BEST PROXIMITY OF A MAP SATISFYING GEOMETRIC MEAN CONDITION

M. S. KHAN. S. SUJITH AND P. S. SRINIVASAN

Abstract. Let A and B be any two nonempty weakly compact convex subsets of a Banach space X. In this paper, a new class of cyclic map, $T:A\cup B\to A\cup B$ satisfying geometric mean condition, is introduced and used to investigate the existence of a point $x \in A$, such that d(x, Tx) = d(A, B), known as best proximity points. If A = Bthen our result proves the existence of fixed point proved by Khan.

Keywords: Best proximity points, geometric mean condition, cyclic map, proximal normal structure, strictly convex.

AMS Mathematics Subject Classification: 47H09, 47H10.

1. Introduction

In [2], Khan introduced a map $T: X \to X$ satisfying the condition $d(Tx, Ty) \le \{d(x, Tx)d(y, Ty)\}^{\frac{1}{2}}$ and proved that in a reflexive Banach space X the map $T: K \to K$ has a unique fixed point, where K is a nonempty, bounded, closed and convex set having normal structure. The author also proved that if X is a strictly convex reflexive Banach space and K a bounded closed and convex subset of X then $T: K \to K$ has a unique fixed point. Once this is established then it is easy to observe that the self map T must be a constant map. Hence this map T has a fixed point if and only if T is constant. Suppose T is non-constant, then for any $x \in K$, d(x, T, x) > 0. In such a situation, it will be interested to search for a point x such that d(x, T x) is minimum in some sense. In this paper, we consider two nonempty weakly compact convex subsets A, B of a Banach space X and a cyclic map $T:A\cup B\to A\cup B$ ie., $T(A)\subseteq B$ and $T(B)\subseteq B$ A, satisfying the above condition and prove that there exists a point $x_0 \in A \cup B$ such that $d(x_0, T x_0)$ is minimum. That is, $d(x_0, Tx_0) = \inf\{||x - y|| : x \in A, y \in B\} = d(A, B)$. We call such points $x_0 \in A \cup B$ as best proximity point of T.

2. Preliminaries

Let us first recall some definitions and notations, used in this paper. Let A, B be any two subsets of a normed linear space X, then

$$\delta(A, B) = \sup\{/|x - y|/ : x \in A, y \in B\};$$

$$\delta(x, A) = \sup\{/|x - y|/ : y \in A\};$$

College of Science, Department of Mathematics and Statistics, Sultan Qaboos University, Al-Khod, Muscat, Oman Email:mohammad@squ.edu.om

S. Sujith,

Department of Mathematics, St. Xaviers College, Palayamkottai, Tamilnadu, India-627 002. Email:sujithsr123@gmail.com

P. S. Srinivasan,

Department of Mathematics, Bharathidasan University, Tiruchi, Tamilnadu, India-620 024. E-mail:pssrini@bdu.ac.in.

M. S. Khan.

BEST PROXIMITY OF A MAP SATISFYING GEOMETRIC MEAN CONDITION

$$d(A, B) = \inf\{/|x - y|/ : x \in A, y \in B\};$$

$$A_0 = \{x \in A: /|x - y'|/ = d(A, B) \text{ for some } y' \in B\};$$

$$B_0 = \{y \in B: /|x - y'|/ = d(A, B) \text{ for some } x' \in A\}.$$

A pair (A, B) of subsets of a normed linear space is said to be a proximal pair if for each $(x, y) \in A \times B$

There exists $(x',y') \in A \times B$ such that ||x-y'|| = ||x'-y|| = d(A,B). In[1], Eldredet.al., introduced the following notion called proximal normal structure. In the definition, we say that a pair (A,B) satisfies a property if each of the sets A and B has that property. A convex pair (K_1, K_2) in a Banach space is said to have proximal normal structure if for any closed, bounded, convex proximal pair $(H_1, H_2) \subset (K_1, K_2)$ for which $d(H_1, H_2) = d(K_1, K_2)$ and $\delta(H_1, H_2) > d(H_1, H_2)$, there exists $(x_1, x_2) \in H_1 \times H_2$ such that $\delta(x_1, H_2) < \delta(H_1, H_2)$, $\delta(x_2, H_1) < \delta(H_1, H_2)$. Note that the pair (K, K) has proximal normal structure if and only if *K* has normal structure in the sense of Brodskii and Milman[4].

In [3], Kirk et.al., proved that, if the pair (A, B) is nonempty, weakly compact and convex then the pair (A_0, B_0) also has the same properties and moreover, $d(A_0, B_0) = d(A, B)$. Also, a Banach space X is said to be strictly convex if for each $x, y \in X$ with ||x|| = ||y|| = 1 and $x \neq y$ then $\left\| \frac{x+y}{2} \right\| < 1$. In [5], SankarRaj et.al. proved that a normed linear space Xis strictly convex if and only if X has the P-property. A pair (A, B) of nonempty subsets of a normed linear space X is said to have P -property if and only if $||x_1-y_1|| = d(A, B)$ and $||x_2-y_2|| = d(A, B)$ implies $||x_1-x_2|| = ||y_1-y_2||$ whenever $x_1, x_2 \in A$ and $y_1, y_2 \in B$. A normed linear space X is said to have the P-property if and only if every pair (A, B) of nonempty and closed convex subsets of X has the P -property. Let us now define a new class of cyclic map as follows.

Deftnition 2.1. A cyclic map $T: A \cup B \rightarrow A \cup B$ is said to be a map satisfying geometric mean condition if ||T|x|| $-Ty/| \le \{/|x - Tx/| /|y - Ty/|\}^{\frac{1}{2}} \text{ for all } x \in A \text{ and } y \in B.$

Before proving our main result, let us prove the following lemma.

Lemma 2.2. Let T be a cyclic map satisfying the geometric mean condition. Then for each $x \in A \cup B$ A nd for any positive integer n, $||T^nx - T^{n+1}x|| \le ||T^{n-1}x - T^nx||$.

Proof. Let n be any positive integer and $x \in A \cup B$. Suppose $||T^n x - T^{n+1} x|| = 0$ then the proof follows immediately.

Otherwise $||T^n x - T^{n+1} x|| = ||T(T^{n-1}x) - T(T^n x)|| \le \{||T^{n-1}x - T^n x|| ||T^n x - T^{n+1} x||\}^{\frac{1}{2}}$. Squaring both sides we get $||T^nx-T^{n+1}x||^2 \le ||T^{n-1}x-T^nx|| ||T^nx-T^{n+1}x||$ which implies $||T^nx-T^{n+1}x|| \le ||T^{n-1}x-T^nx||$

Note that if we take n=1 in the above lemma, then the inequality becomes $||Tx-T^2x|| \le ||x-Tx||$.

3. MainResult

Theorem 3.1. Let A and B be a pair of nonempty weakly compact convex subsets of a Banach space X and suppose (A, B) has proximal normal structure. Let T be the map defined as in definition 2.1 and $T(A_0) \subseteq B_0$ and $T(B_0) \subseteq A_0$. Then T has a best proximity point.

Proof. Let A_0 and B_0 be the proximal pair associated with A and B. Hence A_0 and B_0 are weakly compact and convex. Let $\Gamma = \{F \subseteq A_0 \cup B_0: F \cap A_0 \text{ and } F \cap B_0 \text{ are nonempty closed and convex} \quad T(F \cap A_0) \subseteq F \cap B_0, T(F \cap B_0) \subseteq F \cap A_0 \}$ and $d(F \cap A_0, F \cap B_0) = d(A, B)$. Since $A_0 \cup B_0 \subseteq \Gamma$, Γ is nonempty. Let $\{F_\alpha\}_{\alpha \in J}$ be a descending chain in Γ , and let $F_0 = \{F_\alpha\}_{\alpha \in J}$ $\bigcap_{\alpha} F_{\alpha}$. Then $F_0 \cap A_0 = \bigcap_{\alpha} (F_{\alpha} \cap A_0)$. So $F_0 \cap A_0$ is nonempty closed and convex. Similarly, $F_0 \cap B_0$ is nonempty closed and convex. Also $T(F_0 \cap A_0) \subseteq F_0 \cap B_0$, $T(F_0 \cap B_0) \subseteq F_0 \cap A_0$. Now to show that $F_0 \subseteq \Gamma$ we need to show that $d(F_0 \cap A_0) \subseteq F_0 \cap A_0$. $A_0, F_0 \cap B_0 = d(A, B)$. However for each $\alpha \in J$, it is possible to select $x_\alpha \in F_\alpha \cap A_0$ and

3

BEST PROXIMITY OF A MAP SATISFYING GEOMETRIC MEAN CONDITION

 $y_a \in F_a \cap B_0$ such that $||x_a - y_a|| = d(A, B)$. It is also possible to choose weakly convergent subnets $\{x_{\alpha'}\}$ and $\{y_{\alpha'}\}$ (with the same indices); say weak-limit $x_{\alpha'} = x$ and weak-lim $y_{\alpha'} = y$. Then clearly $x \in F_0 \cap A_0$ and $y \in F_0 \cap B_0$. By weak lower semicontinuity of the norm, $||x - y|| \le d(A, B)$.

Now, $d(A,B) \le d(F_0 \cap A_0, F_0 \cap B_0) \le ||x-y|| \le d(A,B)$. Since every chain in Γ is bounded below by a member of Γ , Zorns lemma implies that Γ has a minimal element, say K. Let $K_1 = K \cap A_0$ and $K_2 = K \cap B_0$. If $\delta(K_1, K_2) = d(K_1, K_2)$, then $||x-Tx|| = d(K_1, K_2) = d(A, B)$ for any $x \in K_1$, and we are finished. Suppose $\delta(K_1, K_2) > d(K_1, K_2)$, we complete the proof by showing that this leads to a contradiction. By proximal normal structure, there exists $(y_1, y_2) \in K_1 \times K_2$ and $\beta \in (0,1)$ such that $\delta(y_1, K_2) \le \beta \delta(K_1, K_2)$ and $\delta(y_2, K_1) \le \beta \delta(K_1, K_2)$. Since (K_1, K_2) is a proximal pair, there exists

$$(y_1, y_2) \in K_1 \times K_2 \text{ such that } \|y_1 - y_2\| = \|y_2 - y_1\|^2 = d(K_1, K_2).^1 \text{ So for any } z \in K_2, \|\frac{y_{1+y_1'}}{2} - z\| \le \|\frac{y_{1-z}}{2}\| + \|\frac{y_1' - z}{2}\| \le \beta \frac{\delta(K_1, K_2)}{2} + \frac{\delta(K_1, K_2)}{2} = \alpha \frac{\delta(K_1, K_2)}{2} \text{ where } \alpha = \frac{1+\beta}{2} \in (0,1). \text{ Let } x_1 = \frac{y_1 + y_1'}{2} \text{ and } x_2 = \frac{y_2 + y_2'}{2}.$$

Then $\delta(x_1, K_2) \le \alpha \delta(K_1, K_2)$ and $\delta(x_2, K_1) \le \alpha \delta(K_1, K_2)$ and $\|x_1 - x_2\| = d(K_1, K_2)$. Hence there exists r > 0 such that $\delta(x_1, K_2) \le d(K_1, K_2)$. $r < \delta(K_1, K_2)$ and $\delta(x_2, K_1) \le r < \delta(K_1, K_2)$. Define $L_1 = \{x \in K_1: ||x - T x|| \le r\}$; and $L_2 = \{y \in K_2: ||y - T y|| \le r\}$. Since K_1 is convex, $x_1 \in K_1$ and $\delta(x_1, K_2) \le r$ implies $||x_1 - Tx_1|| \le r$. Hence $x_1 \in L_1$ similarly we can show that $x_2 \in L_2$. Thus L_1 and L_2 are nonempty sets and $d(L_1, L_2) = d(A, B)$. Let $P_1 = \overline{Co(T(L_1))}$ and $P_2 = \overline{Co(T(L_2))}$. Clearly P_1 and P_2 are nonempty closed and convex and $d(P_1, P_2) = d(A, B)$. Let us now show that $T(P_1) \subseteq P_2$ and $T(P_2) \subseteq P_1$. Let us first prove that $T(P_1) \subseteq P_2$ by splitting it into three different cases. Choose $y \in P_1$

Case(i) Let y = T(p) where $p \in L_1$. Clearly $T(p) \in K_2$ and $||T(p) - T^2(p)|| \le ||p - T(p)|| \le r$. Hence $T(p) \in L_2$ which implies $Ty = T^2p \in T(L_2)$. That is $Ty \in P_2$.

Case(ii) Let $y = \sum_{i=1}^n \lambda_i T$ pi where $p_i \in L_1$. Clearly $y \in K_2$ and $||y - Ty|| \le \sum_{i=1}^n \lambda_i ||Tpi - Ty|| \le \sum_{i=1}^n \lambda_i \{||pi - Ty|| \le \sum_{i=1}^n \lambda_i ||Tpi - Ty|| \le \sum_{i=1}^n \lambda_i \{||pi - Ty|| \le \sum_{i=1}^n \lambda_i ||pi - Ty||$

 $Tpi|||y - Ty||^{\frac{1}{2}} \le \sum_{i=1}^{n} \lambda_i \{r||y - Ty||^{\frac{1}{2}} \text{ which implies } ||y - Ty|| \le r. \text{ Hence } y \in L_2 \text{ and } Ty \in P_2.$

Case (iii) Let $y \in \overline{Co(T(L_1))}$ then there exists a sequence y_k in $Co(T(L_1))$ of the form $y_k = \sum_{i=1}^{n_k} \lambda_i T p_i$. For any $\epsilon > 0$ there exists a positive integer k such that $\|y_k - y\| < \epsilon$. Now $\|Ty - y\| \le \|Ty - y_k\| + \|y_k - y\| \le \|Ty - \sum_{i=1}^{n_k} \lambda_i T p_i\| + \epsilon$. Since ϵ is arbitrary, we get $||Ty - y|| \le ||Ty - \sum_{i=1}^{n_k} \lambda_i Tp_i|| \le \sum_{i=1}^{n_k} \lambda_i ||Ty - Tp_i|| \le \sum_{i=1}^{n_k} \lambda_i \{||pi - Tpi||||y - Ty||\}^{\frac{1}{2}} \le ||Ty - y|| \le ||Ty$ $\sum_{i=1}^{n_k} \lambda_i \{r || y - Ty ||\}^{\frac{1}{2}}$ which implies $|| y - Ty || \le r$. Hence $y \in L_2$ and $Ty \in P_2$. Thus we have shown that $T(P_1) \subseteq L_2$ P_2 similarly we can show that $T(P_2) \subseteq P_1$. Thus $P = P_1 \cup P_2 \in \Gamma$ by the minimality of K, $\delta(K_1, K_2) \leq \delta(P_1, P_2)$. But $\delta(P_1, P_2) = \delta(\overline{Co(T(L1))}, \overline{Co(T(L2))}) = \delta(Co(TL_1), Co(TL_2)) = \delta(TL_1, TL_2) = \sup\{\|Tx - Ty\| : x \in L_1, y \in L_2\} \le C(TL_1)$ $\sup\{\{\|x-Tx\|\|y-Ty\|\}^{\frac{1}{2}}:x\in L_1,y\in L_2\}\leq r.$ Which is a contradiction to the fact that $r<\delta(K_1,K_2)$. Thus we have $\delta(K_1, K_2) = d(K_1, K_2).$

If we take A = B in Theorem 3.1 then by (3.1), $\delta(K_1, K_2) = d(K_1, K_2) = 0$. Thus we have the following theorem.

Corollary 3.2. [2, Theorem 8] Let A be a nonempty weakly compact convex subset of a Banach space X and let A has normal structure. If T is a mapping of A into itself such that $||T x - T y|| \le \{||x - T x|| ||y - T y||\}^{\frac{1}{2}}$ for all $x, y \in X$, then T has a unique fixed point.

Note that in Theorem 3.1, the best proximity point of T is not necessarily unique. Let us now see an example to illustrate this.

BEST PROXIMITY OF A MAP SATISFYING GEOMETRIC MEAN CONDITION

Example 3.3. Let $X = (\mathbb{R}^2, ||.||_{\infty})$, where $||(x, y)||_{\infty} = \max\{|x|, |y|\}$ for each $(x, y) \in \mathbb{R}^2$ and $A = (\mathbb{R}^2, ||.||_{\infty})$ $\{(-1, y): 0 \le y \le 1\}, B = \{(1, y): 0 \le y \le 1\}.$ Then every cyclic map $T: A \cup B \rightarrow A \cup B$ will satisfy 2.1 and each point of $A \cup B$ is a best proximity point.

The following theorem discusses the case in which the best proximity is unique.

Theorem 3.4. Let A and B be a pair of nonempty weakly compact convex subset of a strictly convex Banach space X. Let T be the map defined as in definition 2.1 and $T(A_0) \subseteq B_0$ and $T(B_0) \subseteq A_0$. Then T has a unique best proximity point. *Proof.* Construct K_1 and K_2 as in Theorem 3.1. If one of the set K_1 or K_2 is singletonor if $\delta(K_1, K_2) = d(K_1, K_2)$. then $||x - Tx|| = d(K_1, K_2) = d(A, B)$ for any $x \in K_1$, and we are finished. Let us now consider the case such that both K_1 and K_2 are not singleton and $\delta(K_1, K_2) > d(K_1, K_2)$. Let x' and y' be any two distinct points in K_1 then correspondingly there exists two distinct points a' and b' in K_2 such that ||x' - a'|| = ||y' - b'|| = $d(A,B). \text{ Clearly } \left\| \frac{x'+y'}{2} - \frac{a'+b'}{2} \right\| = d(A,B). \text{ Also by strictly convexity } \left\| x' - T\left(\frac{x'+y'}{2}\right) \right\| \le \delta(A,B) \text{ and } \left\| y' - T\left(\frac{x'+y'}{2}\right) \right\| \le \delta(A,B) \text{ implies } \left\| \frac{x'+y'}{2} - T\left(\frac{x'+y'}{2}\right) \right\| < \delta(A,B). \text{ Let } z = \frac{x'+y'}{2}, \text{ clearly } z \in K_1 \text{ and } \|z - Tz\| \le r_1 < \delta(A,B). \text{ Similarly } z \in K_2$ we can find an element $z_2 \in K_2$ such that $||z_2 - Tz_2|| \le r_2 < \delta(A, B)$. Let $r = \max\{r_1, r_2\}$. Define $L_1 = \{x \in K_1: ||x - Tx|| \le r_2\}$ and $L_2 = \{y \in K_2: ||y - Ty|| \le r\}$. Then proceed as in Theorem 3.1. Let us now show that the best proximity point is unique. Suppose there exists two best proximity points say x, y then ||x-Tx|| = ||y-Ty|| = d(A,B) by Lemma 2.2, $||T^2y - Ty|| = d(A,B)$. Hence by P-property $y = T^2y$. Also $||T^2y - Tx|| \le \{||Ty - T^2y|| ||x - Tx||\}^{\frac{1}{2}}\}$. Hence $||T^2y - Tx|| = T^2y$. d(A,B). Again by *P*-property, we get $x = T^2y$ and hence x = y.

If we take A = B in Theorem 3.4, then we get the following corollary.

Corollary 3.5. [2, Theorem 9] Let A be a nonempty weakly compact and convex subset of a strictly convex Banach space X. Let T be a mapping of A into itself such that $\|Tx - Ty\| \le \{\|x - Tx\| \|y - Ty\|\}^{\frac{1}{2}}$ for all $x, y \in X$, then T has a unique fixed point.

References

- [1] A. Anthony Eldred, W. A. Kirk, P. Veeramani, Proximal normal structure and relatively nonexpansive mappings, Studia Mathematica.,
- [2] Khan, M. S, Some fixed point theorems in metric and Banach space. Indian J. Pure Appl. Math., 11 (1980):413-421.
- [3] Kirk, W.A., Reich, S., Veeramani, P. Proximinal retracts and best proximity pair theorems, Numer. Funct. Anal. Optim., 24, 851862(2003).
- [4] D. P. Milman and M. S. Brodskii, On the center of a convex set ,Dokl.Akad.Nauk.SSSR(N.S).,59(1948),837840.
- [5] V. Sankar Raj, A. Anthony Eldred, A Characterization of strictly convex spaces and applications, J. Optim Theory Appl., 160.2 (2014):703-710.