when } l = j \text{ and } k = m$$
(6)

Where ||.|| is the Frobenius norm.

The received signal for user k in the base station l becomes:

$$X_{kl} = \sqrt{\rho_f} M \beta_{lkl} a_{kl} + W_{kl}$$
(7)

The SNIR(signal-to interference-plus-noise-ratio) of user k in base station 1 becomes:

$$SINR_{kl} = \rho_f M^2 \beta_{jkl}^2 \tag{8}$$

In (8), the small - scale fading effects disappear because (5) and (6) are assumed. When the number of antennas M is asymptotically increased to infinity, the assumptions of (5)-(6) will hold asymptotically, and (7)-(8) are true asymptotically. When the number of antennas M is limited, the assumptions of (5)-(6) will not hold, (7)-(8) cannot be derived. The received signal of user k in base station becomes:

$$X_{kl} = \sqrt{\rho_f} ||G_{lkl}||^2 |a_{kl}| + \sqrt{\rho} \sum_{m \neq k}^k G_{lkl} |G_{lml}^* a_l + \sqrt{\rho_f} \sum_{j \neq l}^L \sum_{m=1}^k G_{jkl} |G_{jmj}^* a_{mj} + W_{kl}$$
(9)

Then residual interference will exist, as (9) shows. The first 3 terms at the right hand of (9) are the signal of user k in base station l, intra-cell interference, and inter-cell interference for user k in base station l respectively.

B. Cooperative Massive MIMO System

As with non-cooperative Massive MIMO system, in cooperative Massive MIMO system, the base station j transmits a M*1 pre-coded vector S_{fj} . What is different is that each cooperative base station pre-codes the signals of all the K*L users in the cooperative area at the same time:

$$S_{fj} = \sum_{m=1}^{K*L} G_{jmj}^* a_{mj}$$
(10)

Where the parameters in (10) mean the same as those in (3). Substituting (10) into (1), then the received signal for user k in base station l is:

$$X_{kl} = \sqrt{\rho_f'} \sum_{j=1}^{L} G_{jkl} \sum_{m=1}^{K+L} G_{jmj}^* a_{mj} + W_{kl}$$

= $\sqrt{\rho_f'} \sum_{j=1}^{L} \left\| G_{jkl} \right\|^2 a_{kl} + \sqrt{\rho_f'} \sum_{m=1,m \neq k}^{K+L} \sum_{j=1}^{L} G_{jkl} G_{jmj}^* a_{mj} + W_{kl}$ (11)

Where ρ_f is the signal-to-noise ratio for the forward link and other parameters in (11) mean the same as those in (4). As the number of antennas M is increased to infinity, (12) - (13) will hold. But the large-scale factor $\beta_{jkl}^{1/2}$ for user k from different cooperative base stations is different, an effect known as power imbalance.

$$\sum_{j=1}^{n} G_{jkl} G_{jmj}^{*} = \sum_{j=1}^{n} \beta_{jkl}^{1/2} \beta_{jmj}^{*1/2} H_{jkl} H_{jmj}^{*} \to 0 \text{ when } k \neq m$$
(12)

$$\sum_{j=1}^{L} \|G_{jkl}\|^{2} = \sum_{j=1}^{L} \beta_{jkl} \|H_{jkl}\|^{2} \to \sum_{j=1}^{L} M \beta_{jkl}$$
(13)

The received signal of user k in base station 1 becomes

$$X_{kl} = \sqrt{\rho_f'} \sum_{j=1}^{L} M \beta_{jkl} a_{kl} + W_{kl}$$
(14)

Compared with the non-cooperative case, the SINR of user k will be reduced because the large-scale factor β_{jkl}^{**} for k user from different cooperative base stations are generally different, the combination gain of the signal power for user k is lower as shown in the first term at the right hand of (14). When the number of antennas M is limited, the assumptions of (12)-(13) will not hold, inter-user for both intra cell and inter-cell interference cannot be completely removed. The received signal of user k in base station is shown in (4.11).

$$\sum_{j=1}^{L} G_{jkl} G_{jmj}^* = \beta_{kl} \sum_{j=1}^{L} H_{jkl} H_{jmj}^* \qquad \text{when } k \neq m$$

$$(15)$$

$$\sum_{j=1}^{L} \left\| G_{jkl} \right\|^{2} = \beta_{kl} \sum_{j=1}^{L} \left\| H_{jkl} \right\|^{2}$$
(16)

From (15)-(16), we can observe that for cell edge users, where the power imbalance is less significant, the asymptotical properties will be more asymptotically true. That means, (15) will be more asymptotically zero, and (16) will be more asymptotically approaching to $M\beta_{jkl}$. Therefore, compared with the non-cooperative case, the SINR will be higher because the combination gain of the signal power for cell edge users as shown in (16) is higher and inter-user for both intra-cell and intercell interference is lower as shown in (15).

Parameters	Assumptions	
Cellular layout	Hexagonal grid, 7 cell sites, 1 sector per site	
Cell radius	500meters	
Path loss model	3GPP 36.942 urban model	
Lognormal Shadowing	Fading mean: 0dB Standard deviation: 10dB Shadowing correlation between sites: 0.5	
Antenna Pattern	Omni - directional	
eNodeB antennas	ULA 15, 25, 50 and 100 antennas	
UE antennas	1 antenna	
Carrier frequency/Duplex mode	TDD 2GHz	
System bandwidth	20MHz	
Channel Model	ITU Typical Urban (TU)	
Receiver noise figure	9dB	
UE Speed	30 km/h	
Toatal BS TX power	46 dBm	
Number of UEs	10 full buffer UEs in each cell	
Scheduler	All – user full bandwidt scheduling	

TABLE I: System Simulation Configuration

However, for cell center users, it is the opposite and system performance may be degraded because power imbalance is more significant, the combination gain of the signal power is small and inter-user interference still exists, as can be verified in the system simulation in next section. So cooperative massive MIMO can achieve a more uniform data rate among all users, improving the system performance for cell edge users and degrading the system performance for cell center users. The overall cell average system performance depends upon both the performance gain for cell edge users and the degradation for cell center users.

III. SYSTEM LEVEL SIMULATION

A. System Level Simulation Setup

The system level simulation is run using Matlab. The system simulation configuration is partly based upon LTE macro-cell system simulation baseline parameters as shown in Table I. Seven Omni-directional sites are simulated with 10 single-antenna UEs in each site equipped with 15, 25, 50 and 100 transmit antennas with ULA (Uniform Linear Array) configurations respectively. The path loss model of 3GPP 36.942 urban models is used. The TDD duplex mode is assumed, where the downlink channel matrix can be obtained through TDD channel reciprocity from the uplink channel matrix. A system bandwidth of 20 MHz and all-user full bandwidth scheduling are used, which means all 10 users in each cell are scheduled at the same time to the full bandwidth. In the simulation, for simplification of illustration, we assume that all the system bandwidth is available for downlink data transmission in each sub frame. The net system throughput for a specific TDD uplink-downlink configuration can be easily derived. In the simulation downlink MF pre-coding is utilized.

B. 15 Transmit Antennas

Fig.2 shows the UE throughput CDF (Cumulative Distribution Function) for non-cooperative and cooperative massive MIMO with 15 transmit antennas deployed in each eNodeB and the 5% user throughput and cell average throughput for both non-cooperative and cooperative massive MIMO. It is observed that 5% user throughput is increased significantly from about 2.7 to 7.2 Mbps, whereas median user throughput is decreased from about 9 to 7.8 Mbps, and the cell average throughput is decreased from about 86.1 to 76.9 Mbps.

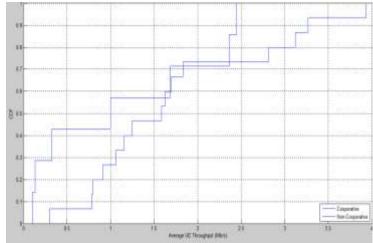
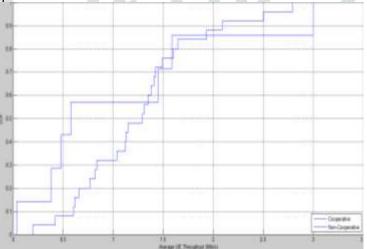



Fig.2. UE throughput CDF for non-cooperative and cooperative massive MIMO with 15 transmits antennas.

C. 25 Transmit Antennas

Fig.3 shows the UE throughput CDF for non-cooperative and cooperative massive MIMO with 25 transmit antennas deployed in each eNodeB. It is observed from Fig. 3 that 5 % user throughput is increased significantly from about 4 to 10.5 Mbps, whereas median user throughput is decreased from about 13.5 to 11 Mbps, and the cell average throughput is decreased from about 120.32 to 112.4 Mbps.

D. 50 Transmit Antennas

Fig.4 shows the UE throughput CDF (Cumulative Distribution Function) for non-cooperative and cooperative massive MIMO with 50 transmit antennas deployed in each eNodeB. It is observed from Fig 4 that 5 % user throughput is increased significantly from about 4 to 15.2 Mbps, whereas median user throughput is decreased from about 19 to 17.5 Mbps, and the cell average throughput is slightly increased from about 173 to 172 Mbps. The above three cases demonstrate that the cooperative massive MIMO can significantly improve cell edge users' system performance, whereas the cell average system performance is slightly degraded or maintained.

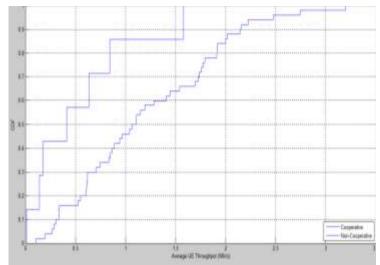


Fig.4. UE throughput CDF for non-cooperative and cooperative massive MIMO with 50 transmits antennas.

CASES	5 % user Throughput(Mbps)	Cell Average Throughput(Mbps)	
15 Antennas	Non Cooperative -2.7	Non Cooperative – 86.1	
	Cooperative -7.2	Cooperative -76.9	
25 Antennas	Non Cooperative -4	Non Cooperative - 120.32 Cooperative -112.4	
	Cooperative -10.5		
50 Antennas	Non Cooperative -4	Non Cooperative -173	
	Cooperative -15.2	Cooperative -172	
100 Antennas	Non Cooperative -6	Non Cooperative -190	
	Cooperative -17.3	Cooperative -185.7	

TABLE	II: System	Simulation	Performance
	II. Dystelli	omulation	1 ci ioi manec

E. 100 Transmit Antennas

Fig.5 shows the UE throughput CDF (Cumulative Distribution Function) for non-cooperative and cooperative massive MIMO with 100 transmit antennas deployed in each eNodeB. It is observed from Fig 5that 5 % user throughput is increased significantly from about 6 to 17.3 Mbps, and the cell average throughput is slightly increased from about 190 to 185 Mbps. The above three cases demonstrate that the cooperative massive MIMO can significantly improve cell edge users system performance, whereas the cell average system performance is slightly degraded or maintained.

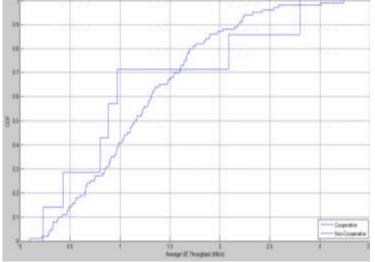


Fig.5. UE throughput CDF for non-cooperative and cooperative massive MIMO with 100 transmits antennas.

IV. CONCLUSIONS

In this paper, system level simulation performance of non cooperative and cooperative massive MIMO systems for downlink performance is presented based upon current LTE systems considering different numbers of antennas deployed in the base station. It is shown that through cooperation among base stations, system performance of cell edge users can be significantly improved,

whereas cell average throughput is slightly degraded or maintained owing to the power imbalance for the cell center users. The system simulations presented in this paper provide a view of the potential system performance that can be achieved by cooperative massive MIMO technologies in practical 5G systems. Future research will be on system performance evaluation of cooperative massive MIMO only for cell edge users based upon 3D channel models.

V. ACKNOWLEDGMENT

This research was supported by NSF Grant 1352883.

VI. REFERENCES

[1] T. L. Marzetta, "Noncooperative Cellular Wireless with UnlimitedNumbers of Base Station Antennas," IEEE Transactions on WirelessCommunications, vol. 9, no. 11, pp. 3590–3600, Nov. 2010.

[2] F. Rusek, D. Persson, Buon Kiong Lau, E. G. Larsson, T. L. Marzetta, and F. Tufvesson, "Scaling Up MIMO: Opportunities and Challengeswith Very Large Arrays," IEEE Signal Processing Magazine, vol. 30, no. 1, pp. 40–60, Jan. 2013.

[3] Hien Quoc Ngo, E. G. Larsson, and T. L. Marzetta, "Energy and Spectral Efficiency of Very Large Multiuser MIMO Systems," IEEETransactions on Communications, vol. 61, no. 4, pp. 1436–1449, Apr.2013.

[4] C. He and R. D. Gitlin, "Limiting Performance of Massive MIMODownlink Cellular Systems," in Information Theory and ApplicationsWorkshop (ITA), Feb. 2016.

[5] R. W. Heath, T. Wu, Y. H. Kwon, and A. C. K. Soong, "MultiuserMIMO in Distributed Antenna Systems With Out-of-CellInterference," IEEE Transactions on Signal Processing, vol. 59, no.10, pp. 4885–4899, Oct. 2011.

[6] R. Zakhour and S. V. Hanly, "Base Station Cooperation on theDownlink: Large System Analysis," IEEE Transactions onInformation Theory, vol. 58, no. 4, pp. 2079–2106, Apr. 2012.

[7] A. M. Tulino and S. Verdu, Random Matrix Theory and WirelessCommunications. Hanover, MA: Now Publishers Inc, 2004.
 [8] J. C. Ikuno, M. Wrulich, and M. Rupp, "System Level Simulation of LTE Networks," 2010, pp. 1–5.

[9] 3GPP, "TS 25.814 - V7.1.0 - Physical layer aspects for evolvedUniversal Terrestrial Radio Access (UTRA).".

[10] 3GPP, "TS 36.942 - V12.0.0 - LTE; Evolved Universal TerrestrialRadio Access (E-UTRA); Radio Frequency (RF) system scenarios.".

[11] 3GPP, "TS 36.211 - V12.0.0 - Evolved Universal Terrestrial RadioAccess (E-UTRA); Physical channels and modulation." .

Author's Details:

Sneha Merin Philip(Student) Department of Electronics and Communication Engineering at Bharat Institute of Engineering and Technology: <u>snehamerinphilip@gmail.com</u>

Prof. Naveen Rathee With B.E (E&T), M.Tech (ECE), PhD (ECE) and hardcore Industrial experience of 08 years working as Project Manager in Bottling plant and Power Cable Industries and rich Academic experience of 15 years to his credit, presently spearheading the post of Professor and Project Incharge in the Department of Electronics and Communication Engineering at Bharat Institute of Engineering and Technology from 2017 onwards. His area of Interest includes Digital System Design, Embedded Systems Design, Reconfigurable FPGAs, and OFDM-MIMO Systems. dean.sbit@gmail.com.