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Abstract 
 

The general formalism of time-dependent canonical transformations is applied to the case of coordinate 

transformations in classical and quantum mechanics. Most of the engineering problems are governed by time-

dependent partial differential equations. The spatial derivatives are discretized by the DQM whereas the time 

derivatives are discretized by low order finite difference schemes. 
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Introduction 

 

The general formalism of time-dependent canonical transformations is applied to the case of coordinate 

transformations in classical and quantum mechanics. The general scheme of canonical transformations has 

been displayed in [1]. Here, this formalism is applied to the case of time dependent coordinate transformations 

of classical and quantum mechanical systems. Equations with variable coefficients, equations in complicated 

domains, and nonlinear equations cannot, in general, be solved analytically. We shall therefore have an 

entirely different approach to solving PDEs. The method is based on replacing the continuous variables by 

discrete variables. Thus the continuum problem represented by the PDE is transformed into a discrete problem 

in finitely many variables. Naturally we pay a price for this simplification: we can only obtain an 

approximation to the exact answer, and even this approximation is only obtained at the discrete values taken 

by the variables. 
 

 

Coordinate Transformation in Classical Mechanics 

Let the open set, M < R" represent the whole position space of a mechanical system. Given another open set 

M' < Rn and a number of one-to-one mappings gr: M →M' with the parameter t (the time). For q ∈ M, the 

functions f and f'’ are defined by f(t, q) = gt(q) and f'(t, q') = gt
-1(q') with f, f’' ∈ C1. With the aid of f(t, q) and 

gt(q), canonical transformations can be defined: let 
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   (1.1) 

be the generating function of the transformation, i.e. 

      (1.2) 

In eq. (1.l),fj denotes the projection on the j-th coordinate of f , i.e. f i = 𝜋j 0 f and r(t, q) is a real function of 

C3 which will be determined below. From eq. (1.2) it follows that the canonical transformation with the 

generating function F is determined by the coordinate transformation up to derivatives of r(t, q). 

From eq. (1.2) we have 

 

According to our presumptions, this equation can be solved with respect to pk 

 

Therefore, the transformation G defined by1) 

   (1.3) 

 

where h' = (h’i,. . . , h’𝜋), represents a canonical transformation in the sense that was formulated in [21]. In 

M', the canonical formalism is induced by gt(q). The transformation of the position and momentum 

observables is of particular interest. Let Qi be the position observable, defined by Qi(t, X’) = q’i and 

correspondingly Qi(t, X') = qi. They both do not depend explicitly on the time t. We then have 

   (1.4) 

Defining the functions  

 one has 

  (1.5) 

Comparison of eqs (1.4) and (1.5) yields: 

        (1.6) 
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This means that the function Qi, describing the same measuring equipment as Qi in the new (primed) 

coordinate system, depends on the observables Q’ as given by eq. (1.6). Similarly, one can discuss the 

transformation properties of the momentum observable, ending up with an expression which resembles eq. 

(1.6). 

 

Coordinate Transformations in Quantum Mechanics 

 

We now consider a quantum mechanical system ∑ having the configuration spaces M and M' with respect to 

different coordinate systems. It will be shown that there exist unitary operators V (t), which correspond to the 

classical coordinate transformations gt(q) and that, in some sense, the quantum mechanical observables Pi,Qi 

and P’i, Q’i are related to each other by the same transformation formula (1.5) and (1.6) as in classical 

mechanics. 

 

If M and M' denote the configuration spaces of ∑, it is obvious to use the HILBERT-Spaces L2(M) and L2(M'), 

respectively. Defining 

 

we have 𝜔t(q)≠ 0 for all q𝜖 M as a consequence of our presumption. This enables us to define operators V(t) 

for t € R by 

  (1.7) 

 

where 𝜓 𝜖L2(M), q' 𝜖 M' and 𝜆' is an arbitrary (real measurable) function on M'. It can easily be shown that V 

( t ) is an unitary operator, since it preserves the norm of y, is a linear operator and its range is equal to L2(M'). 

X = (p1,…..pn; q1…….qn) 

 

We now proceed to show that the canonical transformation generated by the unitary operator V(t) is the 

quantum mechanical analogue of the classical canonical transformation, generated by gt(q). Let Qj and Qi be 

the self-ad-joint position operators and let us define 

       (1.8) 

we then have 

 

Now, one can easily verify that 

       (1.9) 
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with Qj of eq(1.8) and g-1
ij = 𝜋j  gt

-1 is an operator identity, since the domains of both sides of eq. (9) coincide. 

Comparing it with eq. (1.6)) eq. (1.9) enables us to conclude that V(t) generates a canonical transformation 

where the position operators have the same transformation properties as in classical mechanics.  

A formula for the momentum operators, however, corresponding to eq. (1.9) (thus representing the quantum 

mechanical analogue of eq. (1.6) for the momentum P at first is shown to be valid for a certain class of 

operators, P0<P. Let C0 (M) denote the set of all functions which have a compact support in M and are r-times 

continuously differentiable. It is possible to define operators P0 by (𝜕/ 𝜕q) on C0(M). The operators P0 are 

symmetric, and the same holds for Pj in C0(M’). Note that C0(M) is dense in L2(M). 

 

Assuming 𝜆’ of eq. (1.7) to be differentiable the following theorem holds : 

 

Proof: Given a 𝜓 𝜖C1(M). By definition we have (V(t) 𝜓) (q’) = 0 if and only if 𝜓(gt
-1(q’))=0, since 𝜔i and 

exp(i 𝜆) are both nonvanishing functions in M. Let K be support of  𝜓 and K’=gt[K]. Because of the continuity 

of gt, it follows that K’ is the support of   𝜓(gt-1(q’)). Furthermore K’ is compact since K. We thus conclude 

that V(t)y has a compact support, is differentiable (by presumption) and, therefore, lies in C0(M’). Similarly, 

one proves the inversion, which completes the proof of the above theorem. 

 

Let us now focus the discussion on the operator V(t)P0j V
-1(t). For 𝜓 𝜖C1(M’), we obtain using eq. (1.7) 

 (1.10) 

Introducing the function 𝜆(t,q)= 𝜆’(t, gt(q)) and rearranging terms in eq.(1.10) the final result is 

  (1.11) 

in the domain of the 1.h. side of eq. (1.11). On the other hand, the domain of the r.h. side of eq. (1.11) cannot 

be larger than C0(M'), hence we have that (1.11) is an operator identity. Combining eq. (1.11) with the 

definition 

        (1.12) 

one obtains the quantum mechanical analogue of eq. (6) for the restricted operators P0, if the function r(t,q) 

in eq(1.1) is chosen such that 

r(t,q) = h 𝜆(t,q) + s(t)         (1.13) 
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If the symmetric operators Pj and P’0j can be extended to self-ad-joint operators Pj and Pi such that the 

canonical commutation relations are preserved, (what it the case, e.g., if M and M' are Cartesian products of 

finite intervals or the whole of R) one can check wether (11) holds with Pj and P’j, too. 

 

Conclusion 

The most immediate area of interest is the search for a reliable solution technique for the Time Dependent 

Coordinate Transformation algorithm in two dimensions. Despite the limited success of the Time Dependent 

Coordinate Transformation method to generate solutions in two dimensions this thesis has presented an 

interesting solution technique for problems in one dimension. It is obvious though that the method still needs 

further work and application to other types of problem to test its robustness and suitability for widespread 

application.  
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