EMPIRICAL STUDY BASED ON DEFECT ANALYSIS TO ENHANCE QUALITY AND PREVENT REWORK- A CASE STUDY

Tusharita Miglani¹, Kamaljit Singh Rana² Research Student¹, Faculty² (NIIFT) Northern India Institute of Fashion Technology (NIIFT), Mohali.

Abstract

In order to lessen down defect, every company must implement a quality control system. This paper represents process flowchart and application of Defects per Hundred Unit (DHU) in the sewing line of Garment Export house. There sewing section is to identify defects and rework so as to eliminate them for saving time, cost and improve product quality. And the evocative tool established covers an inclusive series of aspect in lowering down of sewing defects in garment industry. It should be kept in a mind, 1% defective product of organization is 100% defective for consumer who buy defective product. Therefore study clearly indicates that non-productive activities like rework kill the profit margins of the company so, implementations concluded that; before experimental work overall DHU are 7.73% and after making corrections in 4M 'S (men, material, machine, method). The number of faults found to be reduced and the post DHU% declined to 5.43%.

Key words: Quality control, sewing defects, fabric defects, productivity.

1. Introduction

Garment industry is found to be the gulf of global markets and is being famous for the quality, permanence and beauty. In other words, Quality is the set of product features and its freedom of deficiencies. Quality plays an important role in building-up of any business. It gets integration and reliability among consumers as it is considered as the nucleus of a business. It is the merit of something, Quality must be built-in; it cannot be scrutinized into the product or term as, the path to avail proficiency. A product, service, method or experience is a high quality; if it is fit for purpose [9]. Knowledge of high quality is meant to be invaluable and low-quality knowledge is expressed as futile. Some of the adjectives used to define quality are: Standard, Worth, Reliable, Defect-free, Sustainable, Reusable, Relevant, and Profitable.

1.1.4 Seven tools of Quality (tools to measure quality)

They are called basic as proper teaching in statistic can make one to use it properly. It is being used to solve the giant majority of quality related issues. The seven tools are:

16

- 1. Histogram
- 2. Cause and effect diagram
- 3. Check sheet
- 4. Control chart
- 5. Pareto chart
- 6. Scatter Diagram
- 7. Stratification

1.2 Problem Identification

Research work conducted in Garment Export house; where the observation enlighten defects of inline sewing production department which hamper the quality of various garments which were being manufactured.

- Lacks of quality checkpoints and audits.
- Inline Sewing defects.
- Un-skilled operators hired for critical operations.
- Insufficient Information provided to inline manufacturing operators.
- Rework was more, which leads to a production delay.

1.2.1 Objectives of study

- Collecting and analyzing most occurring defects.
- To study how to reduce the sewing defects percentage.
- To study Improvement in quality, by using Defects per Hundred Units tool.

3. Research Methodology

Methodology means the procedures to obtain the result. For this study, we have conducted the following procedures to minimize the defects.

Aim: the aim of the work, i.e. overall purpose of the study, should be clearly and curtly defined.

Objective: pinpointing the very specific outcome.

Data collection: collection of information through relevant sources to find answer to research problem, test hypothesis and calculate the outcome.

Data analysis: it includes inspection, transformation and modeling of data.

Identification: through questionnaire or survey the information is gathered.

Problem detection: with the help of the collected data the problem is detected.

Brainstorming: is done to find the root cause of the problem.

Identifying solution: the solution is finding, for the problem.

Implementation: it is implemented in the area, where a problem is found.

Result: finally we reach to the outcome of the entire research is known as result.

Department wise quality checkpoints in garment manufacturing industry: [3]

Fabric store	Fabric goes through 100% inspection
Trims &	Trim quality and quantity inspection
Accessories	
Cutting Room	To scan Marker and its efficiency, Cut parts and
	Audit bundle checking
Embroidery/printing	inspecting printing panels
	100% inspection of embroidery
Sewing section	Check points in line where critical operations are
1.5	being processed
	arbitrary checking
	100% final (line checking)
	Auditing checked pieces
Finishing section	primary finishing inspection (after being washed)
	Last finishing inspection(after being pressed)
	Auditing internal shipment

Table-3.1 Department wise quality checkpoints

D.H.U. – It stands for Defect per Hundred Units. It means number of defects found or detected per 100 garments. This is also known as DHU (Defects per Hundred Units). [3]

- 1. Defects per Hundred Units and
- 2. Percent Defectives

DHU = Total defects detected*100/total pieces inspected

Percent Defectives = Defective Pieces /Total pieces X100

To measure DHU, one needs to record number of total pieces checked and number of total defects are detected in the inspected garments. It is number of defects not the defective garments. One defective garment may have more than one defect.

Steps and processes followed to reduce DHU:

- i. Review of the existing working system in the industry
- ii. Targeted sewing department due to majorly occurring sewing defects
- Working within the sewing department to collect data on the basis of various types of sewing defects, focusing on frequently occurring defects, developing check sheets. Formats to maintain records.

Conducted DHU analysis and report was prepared on daily basis to calculate the percentage of defects occurring in sewing line, Defects per Hundred Unit.

Days/ Defect type	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
cut &damag e	1		3	4			1	2	3		3		4		5
Puckerin g		6	1	1.	3		6	5		7	1	8		1	1
Label- attachm ent	1	2	4		R	3	5	2	5		4		3		2
measure ment out			1	1	2	RA	4			2	3		3	2	1
Roping	4	2			3			3	2			3			
uneven top stitch	8	3	1			4		2		4		1	2		3
button attachm ent	2			4		3			4	2		3		4	2
Overlook ing	3	6	2		3		1	2			1		2	4	
slip stitch		1		6		3			1	3	7		4		1
Stains	6	4		3			1	4			2	1		2	1
Pico stitch	2		4		5			3		2		3		1	
Others	4	2		7		1		2		3		5	4		4
total pieces checked	90	85	50	80	90	75	70	110	85	98	72	100	110	45	83

Table: 3.2 Defective DHU Percentage on daily basis

total defectiv	31	26	16	25	17	14	18	23	15	23	21	24	22	14	20
e pieces															
DHU%	34.4	30.5	32	31.2	18.8	18.6	25.7	20.9	17.6	23.4	29	24	20	31	24

The most occurring defects found in the sewing line were: Cut & damage, loose stitch, measurement out, wrong-label attachment, puckering, open seam, neck unbalance, Uneven S.P.I.

	3. C 4 3. T			METHOD
	MAN	MACHINE	MATERIAL	METHOD
Cut				
and Damage	X	X		
Uneven S.P.I			×	×
Wrong Label		X	X	
Loose-Stitch			X	×
Broken Stitch	×			\mathbf{X}
Missing Part		X	X	×
Neck				
Unbalanced				
Measurement		G i la s		
Out				
Puckering				×
Open Seam				×

Table 3.3 Assortments of Defects

Table show the causes of different types of defects due to man, machine, material and method.

Pre- defective %

Table: 3.4: Man Causing Defects

	MAN	MAN DEFECTS								
	Cut and damage	Wrong label	Loose stitch	Missing part	Neck unbalance	Measuremen t out	Puckering	Open Seam	Total Defect No.	Total Pieces
STYLE 1	19	29	12	18	14	14	22	12	140	210
STYLE 2	17	21	11	7	18	23	14	18	129	220
STYLE 3	11	16	17	18	16	13	10	15	116	190
Total	47	66	40	43	48	50	46	45	385	700
DHU %	6.7	9.4	5.7	6.1	6.8	7.1	6.5	6.4	6.8	

Table show :Cut and damage, wrong label attachment, loose stitch, missing parts, neck unbalance, measurement out, puckering, open seam were the defects caused by the unskilled operators and the total DHU % of the defective pieces was found to be 6.8.

MACHINE DEFECTS									
	Cut and damage	Uneven balancing	Open Seam	Puckering	Loose Stitch	Total Defect No.	Total Pieces		
STYLE 1	9	9	12	8	24	62	220		
STYLE 2	17	21	14	17	18	70	185		
STYLE 3	11	16	17	9	6	59	254		
Total	37	46	43	34	48	191	660		
DHU %	5.6	6.9	6.5	5.1	7.2	5.7			

Table 3.5 Machine defects:

Table 3.5 show different types of sewing defects caused due to improper settings of a machine in a sewing line, which resulted in generation of defects like cut & damage, uneven balancing, open seam, puckering, loose stitch and the total DHU % of the defective pieces was found to be 5.7.

	Cut and Damage	Uneven SPI	Wrong label	Neck unbalance	Measurement out	total defect no.	total pieces
STYLE 1	15	23	2	13	4	57	100
STYLE 2	13	21	6	26	12	78	150
STYLE 3	17	15	17	14	16	79	150
Total	45	59	25	53	32	214	400
DHU	11.25	14.75	6.25	13.25	8	10.7	

Table 3.6 Material and Method defects:

Table 3.6 shows different types of sewing defects caused due to inappropriate methods of material handling and the total DHU % of the defective pieces was found to be 10.7.

Defect type	Man	Machine	Material/method
Pre- defective%	6.8	5.7	10.7

Fig: 3.1 Pre- defective percentages under four M's:

Fig: 3.1 graphically show comparison between DHU% of man, machine, material /method.

The DHU analysis and fishbone diagram would enhance company to explore the root cause of the problem identified

Fig: 3.2 Causes and Effect Diagram

3.1. Recommendations

Recommendations and suggested solutions to problems by failure modes and analysis

Areas	Failure modes	Causes	Effects	Suggested solutions
	Manufacturing	Operator's	Poor quality	Improve
	technology is	carelessness	results in	supervision
	outdated.		rework and	
	Maintenance		waste of time.	
	timing is not	Poor handling	Efficiency	Hand should
	correct.	of material	obstructed.	be neat and
				clean before
	Documentation			starting work
	in various			
	departments is	Lack of		Trained
V	not proper and	training		operator
	organized.			sufficiently

Table-3.1.1	Failure	Modes	and	Analysis
-------------	---------	-------	-----	----------

Table-3.1.2 Failure Modes and Analysis

Areas	Failure	Causes	Effects	Suggested solutions
	modes	ALCON A	33	
		Poor strength of		Thread should be of
	· / S	sewing thread.	\frown	good quality.
T		Needle needs	\sim \sim	Replace old the
IA		replacement	$\supset \nabla$	needle with the new
R			1.12	one.
I		Thread of low		Check the quality of
Y		quality.		thread with approved
N				thread

Table-3.1.3 Failure Modes and Analysis

Areas	Failure	Causes	Effects	Suggested solutions
	modes			
		Improper		Rethread machine
		threading		and make sure, the
H				thread passes
				through the tension
				discs.
H		Machines were		Machine should be
Ŭ		not clean.		cleaned regularly
		Thread tension is		Maintain proper
T		not correct.		thread tensions

Areas	Failure	Causes	Effects	Suggested solutions
	modes			
D	•	Dimensional instability in piles of fabric.		Reduce gap between presser foot and hole of needle plate.
THC		There is repetitive alteration		Provide adequate training to operators so alteration doesn't occur.
ME		Not proper cutting of pieces		Advanced technology should be used for cutting

Table-3.1.4 Failure Modes and Analysis

4. Result and discussions

4.1 Corrective Actions

- ✓ For reducing machine sewing defects the maintenance format recommended.
- ✓ The format was implemented on a number of machines, as trial basis
- \checkmark The format so compiled was filled by concerned supervisors and production managers

4.2 Solutions to Problem Causing Defects

In order to reduce the occurrence of various defects regular checkup formats, training formats and required folders were implemented. Training was basically provided to make the labor learn new tools and techniques of stitching in order to reduce the time and rework. A sample area was decided to consist of a fixed number of labors from the sewing section.

4.3 Post Defective % under 4M's

Table: 4.1 Percentage Defective under

	MAN	MACHINE	MATERIAL/METHOD
DEFECT TYPE			
POST-DEFECTIVE%	4.4	4.2	7.6

Graphically showing post defective % of man, machine, material and method after implementation of the suggested solution.

4.4 Comparative Analysis

Table shows Defects per Hundred Units under 4 M's

 Table 4.2 Pre-Post Data Comparison

DEFECT TYPE	MAN	MACHINE	MATERIAL/METHOD
PRE-DEFECTIVE%	6.8	5.7	10.7
POST-DEFECTIVE%	4.5	4.2	7.6

After the implementation of the suggested solutions to problem the reduction in the DHU% has been observed and it is found that for man it has reduced up to 2.3, for machine it is reduced by 1.5, and for material and method it has reduced by 3.1.

Fig: 4.2 Defects per Hundred Units (Pre-Post):

Fig: 4.2 show graph the comparison between pre and post defective percentage after implementation of the suggested solutions.

5. Conclusions

The work done during this project concluded in the reduction of defects per hundred units from 7.73% to 5.43% which lead to a reduction in various factors like labor requirement got reduced, rework reduced, extra raw material cost got reduced, and finally, wastage of rejected production decreased. These all resulted in the enhancement of productivity and reduced shipment delays. And over all it would raise the profit margin of the company.

Fig: 5.1pre-post DHU implementation

Fig: 5.1 show graph the comparison between pre and post DHU implementation which has been significantly reduced from 7.73% to 5.43%.

REFERENCES AND BIBLIOGRAPHY

- Md.Tahiduzzaman, MustafizurRahman, Samrat Kumar Dey, Taposh Kumar Kapuria, "Minimizing Of sewing defects of an apparel industry in Bangladesh with 5s & PDCA", American Journal of Industrial Engineering, Vol.5, April2018, pp. 17-24.
- UdayPatil,Prafull.P. Kolte, Pranjlichandurkar, S.S Rajkumar, "Performance Improvement in Apparel Industry by reducing DHU%", *International Journal on Engineering and process*, Vol.4, April 2018, pp.24-30.
- Ms.N.S. Patil, Mr.S.S.Rajkumar, Ms.P.W.Chandurkar, Mr.P.P.Kolte, "Minimising sewing defects in garment during stitching" *International Journal on Textile Engineering and Process*, Vol.3, January 2017, pp.24-29.
- 4. Sweety, Ritika sharma, Neetu rani, "Lean Manufacturing as balancing concept", *International Journal of Engineering & Sciences*", May 2016, pp.93-97.
- Md. Wahid Mahumud Khan, "Implementation of modern garment planning tools and techniques in garment industry of bangladesh", *International Journal of Engineering and Advanced Technology Studies*, Vol.4, July 2016. Pp.147-165.

- 6. Varun1, S.Appaiah2, Chethan Kumar C.S3, "Enhancing the operational effectiveness of sewing segment in garment industry by DMAIC Approach" *International Research Journal of Engineering and Technology (IRJET)*, Vol.02, June-2015, pp.840-847.
- Suspensor D.J, Knitting Technology a comprehensive handbook and practical guide, Third edition ,2001, Wood Head Publishing Limited, Ambridge England.
- 8. Muhammad Ragil Suryoputre, Muchamad Sugarindra ,Hendy Erfaisalsyah, "Quality Control System using simple implementataion of sevel tools for batil textile manufacturing", *IOP Conference Series: Material Science and Engineering*, 2017.

