
© 2018 JETIR  November 2018, Volume 5, Issue 11                               www.jetir.org  (ISSN-2349-5162) 
 

JETIR1811773 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 566 

 

DETECTING MALWARE IN ANDROID BASED 

DEVICES 
 

Saka Sowmya1, Sri.S.K.A.Manoj2 , Dr. Lalitha Bhaskari3 

P.G. Scholar, Department of CS & SE, College of Engineering (A), Andhra University, Visakhapatnam, India1 

Research Scholar, Department of CS & SE, College of Engineering (A), Andhra University, Visakhapatnam, India2 

Professor, Department of CS & SE, College of Engineering (A), Andhra University, Visakhapatnam, India3 

 

ABSTRACT: Smartphones are growing rapidly in terms of device functionality and providing increased amounts of knowledge 

with more advanced computing capabilities and connectivity than ordinary mobile phones. Incorporation of lot of features has 

prompted the increased usage of smartphones. Application development is one of those features where users can download wide 

range of applications to perform different tasks. The open nature of markets are resulting in several privacy and security concerns 

as malware developers are attempting to restructure the permissions of applications and upload those compromised applications in 

various sites. These malwares are trying to invade the personal information of the user, read communications without permissions 

and exploiting data with malicious intent. Moreover, many kinds of android applications require too many permissions than which 

they need to provide user’s services. Testing and in-depth analysis is required on the features of the application permissions. In 

this paper, a background application service is proposed that can detect whether an application is a malware or not by performing 

analysis of application permissions on installation, identifying malicious characteristics and alerting the user. 

 

Keywords— Smartphones, Malwares, Permissions, Privacy Intrusion, Feature Extraction  

 

I. INTRODUCTION 

The term smartphone was first used in the mid of 1995 and the industry is continuously witnessing new entrants over the years 

which are trying to outcompete the incumbents for design strategies. Many advancements are taking place in enhancing the 

technical features and specifications to end-users. These changes in structuring the smartphones is resulting in increased number 

of users over the years and estimated to be around 2.5 billion in 2019. For every mobile device to run their services, an operating 

system is needed. The features and capabilities supported by the initial operating systems were limited. However the improved 

versions of mobile devices are demanding high speed central processing units with large storage space, high resolution screens 

including the operating system features of personal computer. 

Application programs are placed on top of the operating system architecture which are responsible for various functions to 

perform. Its design has experienced a three-phase evolution in all these years: initially it was PC-based operating system, then 

embedded operating system and now came the mobile operating system. Throughout the process, the architecture has gone from 

complex to simple. The main changes are being performed in reducing the size of the hardware components, improving the 

software for better user interface and responsiveness and restructuring operating systems to be open in nature. The advancements 

are resulting in different competing mobile operating systems like Android, iOS, Symbian, BlackBerry OS etc., Starting from 

version 1.0, Android has been transforming in various dimensions. Many versions were released one after another, improvised 

than the previous versions, thus increasing the usage of these devices. Many applications are being developed and are made 

available in various sites providing different functionalities to end users. The developers are putting their efforts to produce 

applications on this platform but these applications are being altered with a malicious intent and inserted back into those sites as 

trusted applications. Consequently, an urgent need is arising to develop powerful solutions for application security. Solutions 

which are high in accuracy are not available in the market at present. 

http://www.jetir.org/


© 2018 JETIR  November 2018, Volume 5, Issue 11                               www.jetir.org  (ISSN-2349-5162) 
 

JETIR1811773 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 567 

 

 

                       Figure 1: Smartphone Users  

II. RELATED WORK 

The application development and ease of uploading the applications is on increasing trend. The availability of applications on 

open source platforms is becoming an advantage for different malware developers as they are trying to find new ways to cross the 

security checks and change the functionality of the application code with their malicious code, thus leading to growth in malware 

activities. These altered applications are again uploaded to the websites. The operating system of an smartphone is designed in 

such a way that every application has to request the users who are downloading applications for a list of rights called permissions. 

The main aim of the permission model defined by Android is to ensure the security of the user’s personal data. Android defined 

different levels of protection. They are normal, signature and dangerous permissions and depending on the permissions users 

grant the application, the privacy of the user is affected. Normal Permissions are used to access resources which are not present in 

the sandbox of the application and are granted automatically and cannot be revoked by the user. Signature Permissions are 

requests that has same signed certificate as the application that attempts to use the permission and are granted at install time. 

Dangerous Permissions are used to access the information of the users and may pose threat to the security of the user and 

operational activities of other applications in the device. Another set of permissions called Special Permissions are present which 

are sensitive in nature and the applications should not use them. 

Permissions are grouped and formed as a group keeping in view the features and capabilities of the device. A permission group 

consists of different permissions that fall under one category and are defined as a group in the manifest file. The use of 

permissions groups is that it avoids the number of permission requests to the user and the developer is given access to ask only the 

permissions needed. The drawback is that, if an application asks for a particular permission present in a group, the application 

framework asks for the higher level group, so that if the application needs any permission present in that group other than the 

requested permission, Android automatically grants the permission without asking the user. Hence close monitoring of group 

permissions is also necessary. 

Permissions work in the following way, when a user attempts to download an application, it asks for the device and data 

permissions before user can install it. For instance, if a photography application is downloaded, user should give access to camera, 

for satellite navigation applications access should be given to GPS signal etc. But the malicious activities are taking place by 

misusing the permissions like an alarm clock application asking permission to access photos, camera and microphone, free 

gaming application asking access to texts and contact list etc., This is a signal that the application the user wish to download may 

access personal data that is not needed for its functionality and also transfer the data to malware developers while the app is 

running. Many methods are being proposed to detect Android malware based on permissions. These methods are  analysing the 

features of the application by applying various learning based techniques but they failed to catch several types of dynamically 

generated malwares. Research is in progress to develop techniques which are high in accuracy in detection of malware in 

applications. 

  

0 

1 

2 

3 

2014 2015 2016 2017 2018 2019 

Smartphone Users in billions   

Smartphone 
Users in billions 

http://www.jetir.org/


© 2018 JETIR  November 2018, Volume 5, Issue 11                               www.jetir.org  (ISSN-2349-5162) 
 

JETIR1811773 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 568 

 

III. PROPOSED WORK AND METHODOLOGY 

Permissions misuse is due to the increased number of permissions required for performing a particular application functionality. 

The permissions which are under the category of dangerous permissions are not the only dangerous set of permissions but the 

other group of permissions are also posing a serious threat to the users. Permission groups are also to be analysed because when a 

user grants a permission which comes under a group, they are not aware of the complete list of permissions present in the group. 

As the flags of the permissions present in the group are unknown to the users, they may unknowingly grant the access to a 

malware author. Another aspect that requires analysis is API call signatures, commands signature permissions etc., Analysing 

these permissions is very crucial in determining whether an application is having any untrusted permission which may be threat to 

the confidential data present in the device. These issues are addressed in this work by following analysis techniques on the 

permissions. 

 

 

 

 

 

 

 

 

FIGURE 2: PROPOSED SYSTEM ARCHITECTURE 

The implementation of the above proposed method is carried out in three stages. 

Extraction: The entire information about the application are present in the application packages. Once the application is installed, 

the extraction is performed. 

 getPackageManager is a function present in PackageManager class, to know the available packages in the device. 

 Using InstalledPackages function present in the getPackageManager function, details of the installed applications can be 

extracted. 

 After extracting the packages of all the installed applications, each package is studied using PackageInfo class which 

contains the metadata of the application. 

Analysis: Every application declares its permissions in the application files. The manifest file of the application contains all the 

defined permissions i.e permissions which are required by the application and which will be used in the future for updation 

purpose. The installation application key (.apk key) is uncompressed and then the two important files which contain the metadata 

of the application are parsed. The Manifest.xml file present in the metadata is converted into readable format and permissions 

which are needed by the application are extracted. From the classes.dex file the information about the API calls which are 

sensitive in nature like chmod, that might be used for changing users permissions on files, chown, an API that might be used to 

change the group of files and content resolver delete, that might be used for deleting users messages or contacts etc., are 

examined. 

Mobile Application 

 Analysis of Permissions 

Alertion System if the 

Application is Untrusted 

http://www.jetir.org/


© 2018 JETIR  November 2018, Volume 5, Issue 11                               www.jetir.org  (ISSN-2349-5162) 
 

JETIR1811773 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 569 

 

   

Figure 3:  Files Analyzed in Analysis 

 

 

The features are categorized into three types: permissions which are needed, API calls and dynamic behaviors. Dynamic behaviors 

are known from the flags of the permissions related to application actions such as information leaks, network and file input/output, 

mobile phone calls etc., like actions that sends data over the network, makes a phone call, and used to send SMS messages. The 

  

  

  

  

  

  

  

.apk File   

Manifest.xml   Classes.dex   

Required P ermissions           API calls   

  

  

    

  

  

  

  

  

  

    

  

  

  

  

  

  

  

  

  

  

Figure 4 :   Flowchart of the Proposed Architecture   

Start   

onInstall< -   Installation of Application   

View  of the Installed Apps   after filtering System Apps   

Get the name of the package    

Packag e Name< - packInfo.p ackageName   

checkActivity < -   on  the selected App lication   

Adding of installed App into the list of installed Apks   

Required Permissions, Sensitive API’s, Dynamic Calls are extracted   and are stored for analysis   

If any M alicious  
P ermisssions   

Application is Verified and  
Trusted   

Display Untrusted Application   

Get Permissions   

Permissions< - packInfo.getPermissions   

Stop   Stop   

Yes   No   

http://www.jetir.org/


© 2018 JETIR  November 2018, Volume 5, Issue 11                               www.jetir.org  (ISSN-2349-5162) 
 

JETIR1811773 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 570 

 

decompiled code is examined for java reflection features by searching the methods and constructors present in the code and the 

application is tested if it is loading classes from the .jar files. 

Alertion System: Based on the feature set obtained from application installed, they are classified either as untrusted or trusted 

applications and an alert message is shown to the user if it is untrusted. 

 

IV. RESULTS AND DISCUSSION 

 

The functionality of the proposed method is tested by downloading different applications from various open source sites and 

playstore. The keys are combination of both benign and malware applications. When the user installs the application, the features 

of these applications are retrieved with the help of package manager, a part of application framework in the operating system of the 

mobile. 

 

                                                            

Figure 5: Permissions Extraction from an Application 

 

 

Figure 6: Alert Message to User 

The proposed model extracted different sets of features related to the calls done explicitly to the standard API’s, methods related 

to the Intents and Content Providers. The inherited classes defined by the application are also monitored to differentiate between 

application defined methods and pre-defined methods by the Android. Both Android framework and linux kernel handle the 

http://www.jetir.org/


© 2018 JETIR  November 2018, Volume 5, Issue 11                               www.jetir.org  (ISSN-2349-5162) 
 

JETIR1811773 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 571 

 

permission system in Android. Most of the permissions are analyzed and studied from the framework of Android, and other file 

system and network related permissions are also studied. 

 

V. CONCLUSION 

The malware evaluation techniques present clearly indicate that it is a matter of importance to make changes in terms of analysis 

in malware detection. In this paper, the background application service developed extracts the different permissions from 

applications and analyses them on startup of the application, as any malware application must have some characteristics that 

define them as malicious. The features are extracted from the unique ID of the application and analyzed at three different levels. 

The complete details about the application are extracted and tested for untrusted application permissions and misusing the 

functionality of permissions. This method is also tested for repackaging attacks. The user is alerted whether it is legitimate or not 

based on the analysis. In this paper, focus was laid on reducing the false positives and unauthorized access to resources of a 

smartphone during permission analysis and an attempt is made to alert the user about malicious applications misusing permissions 

on installation of application. 

REFERENCES  

[1] A. P. Felt, M. Finifter, E. Chin, S. Hanna, and D. Wagner, A survey of mobile malware in the wild, in Proceedings of the 1st ACM 

Workshop on Security and Privacy in Smartphones and Mobile Devices (SPSM), pp. 3–14, 2011.  

[2] Z. Fang, W. Han, and Y. Li, Permission based Android security: Issues and countermeasures, Computers & Security, vol. 43, pp. 205–218, 

2014.  

[3] R. Pandita, X. Xiao, W. Yang, W. Enck, and T. Xie, Whyper: Towards automating risk assessment of mobile applications, in Proceedings of 

the 22nd USENIX Security Symposium (USENIX Security), pp. 527–542, 2013.  

[4] D. Geneiatakis, I. N. Fovino, I. Kounelis, and P. Stirparo, A permission verification approach for Android mobile applications, Computers & 

Security, vol. 49, pp. 192–205, 2015.  

[5] Y. Zhou and X. Jiang, Dissecting Android malware: Characterization and evolution, in Proceedings of the 33rd IEEE Symposium on Security 

and Privacy (Oakland), pp. 95–109, 2012.  

[6] D. Arp, M. Spreitzenbarth, M. Hbner, H. Gascon, K. Rieck, and C. Siemens, Drebin: Effective and explainable detection of Android 

malware in your pocket, in Proceedings of the 21th Annual Symposium on Network and Distributed System Security (NDSS), 2014.  

[7] M. Zhang, Y. Duan, H. Yin, and Z. Zhao, Semantics-aware Android malware classification using weighted contextual api dependency 

graphs, in Proceedings of the 21st ACM Conference on Computer and Communications Security (CCS), pp. 1105–1116, 2014.  

[8] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel, and A. Sheth, Taintdroid: An information-flow tracking system for 

realtime privacy monitoring on smartphones, in Proceedings of the 9th USENIX Symposium on Operating Systems Design and Implementation 

(OSDI), 2010.  

[9] X. Wei, L. Gomez, I. Neamtiu, and M. Faloutsos, Profiledroid: Multi-layer profiling of Android applications, in Proceedings of the 18th 

Annual International Conference on Mobile Computing and Networking (MobiCom), pp. 137–14,2012.  

[10] Chan, J.T. and Yang, W., Advanced obfuscation techniques for Java bytecode, Journal of Systems and Software 71, No. 2. pages 1-11, 

2015. 

[11] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel, Jacques Klein, Yves Le Traon, Damien Octeau, and 

Patrick D. McDaniel. FlowDroid: precise context, flow, field, object-sensitive and lifecycle-aware taint analysis for Android apps. In ACM 

SIGPLAN Conference on Programming Language Design and Implementation, PLDI ’14, Edinburgh, United Kingdom - June 09 - 11, 2014.  

[12] Adwait Nadkarni and William Enck. 2013. Preventing accidental data disclosure in modern operating systems. In 2013 ACM SIGSAC 

Conference on Computer and Communications Security, CCS’13, Berlin, Germany,1029–1042, 2013. 

 

http://www.jetir.org/

