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Abstract : This paper deals a non-linear transportation problem with an additional impurity constraint in addition with standard 

availability and demand constraints. Here transportation cost categorized into two parts: one part is for the amount of transportation 

and another part is due to the distance of transportation. More-over the fixed unit costs are imprecise ones. The problem is optimized 

by max-min criteria suggested by Bellman and Zadeh [5] through generalized reduced gradient method. Finally, a numerical 

example is taken into consideration to verify the model. 

 

Index Terms- Non-linear transportation problem, impurity constraints, fuzzy programming technique.  

 
1. INTRODUCTION 
The classical transportation problem (Hitchcock transportation problem) is one of the sub-classes of linear programming problem 

in which all the constraints are of equality type or of inequality type. In classical form, the problem minimizes the total cost of 

transporting the product which is available at some sources and is required to various destinations. The unit costs i.e. the cost of 

transporting one unit from a particular supply point to a particular demand point, the amounts available at the supply points and the 

amounts required at the demand points are the parameters of the transportation problem. Such transportation problem often referred 

to as transhipment problem [1] also.   

In today’s competitive market, the pressure on organisation to find the better ways of delivering to customers becomes stronger. In 

this consequence, it is effective” where the organisation is situated”, i.e., location of the sources in respect to the location of 

destination. Such transportation model provides a distance frame work which is also cost effective in reality. For the first time, this 

conception helps us to modelled a non-linear transportation problem (NLTP). 

In conventional transportation problem, it is assumed that decision maker is sure about the precise values transportation costs, 

availabilities, demands of the commodity. But in real world, all these parameters may not be known precisely due to several 

uncontrollable factors, so fuzzy decision-making method is needed here, which is first introduced by Bellman Zadeh [5], 

Zimmermann [20] showed the fuzzy programming technique with some suitable membership functions to solve multi-objective 

linear programming problems. The results obtained by fuzzy linear programming lead to efficient solutions, too.  Bit et al. [3] by 

using linear membership function, applied the fuzzy programming technique to solve multi objective transportation problem. In 

1999, Biswal and Verma [4] used fuzzy programming technique to find the optimal compromise solution of a nonlinear multi 

objective transportation problem. Jimenez and Verdegay [11] presented fuzzy programming techniques for solving different 

uncertain solid transportation problem. Later on, various researchers (cf. [2], [13], [15]) discussed additive fuzzy programming 

techniques for multi-objective uncertain STP. 

A procedure for solving a fuzzy solid transportation problem was presented by Fuzzy programming and additive fuzzy 

programming techniques for multi-objective transportation problems were discussed in [2]. G. Maity and S.K. Roy [14] develops a 

mathematical model for a transportation problem consisting of a multi-objective environment with nonlinear cost and multi-choice 

demand. D. Dutta and A.S. Murthy [9] was introduced fuzzy transportation problem with additional restriction. In the recent years, 

the solid transportation problems in fuzzy environment widely published in various styles (cf. Jana et al [21 ], Khanra et al [22 ], 

Dalman [ 8]). The multi-objective time transportation problem with additional impurity restriction was studied by Singh and 

Saxena[16]. Charnes and Cooper [6] developed the models for industrial applications of linear programming problem and managed 

them with numerical illustrations. The goal programming approach was introduced by Ignizio [10] in the mathematical models.The 

goal programming approach was widely used by several authors in STP and multi-objective STP.  Metev and Gueorguieva (cf. [13] 

[18]) used nonlinear programming for finding a weakly efficient set of solutions. C. Sudhagar and K. Ganesan [17] has been 

proposed a new method for dealing with Fuzzy Integer Linear Programming Problems. H. Dalman [8] presented an uncertain Multi-

Objective Multi-Item Solid Transportation Problem based on uncertainty theory. Chang [7] provided a novel approach for mixed 

integer fractional polynomial programming problems. Ramik [15] solving fuzzy linear programming in duality theory. 

In this paper, a transportation problem is considered under the joint decisions of the locations of origins and amount of transportation. 

In this way a non-linear transportation problem is formulated consisting of two terms: first part is due to the unit transportation cost 

occurred with respect to the amount of transportation and second part is varying with distance from origin to destination. Such a 

non-linear transportation problem (NLTP) is modelled with an impurity constraint, which is another new concept in the era of 

transportation with imprecise cost parameters. The imprecise model converted into a deterministic ones using Bellman-Zadeh’s 

max-min composition. Finally, a numerical example has been taken to illustrate the model. 
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2. MATHEMATICAL MODEL FORMULATION 

 
2.1 Notations: The following notations are used throughout the paper  

Index sets: i index for source (i = 1, 2, . . . m) and j index for destination (j=1, 2,…,n) 

 
Parameters: 
𝑐𝑖𝑗
𝑜  transportation cost per unit amount transported from i − th source to j − th destination. 

𝑐𝑖𝑗
1

  transportation cost per unit distance from i − th source to j − th destination. 

𝑎𝑖  total available supply for each source (or origin) i. 

𝑏𝑗  total demand required for the j − th destination. 

(𝑝𝑗 , 𝑞𝑗) position of the j − th destination. 

𝑑𝑖𝑗  distance from i -th source to j − th destination.  

Decision variables: 

𝑤𝑖𝑗  units transported from i − th origin to j − th destination. 

(𝑥𝑖 , 𝑦𝑖) position of the i − th origin. 
 
Objective functions:  

𝑍 total transportation cost from i − th origin to j − th destinations. 
 
2.2 Problem Formulation: 
Let us consider a transportation problem with m origins Oi (i = 1,2,...,m) and n destinations Dj (j = 1,2,...,n), in which the positions 

(xi,yi) of origins to be decided with respect to the positions of destinations (𝑝𝑗 , 𝑞𝑗). The amount 𝑤𝑖𝑗   transported from i − th origin 

to j − th destination need to decide by the decision maker.  

 

Objective functions: The aim of this problem is to minimize the total transportation cost which is accompanied on the amount of 

transportation and distance of transportation. From the above discussions, we develop mathematical formulation of objectives as 

follows:   

𝑀𝑖𝑛 𝑍 =∑∑𝑐𝑖𝑗
𝑜

𝑛

𝑗=1

𝑚

𝑖=1

𝑤𝑖𝑗 +∑∑𝑐̃𝑖𝑗
1

𝑛

𝑗=

𝑚

𝑖=

𝑑𝑖𝑗𝑦𝑖𝑗                                                                     (1)  

The cost coefficient associated with distances are not deterministic number but imprecise in nature so the corresponding objective 

function 𝑍 becomes imprecise. Generally, the cost related to distance will be paid if the transportation activity is assigned from i – 

th source to j – th destination. In view of this fact, we introduce the following variable: 

𝑦𝑖𝑗 = {
1 𝑖𝑓 𝑤𝑖𝑗 ≠ 0

0 𝑖𝑓 𝑤𝑖𝑗 = 0
                                 

And the distance function is defined as: 

            𝑑𝑖𝑗 = √(𝑥𝑖 − 𝑝𝑗)
2 + (𝑦𝑖 − 𝑞𝑗)

2                        

Constraints: Traditionally there are two types of constraints in a TP, source constraint and destination constraint. As the quantities 

exit, from a source cannot exceed the supply capacity of products, we have 

∑𝑤𝑖𝑗

𝑛

𝑗=1

≤ 𝑎𝑖  ∀𝑖                                                                                                                      (2) 

The quantity of product received in a destination should not be less than its demand, that is 

∑𝑤𝑖𝑗

𝑚

𝑖=1

≥ 𝑏𝑗  ∀𝑗                                                                                                                      (3) 

Consider one unit of the commodity transported from the i − th supply point contains fi units of impurity. The total impurity at i − 

th origin is fiwij. Demand point j cannot receive more than 𝑔𝑗 units of impurity. That is, we must require 

∑𝑓𝑖𝑤𝑖𝑗

𝑛

𝑗=1

≤ 𝑔𝑗  ∀𝑗                                                                                                                  (4) 

When total supply ∑ 𝑎𝑖
𝑚
𝑖=1  is equals to total demand (total flow) ∑ 𝑏𝑗

𝑛
𝑗=1 , the resulting formulation is called a balanced transportation 

problem. It is natural to require the non-negativity of decision variable that is: 

𝑤𝑖𝑗 ≥ 0 ∀𝑖, 𝑗                                                                                                                         (5) 

Imprecise cost coefficient: In this paper, the fuzzy costs 𝑐̃𝑖𝑗
1 = (𝛼𝑖𝑗 , 𝛽𝑖𝑗) are subnormal of fuzzy numbers having strictly increasing 

linear membership functions (see Fig.1). Where 𝛼𝑖𝑗 as the least cost associated with the amount to be shipped from i−th origin to j 

−th destination and 𝛽𝑖𝑗  as the least cost associated with the amount to be shipped from i−th origin to j−th destination at the 

highest quality of product. Without loss of generality, it is assumed that 𝛽𝑖𝑗 ≥ 𝛼𝑖𝑗>0. 
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𝜇𝑖𝑗(𝑐𝑖𝑗) =

{
 

 
𝑞𝑖𝑗               𝑐𝑖𝑗 ≥ 𝛽𝑖𝑗

𝑞𝑖𝑗
( 𝑐𝑖𝑗 − 𝛼𝑖𝑗)

(𝛽𝑖𝑗 − 𝛼𝑖𝑗)
    𝛼𝑖𝑗 ≤ 𝑐𝑖𝑗 ≤ 𝛽𝑖𝑗  

0                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                                              (6) 

  
                         Figure 1: Membership function of 𝑐̃𝑖𝑗  

 

3. Solution Procedure: 
The problem described in section-2.2 is solved using following fuzzy programming technique. 

Step-1: The transportation costs of many real-world applications are not deterministic numbers. Consider a manufacturing company, 

which provides different product for the different warehouses and transported to different destinations. In that case, the company 

usually restricted the transported cost 𝑐𝑖𝑗
𝑜  from i−th origin to j −th destinations and the transported cost 𝑐𝑖𝑗

1  vary from the distance 

where the product or goods can be shipped from i − th warehouses to j − th market. Here, we assume a minimum cost for the amount 

of product shipped from i − th origin to j − th destination. We use the notation < 𝛼𝑖𝑗 , 𝛽𝑖𝑗 >  to denote 𝑐̃𝑖𝑗
1 . Matrix 𝑐̃𝑖𝑗

1   shown as 

follows  [𝑐̃𝑖𝑗
1 ] = [ < 𝛼𝑖𝑗 , 𝛽𝑖𝑗 >]𝑚×𝑛 

The matrix [𝑞𝑖𝑗] is defined by [𝑞𝑖𝑗] = [𝑞𝑖𝑗]m×n where 𝑞𝑖𝑗  represents the highest quality of product associated with the amount 

transported from i − th warehouses to j − th market and 0 < 𝑞𝑖𝑗 ≤ 1. 

  

Step-2: Let 𝑐̃𝑇 denote the total cost and the number a and b are defined as the lower and upper bounds of the total cost, respectively. 

We define the membership function of 𝑐̃𝑇 as the linear monotonically decreasing function in Eq. (7). Numbers ‘a’ and ‘b’ are 

constants and subjectively chosen by the manager. We may take ‘a’ as the minimum cost of the transportation problem with 𝛼𝑖𝑗 ′𝑠 

as costs and ‘b’ is the maximum costs of the transportation problem with  𝛽𝑖𝑗′𝑠 as costs, the demand and supply values in both being 

same as those of problem. The membership function of the total cost is 

   𝜇𝑇(𝑐̃𝑇) =

{
 

 
1                                    𝑖𝑓 𝑐𝑇 ≤ 𝑎

(𝑏 − 𝑧1)

(𝑏 − 𝑎)
=
(𝑏 − 𝑐𝑇)

(𝑏 − 𝑎)
    𝑏 ≤ 𝑐𝑇 ≤ 𝑏  

0 ,                             𝑐𝑇 ≥ 𝑏

                                                     (7) 

  

                       
            Figure 2: Membership function of 𝑐̃𝑇 

 

Step-3: As per Bellman-Zadeh’s criterion [5], which maximize the minimum of the membership functions corresponding to that 

solution i.e. 

𝑀𝑎𝑥 {𝑀𝑖𝑛 (𝜇𝑖𝑗 , 𝜇𝑇(𝑐̃𝑇))}                                                                                             (8) 

It is needed to determine 𝑤𝑖𝑗 , which is an element of a feasible solution W of the given objective function Eq. (1). 

Then we can represent the problem as follows: 

                 𝑀𝑎𝑥 {𝑀𝑖𝑛 (𝜇𝑖𝑗 , 𝜇𝑇(𝑐𝑇)) ; 𝑤𝑖𝑗 > 0}           

Subject to,  

∑𝑤𝑖𝑗

𝑛

𝑗=1

≤ 𝑎𝑖  ,       𝑖 = 1,2, … ,𝑚  
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                         ∑𝑤𝑖𝑗

𝑚

𝑖=1

≥ 𝑏𝑗  ,       𝑗 = 1,2, … , 𝑛                            

     ∑𝑓𝑖𝑤𝑖𝑗

𝑛

𝑗=1

≤ 𝑔𝑗  ,       𝑗 = 1,2, … , 𝑛   

𝑤𝑖𝑗 ≥ 0 ,    𝑖 = 1,2, … ,𝑚,     𝑗 = 1,2, … , 𝑛                                                                 (9) 

Step-4: We further restrict the transportation cost to be less than or equal to 𝛽ij  since any expense exceeding 𝛽ij  is useless. By 

membership function of Eq. (6) and Eq. (7) we can further represent Eq. (9) as the following equivalent model. 

Max  𝜆                                          
Subject to,  

𝜆 ≤ 𝑞𝑖𝑗
( 𝑐𝑖𝑗 − 𝛼𝑖𝑗)

(𝛽𝑖𝑗 − 𝛼𝑖𝑗)
    𝑖 = 1,2, … ,𝑚 ,    𝑗 = 1,2, … , 𝑛                                                     

𝜆 ≤
𝑏 − 𝑧1
𝑏 − 𝑎

                                     

     ∑𝑤𝑖𝑗

𝑛

𝑗=1

≤ 𝑎𝑖        𝑖 = 1,2, … ,𝑚                                                                                              

     ∑𝑤𝑖𝑗

𝑚

𝑖=1

≥ 𝑏𝑗        𝑗 = 1,2, … , 𝑛                                                                                               

         ∑𝑓𝑖𝑤𝑖𝑗

𝑛

𝑗=1

≤ 𝑔𝑗     𝑗 = 1,2, … , 𝑛            

𝑤𝑖𝑗 ≥ 0 ,    𝑖 = 1,2, … ,𝑚,    𝑗 = 1,2, … , 𝑛                                                                         

𝑐𝑖𝑗
𝜆 ≤ 𝛽𝑖𝑗 ,   ∀𝑖 = 1,2, … ,𝑚,   𝑗 = 1,2, … , 𝑛        0 ≤ 𝜆 ≤ 1                                   (10) 

Where 𝑐𝑖𝑗
𝜆  denote the λ-cut of 𝑐̃𝑖𝑗

1 . In Eq. (10), since 𝑤𝑖𝑗 , 𝑐𝑖𝑗
𝜆  and λ are all decision variables, it can be treated as a mixed integer 

nonlinear programming model. 

We first define the set E = (i, j) as the set of all pairs (i, j) where 𝑤𝑖𝑗  is an element of the feasible solution W of Eq. (1) and confine 

our discussion based on E. Then, we can simplify Eq. (10) as follows 

𝑀𝑎𝑥 𝜆 

Subject to 

𝜆 ≤ 𝑞𝑖𝑗
( 𝑐𝑖𝑗

𝜆 − 𝛼𝑖𝑗)

(𝛽𝑖𝑗 − 𝛼𝑖𝑗)
    𝑓𝑜𝑟 (𝑖, 𝑗) ∈ 𝐸                                                                        (11) 

               𝜆 ≤ {
𝑏 − ∑ 𝑐𝑖𝑗

𝑜
(𝑖,𝑗) 𝑤𝑖𝑗 − ∑ 𝑐𝑖𝑗

𝜆𝑑𝑖𝑗𝑦𝑖𝑗(𝑖,𝑗)

𝑏 − 𝑎
}                                                              (12) 

𝑐𝑖𝑗
𝜆 ≤ 𝛽𝑖𝑗 ,     𝑓𝑜𝑟 (𝑖, 𝑗) ∈ 𝐸        

We let ℎ𝑖𝑗  = 𝛽𝑖𝑗  − 𝑐𝑖𝑗
𝜆

  ≥ 0. Then Eq. (11) and Eq. (12) can be expressed as follows 

  
𝑀𝑎𝑥 𝜆                                                                                                                           (13) 

Subject to 

𝜆 ≤ 𝑞𝑖𝑗
( 𝛽ij − 𝛼ij − ℎij)

(𝛽𝑖𝑗 − 𝛼𝑖𝑗)
 𝑓𝑜𝑟 (𝑖, 𝑗) ∈ 𝐸                                                                (14) 

𝜆 ≤ {
𝑏 − ∑ 𝑐𝑖𝑗

𝑜
(𝑖,𝑗) 𝑤𝑖𝑗 − ∑ (𝛽ij − ℎij)𝑑𝑖𝑗𝑦𝑖𝑗(𝑖,𝑗)

𝑏 − 𝑎
}                                                (15) 

ℎij, 𝜆, 𝑦𝑖𝑗 ≥ 0   𝑓𝑜𝑟 (𝑖, 𝑗) ∈ 𝐸                                                                                   (16) 

Theorem 1. Let 𝜆𝑤 be the optimal value of Eq.(13) to Eq. (16) suppose 𝑏 <
∑ 𝑐𝑖𝑗

𝑜
(𝑖,𝑗) 𝑤𝑖𝑗+∑ (𝛽ij−ℎij)𝑑𝑖𝑗𝑦𝑖𝑗(𝑖,𝑗)

1−𝑚𝑖𝑛(𝑖,𝑗)𝑞𝑖𝑗
. 

Then  𝜆𝑤  = 𝑞𝑖𝑗
( 𝛽ij−𝛼ij−ℎij)

(𝛽𝑖𝑗−𝛼𝑖𝑗)
 𝑓𝑜𝑟 (𝑖, 𝑗) ∈ 𝐸 =

𝑏−∑ 𝑐𝑖𝑗
𝑜

(𝑖,𝑗) 𝑤𝑖𝑗−∑ (𝛽ij−ℎij)𝑑𝑖𝑗𝑦𝑖𝑗(𝑖,𝑗)

𝑏−𝑎
 

Proof: The problem Eq. (13) to Eq. (16) can be written into a linear programming model as 

 𝑀𝑎𝑥 𝜆                                                                                                                         (17) 
 

Subject to 

ℎij +  𝜆
𝛽ij − 𝛼ij

𝑞𝑖𝑗
≤ (𝛽ij − 𝛼ij)   𝑓𝑜𝑟 (𝑖, 𝑗) ∈ 𝐸                                                     (18) 

−∑ ℎij𝑑𝑖𝑗𝑦𝑖𝑗
(𝑖,𝑗)

+ (𝑏 − 𝑎)𝜆 ≤ 𝑏 −∑ 𝑐𝑖𝑗
𝑜

(𝑖,𝑗)
𝑤𝑖𝑗 −∑ 𝛽ij𝑑𝑖𝑗𝑦𝑖𝑗

(𝑖,𝑗)
              (19) 
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𝜆, ℎij ≥ 0,    𝑓𝑜𝑟 (𝑖, 𝑗) ∈ 𝐸      

We obtain the dual problem of the above problem as 

𝑀𝑖𝑛 ∑ (𝛽ij − 𝛼ij)𝑣𝑖 + {𝑏 −∑ 𝑐𝑖𝑗
𝑜

(𝑖,𝑗)
𝑤𝑖𝑗 −∑ 𝛽𝑖𝑗ℎ𝑖𝑗𝑦𝑖𝑗

(𝑖,𝑗)
}

(𝑖,𝑗)
𝑣𝑛+1          (20) 

subject to 

𝑣𝑖 − 𝑣𝑛+1   ≥ 0 ,    𝑓𝑜𝑟 (𝑖, 𝑗) ∈ 𝐸                                                                               (21) 

∑
𝛽ij − 𝛼ij

𝑞𝑖𝑗(𝑖,𝑗)
𝑣𝑖 + (𝑏 − 𝑎)𝑣𝑛+1 ≥ 1                                                                       (22) 

𝑣𝑖 , 𝑣𝑛+1   ≥ 0,    𝑓𝑜𝑟 𝑖 = 1,2, … , 𝑛                                                                                       
Let 𝑠1, 𝑠2, … , 𝑠𝑛+1 be the slack variables of Eq. (18) and Eq. (19) respectively. Similarly, let 𝑢1, 𝑢2, … , 𝑢𝑛+1be the surplus variable 

of Eq. (21) and Eq. (22) respectively. 

Since 

𝑏 <
∑ 𝑐𝑖𝑗

𝑜
(𝑖,𝑗) 𝑤𝑖𝑗 +∑ (𝛽ij − ℎij)𝑑𝑖𝑗𝑦𝑖𝑗(𝑖,𝑗)

1 − 𝑚𝑖𝑛(𝑖,𝑗)𝑞𝑖𝑗
 

 

we have 

𝑚𝑖𝑛(𝑖,𝑗)𝑞𝑖𝑗 >
𝑏 − ∑ 𝑐𝑖𝑗

𝑜
(𝑖,𝑗) 𝑤𝑖𝑗 + ∑ (𝛽ij − ℎij)𝑑𝑖𝑗𝑦𝑖𝑗(𝑖,𝑗)

𝑏 − 𝑎
 

By Eq. (15) we have 𝜆 < 𝑚𝑖𝑛(𝑖,𝑗)𝑞𝑖𝑗  and ∀ℎij > 0. Based on the complementary slackness theorem, we obtain the surplus variables  

𝑢1 = 𝑢2 = ⋯ = 𝑢𝑛 = 0. 
Hence 𝑣𝑖 − 𝑣𝑛+1 = 0 for i = 1,2,...,n. and 𝑣1 = 𝑣2 = ⋯ = 𝑣𝑛 = 𝑣𝑛+1. If 𝑣1 = 𝑣2 = ⋯ = 𝑣𝑛 = 𝑣𝑛+1 = 0, there is a contradiction 

to Eq. (22). Therefore, we have 𝑣1 = 𝑣2 = ⋯ = 𝑣𝑛 = 𝑣𝑛+1 > 0,and again by the complementary slackness theorem, we find the 

slack variable 𝑠1 = 𝑠2 = ⋯ = 𝑠𝑛+1 = 0. Thus, the theorem is proved. 

In most of the real-world problems, the upper bound condition of the total cost  𝑐̃𝑇 

𝑏 <
∑ 𝑐𝑖𝑗

𝑜
(𝑖,𝑗)𝜖𝐸 𝑤𝑖𝑗 +∑ (𝛽ij − ℎij)𝑑𝑖𝑗𝑦𝑖𝑗(𝑖,𝑗)

1 −𝑚𝑖𝑛∀(𝑖,𝑗)𝑞𝑖𝑗
 

can be just satisfied. Therefore, we concentrate our discussion in this situation. 

 

Theorem 2. Let 𝜆w  be the optimal value of Eq. (11) to Eq. (15) and b <
∑ 𝑐𝑖𝑗

𝑜
(𝑖,𝑗) 𝑤𝑖𝑗+∑ (𝛽ij−ℎij)𝑑𝑖𝑗𝑦𝑖𝑗(𝑖,𝑗)

1−𝑚𝑖𝑛∀(𝑖,𝑗)𝑞𝑖𝑗
. Also let 𝛾𝑖𝑗 =

𝛽ij−𝛼ij

𝑞𝑖𝑗
 for 

i=1,2,…,m, j=1,2,…,n. Then 𝜆w =
𝑏−∑ 𝑐𝑖𝑗

𝑜
(𝑖,𝑗) 𝑤𝑖𝑗+∑ 𝛼ij𝑑𝑖𝑗𝑦𝑖𝑗(𝑖,𝑗)

𝑏−𝑎+∑ 𝛾𝑖𝑗𝑑𝑖𝑗𝑦𝑖𝑗(𝑖,𝑗)
 

 

Proof: By theorem 1, assuming the solution to be non-degenerate, we have 

                                                  𝜆𝑤 =
(𝛽ij − 𝛼ij − ℎij)𝑑𝑖𝑗𝑦𝑖𝑗

𝛾𝑖𝑗𝑑𝑖𝑗𝑦𝑖𝑗
 

                                      =
𝑏 − ∑ 𝑐𝑖𝑗

𝑜
(𝑖,𝑗) 𝑤𝑖𝑗 − ∑ (𝛽ij − ℎij)𝑑𝑖𝑗𝑦𝑖𝑗(𝑖,𝑗)

𝑏 − 𝑎
     

Hence, by componendo and dividendo, we get 

                                         𝜆𝑤 =
𝑏 − ∑ 𝑐𝑖𝑗

𝑜
(𝑖,𝑗) 𝑤𝑖𝑗 − ∑ (𝛽ij − ℎij)𝑑𝑖𝑗𝑦𝑖𝑗 +∑ (𝛽𝑖𝑗 − 𝛼𝑖𝑗 − ℎ𝑖𝑗)𝑑𝑖𝑗𝑦𝑖𝑗(𝑖,𝑗)(𝑖,𝑗)

𝑏 − 𝑎 + ∑ 𝛾𝑖𝑗𝑑𝑖𝑗𝑦𝑖𝑗(𝑖,𝑗)

 

           =
𝑏 − ∑ 𝑐𝑖𝑗

𝑜
(𝑖,𝑗) 𝑤𝑖𝑗 − ∑ 𝛼𝑖𝑗𝑑𝑖𝑗𝑦𝑖𝑗(𝑖,𝑗)

𝑏 − 𝑎 + ∑ 𝛾𝑖𝑗𝑑𝑖𝑗𝑦𝑖𝑗(𝑖,𝑗)

                                                                                      (23) 

Step-5: Using max-min criteria, the considered problem can be restarted as, 

𝑀𝑎𝑥 {
𝑏 − ∑ 𝑐𝑖𝑗

𝑜
(𝑖,𝑗) 𝑤𝑖𝑗 − ∑ 𝛼𝑖𝑗𝑑𝑖𝑗𝑦𝑖𝑗(𝑖,𝑗)

𝑏 − 𝑎 + ∑ 𝛾𝑖𝑗𝑑𝑖𝑗𝑦𝑖𝑗(𝑖,𝑗)

}                                                         (24) 

Subject to 

∑𝑤𝑖𝑗

𝑛

𝑗=1

≤ 𝑎𝑖  , 𝑖 = 1,2, … ,𝑚 

                             ∑𝑤𝑖𝑗

𝑚

𝑖=1

≥ 𝑏𝑗  , 𝑗 = 1,2, … , 𝑛                                                                                                

  ∑𝑓𝑖𝑤𝑖𝑗

𝑛

𝑗=1

≤ 𝑔𝑗  , 𝑗 = 1,2, … , 𝑛 

𝑤𝑖𝑗 ≥ 0 , 𝑖 = 1,2, … ,𝑚, 𝑗 = 1,2, … , 𝑛                                                                  (25) 

This is a linear fractional programming problem and its optimal solution is obtained by generalized reduced gradient technique. 

(Kanti, Swarup [18]). 
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Now ℎ𝑖𝑗 , 𝑓𝑜𝑟 (𝑖, 𝑗) ∈ 𝐸 can be obtained from 𝜆𝑤 =
𝛽ij−𝛼ij−ℎ𝑖𝑗

𝛾𝑖𝑗
 𝑓𝑜𝑟 (𝑖, 𝑗) ∈ 𝐸. Then the fuzzy costs corresponding to the maximal 

value of λ are given by 𝑐𝑖𝑗
𝜆 = 𝛽ij − ℎ𝑖𝑗   

 

5. Numerical Example 

Consider non-linear transportation problem with 2-origins, 2-destination with the following input data: 

 

Table-1: Input data of unit transportation cost [𝑐𝑖𝑗
𝑜 , < 𝛼𝑖𝑗 , 𝛽𝑖𝑗 >] 

i/j 1 2 Demand 

1 [13,< 5,13>] [15,< 6,11 >] 4 

2 [10,< 4,13 >] [12,< 2,13 >] 4 

Availability 6 2  

 

Table-2: Others Input data 

Min 

impurity 

Max impurity location of 

destination 

𝐪𝐢𝐣 𝜸𝐢𝐣  

𝑓1 = 1 𝑔1 = 5       (4,8) q11 = 0.8, q12 = 0.5 𝛾11 = 10,  𝛾12 = 10 

𝑓2 = 2 𝑔2 = 8       (7,9) q21 = 0.9, q22 = 0.9 𝛾21 = 10, 𝛾22 = 10 

 

Table-3: Output associated with least and highest cost 

Model Optimal solution 𝒘𝒊𝒋 Unknown location (𝒙𝒊, 𝒚𝒊) Distance Total 

cost 

Minimization 

of 𝛼ij’s cost 

w11 = 3.23,w12 = 2.76 

 

(𝑥1, 𝑦1) = (5.38,8) d11 = 1.33, d12 = 1.9 130 

 𝑤21 = 0.76,w22 = 1.23 

 

(𝑥2, 𝑦2) = (4,9.1) d21 = 0.0,, d22 = 3.0  

Maximization 

of 𝛽ij’s cost 

w11 = 3.23,w12 = 2.76 (𝑥1, 𝑦1) = (7,9) d11 = 3.16, d12 = 0.0 190 

 𝑤21 = 0.76,w22 = 1.23 
 

(𝑥2, 𝑦2) = (5.3,9) d21 = 1.65,, d22 = 1.68  

 

Hence from Eq. (24) to Eq. (25) the reduced fractional programming problem is 

𝑀𝑎𝑥 {
190 − 13w11 − 15w12 − 10w21 − 12w22 − 6.5y11 − 11.4y12 − 6y22

60 + 13y11 + 19y12 + 306y22
}                 (26) 

Subject to  

w11 + w12 ≤ 𝑎1,  w21 + w22 ≤ 𝑎2, w12 + w22 ≥ 𝑏2,  𝑓1𝑤11 + 𝑓2𝑤12 ≤ 𝑔1, 𝑓2𝑤12 + 𝑓2𝑤22 ≤ 𝑔2 

For (i,j) ∈ E, we have, 

              𝜆w =
𝛽ij − 𝛼ij − hij

𝛾ij
 

 

so that, hij = 𝛽ij − 𝛼ij − 𝜆w𝛾ij 

The optimal solution of problem Eq. (26) which is a fractions programming, problem is solved and obtained results are shown 

below; Therefore, we have, 

Table-4: Output or optimum results 

Model Optimal solution Value of 𝐡𝐢𝐣 max λ fuzzy cost corresponding λ     𝐙 

Maximize 

λ  
w11 = 3.23 

𝑤21 = 0.76 
 

w12 = 2.76 

w22 = 1.23 

h11 = 3.1 

h21 = 4.1 
 

h12 = 0.1 

h22 = 6.1 

0.49 𝑐11
0.49 = 9.9, 𝑐12

0.49 = 10.9 

𝑐21
0.49 = 8.9, 𝑐22

0.49 = 6.9 

                

160.33 

 

6. Conclusion 

In this paper, a non -linear transportation problem (NLTP) is formed in terms of the location of the origin (source). The model is 

constructed with one additional impurity constraints and imprecise cost parameters. Such a fuzzy non-linear transportation problem 

is converted to a fractional programming problem using Bellman-Zadeh’s max-min criteria. Thus, the article has an emerging 

practical implication in reality. The model can be extended in different types of environment also can be solved following different 

soft computing method. In this content, the article can be extended in near future. 
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