Approximate Series Solution of Non Linear Fractional Burger’s Equations Using Generalized Differential Transform Method

Deepanjan Das
Department of Mathematics, Ghani Khan Choudhury Institute of Engineering and Technology, Narayanpur, Malda, West Bengal-732141, India,

Abstract: In the present paper, generalized differential transform method (GDTM) is used for obtaining the approximate analytic solutions of non-linear Burger’s partial differential equations of fractional order. The fractional derivatives are described in the Caputo sense.

Keywords: Fractional differential equations; Caputo fractional derivative; Generalized Differential transform method; Analytic solution.

Mathematical Subject Classification (2010): 26A33, 34A08, 35A22, 35R11, 35C10, 74H10.

I. INTRODUCTION
Differential equations with fractional order are generalizations of classical differential equations of integer order and have recently been proved to be valuable tools in the modeling of many physical phenomena in various fields of science and engineering. By using fractional derivatives a lot of works have been done for a better description of considered material properties. Based on enhanced rheological models Mathematical modeling naturally leads to differential equations of fractional order and to the necessity of the formulation of the initial conditions to such equations. Recently, various analytical and numerical methods have been employed to solve linear and nonlinear fractional differential equations. The differential transform method (DTM) was proposed by Zhou [1] to solve linear and nonlinear initial value problems in electric circuit analysis. This method has been used for solving various types of equations by many authors [2-15]. DTM constructs an analytical solution in the form of a polynomial and different from the traditional higher order Taylor series method. For solving two-dimensional linear and nonlinear partial differential equations of fractional order DTM is further developed as Generalized Differential Transform Method (GDTM) by Momani, Odibat, and Erturk in their papers [16-18]. Recently, Vedat Suat Ertiirka and Shaher Momanib applied generalized differential transform method to solve fractional integro-differential equations [19]. The GDTM is implemented to derive the solution of space-time fractional telegraph equation by Mridula Garg, Pratibha Manohar and Shyam L.Kalla [20]. Manish Kumar Bansal, Rashmi Jain applied generalized differential transform method to solve fractional order Riccati differential equation [21]. Aysegul Cetinkaya, Onur Kiyamaz and Jale Camli applied generalized differential transform method to solve non linear PDE’s of fractional order [22].

II. MATHEMATICAL PRELIMINARIES ON FRACTIONAL CALCULUS
In the present analysis we introduce the following definitions[23,24].

2.1 Definition: Let $\alpha \in R^*$. On the usual Lebesgue space $L(a,b)$ integral operator I^α defined by

$$I^\alpha f(x) = \frac{d^{-\alpha} f(x)}{dx^{-\alpha}} = \frac{1}{\Gamma(\alpha)} \int_0^x (x-t)^{\alpha-1} f(t) dt \quad \text{and} \quad I^0 f(x) = f(x)$$

is called Riemann-Liouville fractional integral operator of order $\alpha \geq 0$ and $a \leq x < b$.

It has the following properties:

I. $I^\alpha f(x)$ exists for any $x \in [a,b]$

II. $I^\alpha I^\beta f(x) = I^{\alpha+\beta} f(x)$

III. $I^\alpha I^\beta f(x) = I^\beta I^\alpha f(x)$

IV. $I^\alpha x^\gamma = \frac{\Gamma(\gamma+1)}{\Gamma(\alpha+\gamma+1)} x^{\alpha+\gamma}$

where $f(x) \in L[a,b]$, $\alpha, \beta \geq 0$, $\gamma > -1$.

2.2 Definition: The Riemann-Liouville definition of fractional order derivative is
\[\frac{\mathcal{D}_a^\alpha}{\alpha} D^\alpha_a f(x) = \frac{d^n}{dx^n} I_x^{n-\alpha} f(x) = \frac{1}{\Gamma(n-\alpha)} \frac{d^n}{dx^n} \int_0^x (x-t)^{n-\alpha-1} f(t) \, dt, \]

where \(n \) is an integer that satisfies \(n-1 < \alpha < n \).

2.3 Definition: A modified fractional differential operator \(D_x^\alpha \) proposed by Caputo is given by

\[D_x^\alpha f(x) = I_x^{\alpha} \frac{d^n}{dx^n} f(x) = \frac{1}{\Gamma(n-\alpha)} \int_0^x (x-t)^{n-\alpha-1} f^{(n)}(t) \, dt, \]

where \(\alpha \in R^+ \) is the order of operation and \(n \) is an integer that satisfies \(n-1 < \alpha < n \).

It has the following two basic properties[25]:

I. If \(f \in L_x(a,b) \) or \(f \in C [a,b] \) and \(\alpha > 0 \) then \(D_x^\alpha I_x^\alpha f(x) = f(x) \).

II. If \(f \in C^n [a,b] \) and if \(\alpha > 0 \) then

\[0 I_x^\alpha D_x^\alpha f(x) = f(x) - \sum_{k=0}^{n-1} \frac{f^{(k)}(0)}{k!} x^k; \quad n-1 < \alpha < n. \]

2.4 Definition: For \(m \) being the smallest integer that exceeds \(\alpha \), the Caputo time-fractional derivative operator of order \(\alpha > 0 \), is defined as[26]

\[D_x^\alpha u(x,t) = \frac{\partial^n u(x,t)}{\partial t^n} = \left\{ \begin{array}{ll}
\frac{\partial^n u(x,\xi)}{\partial \xi^m} & ; \quad \alpha = m \in N \\
\frac{1}{\Gamma(m-\alpha)} \int_0^t (t-\xi)^{m-\alpha-1} \frac{\partial^{m} u(x,\xi)}{\partial \xi^m} d\xi & ; \quad m-1 \leq \alpha < m
\end{array} \right. \]

Relation between Caputo derivative and Riemann-Liouville derivative:

\[\mathcal{D}_a^\alpha f(x) = \mathcal{D}_a^\alpha f(x) - \sum_{k=0}^{n-1} \frac{f^{(k)}(0)}{\Gamma(k+1)} x^k; \quad m-1 < \alpha < m \]

Integrating by parts, we get the following formulae as given by[27]

I. \[\int_a^b g(x) \mathcal{D}_a^\alpha f(x) \, dx = \int_a^b f(x) \mathcal{D}_a^\alpha g(x) \, dx + \sum_{k=0}^{n-1} \int_a^b \left[\frac{\mathcal{D}_b^{\alpha+j} g(x)}{\Gamma(k+1)} \right] D_b^\alpha f(x) \, dx \]

II. For \(n=1 \), \[\int_a^b g(x) \mathcal{D}_a^\alpha f(x) \, dx = \int_a^b f(x) \mathcal{D}_a^\alpha g(x) \, dx + \left. \left[\frac{\mathcal{D}_b^{\alpha+j} g(x)}{\Gamma(k+1)} \right] f(x) \right|_a^b \]

III. GENERALIZED TWO DIMENSIONAL DIFFERENTIAL TRANSFORM METHOD

Consider a function of two variables \(u(x,y) \) be a product of two single-variable functions, i.e. \(u(x,y) = f(x)g(y) \), which is analytic and differentiated continuously with respect to \(x \) and \(y \) in the domain of interest. Then the generalized two-dimensional differential transform of the function \(u(x,y) \) is given by [16-18]

\[U_{\alpha,\beta}(k,h) = \frac{1}{\Gamma(\alpha k+1)\Gamma(\beta h+1)} \left[(D_x^\alpha)^k (D_y^\beta)^h u(x,y) \right]_{(x_0,y_0)}, \tag{1} \]

where \(0 < \alpha, \beta \leq 1; U_{\alpha,\beta}(k,h) = F_{\alpha}(k)G_{\beta}(h) \) is called the spectrum of \(u(x,y) \) and

\[(D_x^\alpha)^k = D_{x_0}^\alpha, D_{x_0}^\alpha, \ldots, D_{x_0}^\alpha (k \text{ times}) \]

The inverse generalized differential transform of \(U_{\alpha,\beta}(k,h) \) is given by
\[u(x, y) = \sum_{k=0}^{\infty} \sum_{h=0}^{\infty} U_{\alpha, \beta}(k, h)(x-x_0)^{ka}(y-y_0)^{hb} \] \hspace{1cm} (2)

It has the following properties:

I. if \(u(x, y) = v(x, y) \pm w(x, y) \) then \(U_{\alpha, \beta}(k, h) = V_{\alpha, \beta}(k, h) \pm W_{\alpha, \beta}(k, h) \)

II. if \(u(x, y) = av(x, y), a \in \mathbb{R} \) then \(U_{\alpha, \beta}(k, h) = aV_{\alpha, \beta}(k, h) \)

III. if \(u(x, y) = v(x, y)w(x, y) \) then \(U_{\alpha, \beta}(k, h) = \sum_{r=0}^{k} \sum_{s=0}^{h} V_{\alpha, \beta}(r, h-s)W_{\alpha, \beta}(k-r, s) \)

IV. if \(u(x, y) = v(x, y)w(x, y)q(x, y) \) then

\[
U_{\alpha, \beta}(k, h) = \sum_{r=0}^{k} \sum_{s=0}^{h} U_{\alpha, \beta}(r, h-s-p)W_{\alpha, \beta}(t, s)Q_{\alpha, \beta}(k-r-t, p) \]

V. if \(u(x, y) = (x-x_0)^{\alpha}(y-y_0)^{\beta} \) then \(U_{\alpha, \beta}(k, h) = \delta(k-n)\delta(h-m) \)

VI. if \(u(x, y) = D_\alpha^\gamma v(x, y), 0 < \alpha \leq 1 \) then \(U_{\alpha, \beta}(k, h) = \frac{\Gamma\left(k+1+\frac{\gamma+1}{\alpha}\right)}{\Gamma\left(\alpha k+1\right)}V_{\alpha, \beta}(k+1, h) \)

VII. if \(u(x, y) = D_\beta^\gamma v(x, y), 0 < \gamma \leq 1 \) then \(U_{\alpha, \beta}(k, h) = \frac{\Gamma\left(\beta k+\gamma+1\right)}{\Gamma\left(\beta h+1\right)}V_{\alpha, \beta}\left(k+\frac{\gamma}{\beta}, h\right) \)

VIII. if \(u(x, y) = D_\lambda^\gamma v(x, y), 0 < \lambda \leq 1 \) then \(U_{\alpha, \beta}(k, h) = \frac{\Gamma\left(\lambda k+\gamma+1\right)}{\Gamma\left(\lambda h+1\right)}V_{\alpha, \beta}(k+\frac{\gamma}{\lambda}, h) \)

IX. if \(u(x, y) = f(x)g(y) \) and the function \(f(x) = x^\lambda h(x) \) where \(\lambda > -1 \), \(h(x) \) has the generalized Taylor series expansion \(h(x) = \sum_{n=0}^{\infty} a_n (x-x_0)^{\alpha k} \) and

(a) \(\beta < \lambda + 1 \) and \(\alpha \) is arbitrary or

(b) \(\beta \geq \lambda + 1 \), \(\alpha \) is arbitrary and \(a_n = 0 \) for \(n = 0, 1, 2, \ldots, m-1 \), where \(m-1 < \beta \leq m \).

Then (3.1) becomes

\[
U_{\alpha, \beta}(k, h) = \frac{1}{\Gamma\left(\alpha k+1\right)\Gamma\left(\beta h+1\right)}D_\alpha^\gamma \left(D_\gamma^\beta\right)^n \left[u(x, y)\right]_{(x_0,y_0)} \]

X. if \(v(x, y) = f(x)g(y) \), the function \(f(x) \) satisfies the conditions given in (IX) and \(u(x, y) = D_\alpha^\gamma v(x, y) \), then

\[
U_{\alpha, \beta}(k, h) = \frac{\Gamma\left(\alpha k+1+\gamma\right)}{\Gamma(\alpha k+1)}V_{\alpha, \beta}\left(k+\frac{\gamma}{\alpha}, h\right) \]

where \(U_{\alpha, \beta}(k, h), V_{\alpha, \beta}(k, h) \) and \(W_{\alpha, \beta}(k, h) \) are the differential transformations of the functions \(u(x, y), v(x, y) \) and \(w(x, y) \) respectively and

\[
\delta(k-n) = \begin{cases}
1 & ; \ k = n \\
0 & ; \ k \neq n
\end{cases}
\]

IV. TEST PROBLEMS

In this section, we present three examples [28] to illustrate the applicability of Generalized Differential Transform Method (GDTM) to solve non linear time fractional Burger’s partial differential equations.
4.1 Example: We consider the following non-linear time fractional Burger’s partial differential equation
\[
\frac{\partial^\alpha u(x,t)}{\partial t^\alpha} + u(x,t) \frac{\partial u(x,t)}{\partial x} = \gamma \frac{\partial^2 u(x,t)}{\partial x^2}; \quad t \geq 0
\]
subject to initial condition \(u(x,0) = \omega; \quad x \in \mathbb{R} \) \hspace{1cm} (3)

where \(\frac{\partial^\alpha}{\partial t^\alpha} \) is the fractional differential operator (Caputo derivative) of order \(0 < \alpha \leq 1 \).

Applying generalized two-dimensional differential transform (1) with \((x_0,t_0) = (0,0) \) on (3) we obtain
\[
U_{1,\alpha}(k,h) = \frac{\Gamma(\alpha+1)}{\Gamma(\alpha h + 1)} \{ \gamma (k+2) (k+1) U_{1,\alpha}(k+2,h-1) - \\
\sum_{r=0}^{k-1} \sum_{s=0}^{k-1} U_{1,\alpha}(r,h-s-1)(k-r+1) U_{1,\alpha}(k-r+1,h-1) \}
\] and \(U_{1,\alpha}(k,0) = \omega \quad \forall k = 0, 1, 2, 3, \ldots \) \hspace{1cm} (4)

Now utilizing the recurrence relation (4) and the initial condition (5), we obtain after a little simplification the following values of \(U_{1,\alpha}(k,h) \) for \(k = 0, 1, 2, 3, \ldots \) and \(h = 0, 1, 2, 3, \ldots \)
\[
U_{1,\alpha}(0,1) = \frac{1}{\Gamma(\alpha + 1)} (2\gamma \omega - \omega^2);
\]
\[
U_{1,\alpha}(0,2) = \frac{1}{\Gamma(\alpha+1)} \left(\frac{1}{\Gamma(\alpha+1)} (\omega^2 - 2\gamma \omega) + \omega \left(3\omega^2 - 6\gamma \omega \right) \right) + 2\gamma (12\gamma \omega - 6\omega^2);
\]
\[
U_{1,\alpha}(1,1) = \frac{3}{\Gamma(\alpha+1)} (2\gamma \omega - \omega^2); \quad U_{1,\alpha}(2,1) = \frac{6}{\Gamma(\alpha+1)} (2\gamma \omega - \omega^2);
\]
\[
U_{1,\alpha}(3,1) = \frac{10}{\Gamma(\alpha+1)} (2\gamma \omega - \omega^2); \quad U_{1,\alpha}(4,1) = \frac{15}{\Gamma(\alpha+1)} (2\gamma \omega - \omega^2);
\]
\[
U_{1,\alpha}(5,1) = \frac{21}{\Gamma(\alpha+1)} (2\gamma \omega - \omega^2); \quad U_{1,\alpha}(6,1) = \frac{28}{\Gamma(\alpha+1)} (2\gamma \omega - \omega^2)
\]
and so on

Using the above values of \(U_{1,\alpha}(k,h) \) for \(k = 0, 1, 2, 3, \ldots \) and \(h = 0, 1, 2, 3, \ldots \) in (2) the solution of (3) is obtained as
\[
u(x,t) = \omega + \frac{1}{\Gamma(\alpha+1)} (2\gamma \omega - \omega^2) t^\alpha + \frac{1}{\Gamma(\alpha+1)} \left(\frac{1}{\Gamma(\alpha+1)} (\omega^2 - 2\gamma \omega) + \omega \left(3\omega^2 - 6\gamma \omega \right) + 2\gamma (12\gamma \omega - 6\omega^2) \right) t^2 \alpha \\
+ \left(\omega + \frac{3}{\Gamma(\alpha+1)} (2\gamma \omega - \omega^2) t^\alpha \right) x + \left(\omega + \frac{6}{\Gamma(\alpha+1)} (2\gamma \omega - \omega^2) t^\alpha \right) x^2
\]
\[
+ \left(\omega + \frac{10}{\Gamma(\alpha+1)} (2\gamma \omega - \omega^2) \right) x^3 + \left(\omega + \frac{15}{\Gamma(\alpha+1)} (2\gamma \omega - \omega^2) \right) x^4
\]
\[
+ \left(\omega + \frac{21}{\Gamma(\alpha+1)} (2\gamma \omega - \omega^2) \right) x^5 + \left(\omega + \frac{28}{\Gamma(\alpha+1)} (2\gamma \omega - \omega^2) \right) x^6 + \ldots \quad (6)
\]

4.2 Example

We consider the following non-linear time fractional Burger’s partial differential equation

\[
\frac{\partial^\alpha u(x,t)}{\partial t^\alpha} + u(x,t) \frac{\partial u(x,t)}{\partial x} = \gamma \frac{\partial^2 u(x,t)}{\partial x^2} + cu^2(x,t) ; t \geq 0
\]

subject to initial condition \(u(x,0) = \omega; x \in \mathbb{R} \)

\[
(7)
\]

where \(\frac{\partial^\alpha}{\partial t^\alpha} \) is the fractional differential operator (Caputo derivative) of order \(0 < \alpha \leq 1 \).

\(c \) is a real constant.

Applying generalized two-dimensional differential transform (2) with \((x_0, t_0) = (0,0)\) on (7) we obtain

\[
U_{1,\alpha}(k,h) = \frac{\Gamma(\alpha(h-1)+1)}{\Gamma(\alpha h+1)} (\gamma (k+2)(k+1)U_{1,\alpha}(k+2,h-1)
\]
\[
- \sum_{r=0}^{k} \sum_{s=0}^{h-1} U_{1,\alpha}(r, h-s-1)(k-r+1)U_{1,\alpha}(k-r+1,h-1)
\]
\[
+ c \sum_{r=0}^{k} \sum_{s=0}^{h-1} U_{1,\alpha}(r, h-s-1)U_{1,\alpha}(k-r,s)
\]

and \(U_{1,\alpha}(k,0) = \omega; \forall k = 0,1,2,3,\ldots \) \(\quad (8) \)

Now utilizing the recurrence relation (8) and the initial condition (9), we obtain after a little simplification the following values of \(U_{1,\alpha}(k,h) \) for \(k = 0,1,2,3,\ldots \) and \(h = 0,1,2,3,\ldots \)

\[
U_{1,\alpha}(0,1) = \frac{1}{\Gamma(\alpha+1)} (2\gamma \omega + (c-1) \omega^2) ;
\]

\[
U_{1,\alpha}(0,2) = \frac{1}{\Gamma(2\alpha+1)} \left(\frac{1}{\Gamma(\alpha+1)} (2\gamma \omega + (c-1) \omega^2) + \omega \right)
\]

\[
(6\gamma \omega + (2c-3) \omega^2) + 2\gamma (12\gamma \omega + 3(c-2) \omega^2) + 2\omega (2\gamma \omega + (c-1) \omega^2) ;
\]

\[
U_{1,\alpha}(1,1) = \frac{1}{\Gamma(\alpha+1)} (6\gamma \omega + (2c-3) \omega^2) ;
\]

\[
U_{1,\alpha}(2,1) = \frac{3}{\Gamma(\alpha+1)} (4\gamma \omega + (c-2) \omega^2) ;
\]

\[
U_{1,\alpha}(3,1) = \frac{2}{\Gamma(\alpha+1)} (10\gamma \omega + (2c-5) \omega^2) ;
\]

\[
U_{1,\alpha}(4,1) = \frac{5}{\Gamma(\alpha+1)} (6\gamma \omega + (c-3) \omega^2) ;
\]

\[
U_{1,\alpha}(5,1) = \frac{3}{\Gamma(\alpha+1)} (14\gamma \omega + (2c-7) \omega^2) ;
\]

\[
U_{1,\alpha}(6,1) = \frac{14}{\Gamma(\alpha+1)} (4\gamma \omega + (5c-2) \omega^2)
\]

and so on.

Using the above values of \(U_{1,\alpha}(k,h) \) for \(k = 0,1,2,3,\ldots \) and \(h = 0,1,2,3,\ldots \) in (2) the solution of (7) is obtained as

\[
u(x,t) = \omega + \frac{1}{\Gamma(\alpha+1)} (2\gamma \omega + (c-1) \omega^2) t^\alpha +
\]
\[
\left(\omega + \frac{1}{\Gamma(\alpha+1)}(6\gamma\omega + (2c-3)\omega^3)t^\alpha\right)x + \left(\omega + \frac{3}{\Gamma(\alpha+1)}(4\gamma\omega + (c-2)\omega^2)t^\alpha\right)x^2
\]
\[
+ \left(\omega + \frac{2}{\Gamma(\alpha+1)}(10\gamma\omega + (2c-5)\omega^3)t^\alpha\right)x^3 + \left(\omega + \frac{5}{\Gamma(\alpha+1)}(6\gamma\omega + (c-3)\omega^2)t^\alpha\right)x^4
\]
\[
+ \left(\omega + \frac{3}{\Gamma(\alpha+1)}(14\gamma\omega + (2c-7)\omega^3)t^\alpha\right)x^5 + \left(\omega + \frac{14}{\Gamma(\alpha+1)}(4\gamma\omega + (5c-2)\omega^2)t^\alpha\right)x^6 + \ldots
\]

(10)

4.3 Example: We consider the following non-linear time fractional Burger’s partial differential equation

\[
\frac{\partial^\alpha u(x,t)}{\partial t^\alpha} + u^2(x,t)\frac{\partial u(x,t)}{\partial x} = \gamma \frac{\partial^2 u(x,t)}{\partial x^2}; t \geq 0
\]

subject to initial condition \(u(x,0) = \omega; \quad x \in \mathbb{R}\)

(11)

where \(\frac{\partial^\alpha}{\partial x^\alpha}\) is the fractional differential operator (Caputo derivative) of order \(0 < \alpha \leq 1\).

Applying generalized two-dimensional differential transform (1) with \((x_0,t_0) = (0,0)\) on (11) we obtain

\[
U_{1,\alpha}(k,h) = \frac{\Gamma(\alpha(h-1)+1)}{\Gamma(\alpha h + 1)} \{\gamma(k+2)(k+1)U_{1,\alpha}(k+2,h-1)
\]

\[
- \sum_{r=0}^{k} \sum_{s=0}^{h-1} U_{1,\alpha}(r,h-s-1)U_{1,\alpha}(s,t-1)(k-r-t+1)U_{1,\alpha}(k-r-t+1,h-1)
\]

(12)

and \(U_{1,\alpha}(k,0) = \omega; \quad \forall k = 0,1,2,3,\ldots\)

(13)

Now utilizing the recurrence relation (12) and the initial condition (13), we obtain after a little simplification the following values of \(U_{1,\alpha}(k,h)\) for \(k = 0,1,2,3,\ldots\) and \(h = 0,1,2,3,\ldots\) \(U_{1,\alpha}(0,1) = \frac{1}{\Gamma(\alpha+1)}(2\gamma\omega - \omega^3);\)

\[
U_{1,\alpha}(0,2) = \frac{1}{\Gamma(2\alpha+1)}\left(-\frac{2}{\Gamma(\alpha+1)}\omega(2\gamma\omega - \omega^3) + \omega^5\right)(6\gamma\omega - 4\omega^3)
\]

+ \(4\gamma(6\gamma\omega - 5\omega^3);\)

\[
U_{1,\alpha}(1,1) = \frac{2}{\Gamma(\alpha+1)}(3\gamma\omega - 2\omega^3); \quad U_{1,\alpha}(2,1) = \frac{2}{\Gamma(\alpha+1)}(6\gamma\omega - 5\omega^3); \quad U_{1,\alpha}(3,1) = \frac{1}{\Gamma(\alpha+1)}(20\gamma\omega - 17\omega^3);
\]

\[
U_{1,\alpha}(4,1) = \frac{2}{\Gamma(\alpha+1)}(15\gamma\omega - 13\omega^3); \quad U_{1,\alpha}(5,1) = \frac{1}{\Gamma(\alpha+1)}(42\gamma\omega - 37\omega^3);
\]

\[
U_{1,\alpha}(6,1) = \frac{2}{\Gamma(\alpha+1)}(28\gamma\omega - 25\omega^3)
\]

and so on

Using the above values of \(U_{1,\alpha}(k,h)\) for \(k = 0,1,2,3,\ldots\) and \(h = 0,1,2,3,\ldots\) in (2) the solution of (11) is obtained as

\[
u(x,t) = \omega + \frac{1}{\Gamma(\alpha+1)}(2\gamma\omega - \omega^3)t^\alpha + \frac{1}{\Gamma(2\alpha+1)}
\]
\[
\begin{align*}
&- \left(\frac{2}{\Gamma(\alpha+1)} (2\gamma \omega - \omega^3) + \omega^2 \right) \left(6\gamma \omega - 4 \omega^3\right) + 4\gamma \left(6\gamma \omega - 5 \omega^3\right) \right)t^{2\alpha} \\
&+ \left(\omega + \frac{2}{\Gamma(\alpha+1)} (3\gamma \omega - 2 \omega^3) \right)t^{\alpha} x + \left(\omega + \frac{2}{\Gamma(\alpha+1)} (6\gamma \omega - 5 \omega^3) \right)t^{\alpha} x^2 \\
&+ \left(\omega + \frac{1}{\Gamma(\alpha+1)} (20\gamma \omega - 17 \omega^3) \right)t^{\alpha} x^3 + \left(\omega + \frac{2}{\Gamma(\alpha+1)} (15\gamma \omega - 13 \omega^3) \right)t^{\alpha} x^4 \\
&+ \left(\omega + \frac{1}{\Gamma(\alpha+1)} (42\gamma \omega - 37 \omega^3) \right)t^{\alpha} x^5 + \left(\omega + \frac{2}{\Gamma(\alpha+1)} (28\gamma \omega - 25 \omega^3) \right)t^{\alpha} x^6 + \ldots
\end{align*}
\] (14)

V. CONCLUSIONS

In the present study, we present analytical algorithm for finding approximate form solutions of a class of Burger’s model based upon the generalized differential transform method (GDTM). It may be concluded that GDTM is a reliable technique to handle linear and nonlinear fractional differential equations. Compared with other approximate methods this technique provides more realistic series solutions.

REFERENCES

