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Abstract:  Conventional relational systems are frequently incident for temporal query processing for new characteristics are not 

taken into concern. As an example, a temporal join often contains a conjunction of several inequalities involving only timestamps. 

With a conventional relational query processor, this type of query is processed using the nested-loop join algorithm, which may 

not be the most efficient method. This paper explains a stream processing approach for temporal query processing and 

improvement. Given appropriately arranged information, the usage of temporal joins and semi-joins as stream processors can be 

exceptionally powerful. We also talk over the tradeoffs between sort orders, the amount of local workspace and multiple scans 

over input streams; in particular, we are interested in the effect of sort ordering on the local workspace requirement. We present 

stream processing algorithms for various temporal joins and semi-joins, and their workspace requirements for various data sort 

orderings. Finally, we communicate how semantic query optimization can show a vital and natural role in optimization of 

temporal queries. 

 

IndexTerms - Temporal query processing, temporal queries, temporal joins.  

  

I. INTRODUCTION 

Many real database applications intrinsically involve time-varying information. With the availability of cheap processing and 

storage units, there is a developing interest in temporal databases which store the evolving history of the "enterprise" of 

interest. Maximum studies on temporal databases can be roughly categorized into three areas [3]. The first is the formulation of 

the semantics of time [3, 9] and is closely related to research issues in knowledge representation. The second area concerns 

physical implementation issues [2, 3]; the focus is mainly on new access methods and data organization strategies. The third 

area is the logical modeling of temporal data [5]. Many of these studies emphasize distribute the relational data model to 

capture time semantics and to support relational temporal query languages. These extended models generally augment relations 

of the snapshot data model with several time attributes (such as ValidF'rom and ValidTo attributes [5]) which store the relevant 

timestamps. New temporal operators are also defined in these extended data models, based upon traditional relational algebraic 

operators [6], to allow users to query time attributes but not update them directly.  

 

'This work was done under the Tangram Project, supported by DARPA contract F29601-87-C0072. 

 

This paper explains the query processing and optimization for temporal databases, a topic which is seldom discussed in the 

literature (a notable exception is [8]). We observe that there are numerous interesting characteristics which are peculiar to 

temporal queries: (1) a temporal query often involves patterns of events; (2) a temporal query often contains a conjunction of 

several inequalities over the time domain and no equality conditions; and (3) temporal data is rich in semantics, and semantic 

query optimization is particularly desirable in the existence of a number of inequalities. These characteristics provide new 

opportunities for optimization. Ignoring these, as in conventional relational systems, can result in poor performance. 
 

We discuss join and semijoin operations which are the most common and expensive computations in database systems. We 

introduce a stream processing approach which takes advantage of data ordering. As temporal data often has certain implicit 

ordering by time, the stream processing approach, as we demonstrate, is a good alternative. We should emphasize, however, that 

the stream processing algorithms that we present are merely additional strategies that a query optimizer should consider, and are 

by no means substitutes for traditional query processing methods. 
 

The idea of stream processing has also appeared in [6]. These studies share the basic principle of the stream processing 

paradigm which is that input data should be in a certain order before the processing commences. This paper explanations are 

more concerned with (1) the impact of various data orderings on performance issues, mainly memory workspace requirements, 

and (2) efficient processing algorithms for join and semijoin operations. As we show, the optimal sort ordering for these 

temporal operators may depend on the statistics of data instances as well as the operator itself. [10] presents a more detailed 

comparison with related work which is omitted herein consideration of space limitations. 

 

One might argue that stream processing algorithms are not useful when data are not sorted properly. With an abundant amount 

of main memory and processing cycles available, one can sort the input streams "on the fly" with marginal additional cost as 

assumed in [10]. The algorithms we describe would still be applicable although the streams are actually memory resident. 

We informally discuss the role of semantic query optimization in Section 5, and finally, conclude with instructions for 

upcoming work. 
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  2 IMPLEMENTATION AND CHALLENGES OF TEMPORAL DATABASE 

 

Few out of every odd database requires a temporal database implementation, however, some do. We can enable you to begin. 

As examined in our past article, the SQL-2011 standard included clauses for the meaning of temporal tables as a component of 

the SQL/Foundation. In any case, this standard is new and not yet broadly adopted, For the time being, the majority of you 

should stretch out your current database tables to fuse temporal concepts. In this article, we'll concentrate on temporal tables. 

These tables are the building blocks of temporal databases. 

 

Temporal Tables – The Important Theories 

Theory #1: Valid-Time State Tables 

From Wikipedia: “Valid time is the time period during which a reality is valid with respect to the real world.” A valid time state 

table gives a chance to manage data whose values change over time.  A valid time state table lets you manage data whose values 

change over time. For a sample, the interest rate on a loan can be 5% for the first year, and 6% for the second year. During the 

second year, you still want to know that the rate was 5% in the previous year. 

 

Theory #2: Transaction-Time State Tables 

Semantic query optimization has been discussed in the literature [8] but apparently has not been widely used in conventional 

systems. Semantic constraints in temporal databases occur more naturally and are more plentiful, and consequently, a query 

optimizer should profitably exploit the semantics. We will briefly discuss the role of semantic query optimization in temporal 

databases after discussing more basic query optimization issues. 

The rest of the paper is structured as follows. Section 2 provides an outline of the temporal data model that we adopt from [6] 

and discusses the basic categories of temporal queries. We illustrate, in Section 3, the conventional approach to processing a 

complex temporal query. In the 4th Section, we discuss a stream processing approach for the implementation of temporal 

operators. 

 

Theory #2: Transaction-Time State Tables 

From Wikipedia: “Transaction time is the time period through which a fact deposited in the database is considered to be true.” 

When you effectively catch the sequence of states for an evolving table, you have made a substantial transaction-time state 

table. The tables independent from anyone else now contain the expected data to return in time or to "rewind" to a specific 

minute and see the information that was substantial right then and there. 

 

Theory #3: BiTemporal Tables 

From Wikipedia: “Bitemporal data combines both Valid and Transaction Time.” Valid-time state tables and transaction-time 

state tables are orthogonal. You don't have to implement both at once; you can do one or the other, and even if you do both, you 

don't have to keep the information in a single table. For example, it is common to find designs where the transaction information 

is stored in different tables. In such cases, only the latest valid information is stored in one table while the other table contains 

the historical records. 

On the off chance that you choose to make a table both a valid-time and a transaction-time table, at that point, you have made a 

bitemporal table. Utilizing Snodgrass' words, "a bitemporal table permits a magnificent expressiveness while investigating and 

separating data" from 

such tables. Step by step instructions to Implement a Temporal Table:  

How to Implement a Temporal Table: 

In the accompanying three areas, we quickly depict what you have to do with your tables to actualize a temporal database.  

We will allude to the Hudson Foods hamburger review referenced in our first article. This is a precedent given in Richard 

Snodgrass' book, outlining an unmistakable instance of an association enduring noteworthy budgetary punishments because of 

not having a time-varying database. This model includes following dairy cattle between various pens, and how that information 

changes after some time. The data beneath is a super disentanglement of the model incorporated into Chapter 2 of the book.  

In a feed yard, cattle are grouped into “lots”. Cattle from one lot can be partitioned into numerous pens. We characterize a table 

LOT_LOC that tracks what number of cattle from each part live in each pen of each feed yard. cattle from each lot are moved 

from pen to pen, in this way the information is changing after some time.  

 

LOT_LOC(LOT_ID_NUM, PEN_ID, HD_CNT, FROM_DATE, TO_DATE)  

 

How about we center around two segments: FROM_DATE and TO_DATE. 

 

These two columns render the table a “valid time state table”: it records information valid at some time in the modeled reality, 

and it records states; that is, facts that are true over a period of time. The FROM_DATE and TO_DATE sections delimit the 

"valid time" or "period of validity" of the data in the line. A key idea in this structure is thinking about your "temporal 

granularity." You should pick the correct granularity for your concern. This could be days, hours, minutes, seconds, or whatever 

you require as a granularity level. For the past table, the granularity level is multi-day.  

 

Think about the accompanying three lines:  
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(100, 3001, 32, 2014-06-01, 2014-06-02)  

 

(100, 3001, 30, 2014-06-02, 9999-12-31)  

 

(100, 3002, 02, 2014-06-02, 9999-12-31)  

 

We can tell the accompanying from the information: from June first, 2014, to June second, 2014, there were 32 cows from part 

100 in pen 3001; on June second, 2014, the cattle from lot 100 were part in two unique pens. Thirty cows stayed in pen 3001, 

and two cows were moved to pen 3002. 

This is the latest valid data. The primary column is presently invalid for the current date. As should be obvious, we can proceed 

to include and change this information. It will be conceivable to question the information with the end goal that we see a real 

perspective of the information as it existed at a specific time. We could compose questions that would enable us to follow back 

every one of the pens containing cows from a specific lot before or on a specific date.  

 

The Design Works, Be that as it may, it's entangled.  

 

This plan would have understood Hudson Foods information issues and would have brought about a more engaged and lessened 

sustenance review. This plan idea can be utilized to execute temporal concepts into any standard database table. There are, 

nonetheless, difficulties to this plan, which we will talk about in the following article.  

 

Few out of every odd database requires a temporal database implementation, yet some do. We can enable you to begin. As 

discussed in our past two articles, the SQL-2011 standard included conditions for the meaning of temporal tables as a feature of 

the SQL/Foundation. Be that as it may, this standard is new and not yet broadly embraced. For the present, the vast majority of 

you should stretch out your present database tables to consolidate temporal concepts. We have demonstrated to you that 

expanding your present database tables is moderately simple.  

 

In this article, we'll concentrate on the difficulties in broadening your current tables into temporal tables, and why executing a 

genuine temporal database is less demanding. 

The Challenges of Implementing a Temporal Table 

 

Challenge-1 

SQL comes up short on a time-range data type, so you need to utilize two diverse time columns to capture that data. As a result, 

both time columns must turn out to be a piece of the essential key, so they shouldn't be permitted to be NULL. (You could 

utilize NULL, yet in specific cases, you may get stuck in an unfortunate situation. For instance, read this blog: The Index 

You've Added is Useless. Why? To stay away from a NULL value, the TO_DATE was given a non-null value of 9999-12-31 

for lines that are as of now legitimate in time.  

 

Why a temporal database is less demanding - > temporal databases bolster a time-range data type. The presence of this time 

extends deliberation rearranges the structure. Contemplations, for example, the likelihood of a NULL in the from/to essential 

key column, are not any more pertinent. 

 

Challenge-2 

Without the FROM_DATE and TO_DATE columns, the essential keys would be LOT_ID_NUM and pen once you include the 

FROM_DATE and TO_DATE  columns, the primary key must incorporate four columns: FROM_DATE, TO_DATE, 

LOT_ID_NUM, and PEN_ID. A same lot and pen could exist in various focuses in time; they are not anymore one of a kind for 

each line, and you have to incorporate the time run with the end goal to look after uniqueness. Characterizing the FROM_DATE 

and TO_DATE segments as a major aspect of the essential key is a test with non-temporal databases. In a non-temporal 

database, the semantic significance presently is something like "LOT_ID_NUM, PEN_ID, FROM_DATE, and TO_DATE are 

the exceptional identifiers".  

 

Why a temporal database is less demanding - > A temporal database would enable you to characterize just LOT_ID_NUM and 

PEN_ID as the primary keys, which would have the semantic importance of "LOT_ID_NUM and PEN_ID are the remarkable 

identifiers at any minute in time." 

 

Challenge -3 

All inquiries must be time-mindful. Regardless of whether you just need to inquire the last substantial information in time, 

despite everything you need to add a WHERE clause to ensure you get only the most recent information. As a rule, every one of 

your inquiries will presently be somewhat more intricate (or much more unpredictable).  

 

Why a temporal database is less demanding - >  

On the off chance that you were utilizing a temporal database, your tables would follow time-varying legitimacy naturally. You 

would inquiry the most recent legitimate information (without a WHERE proviso) as a matter of course.  
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You additionally would gain admittance to other decent highlights, for example, "time breakpoints." For instance, you could set 

a breakpoint at 2012-12-01, and starting there on the entirety of your inquiries would be for information that was legitimate until 

2012-12-01 just; for instance, "select the pens that contained cattle from part 55 preceding 2012-12-01". Your breakpoint could 

likewise be a period go like TIME_RANGE (2012-11-01, 2012-12-01); for instance, "select the pens that contained dairy cattle 

from part 55 between 2012-11-01 and 2012-12-01".  

 

Challenge-4 

 Every one of your updates is currently more unpredictable. Each refresh now includes evolving (at least one) existing row(s) 

and making (at least one) new row(s). 

Why a temporal database is easier 

A temporal database will consequently guarantee that once a row is refreshed its earlier data isn't lost. In a temporal database, 

you are not by any stretch of the imagination refreshing columns yet rather changing their time legitimacy.  

 

Challenge-5. 

In a temporal table, you don't erase information. You change the time range with the end goal to demonstrate that the 

information isn't substantial any longer. On the off chance that distinctive clients and applications are getting to your tables, it is 

hard to control and check that everyone regards the presumptions for this table.  

A temporal database will guarantee that all clients/applications executing inquiries against the "current valid time" will get 

precise outcomes. Invalid/erased information won't be returned.  

A temporal database will naturally authorize the principles for a DELETE task to guarantee earlier information isn't lost, paying 

little heed to the customer. 

 

3 TEMPORAL DATA MODEL 

 

In our temporal data model, we consider time as a sequence of discrete, consecutive, equally-distanced points, i.e. Time = {to, t 

l,. . ., now} which are totally ordered. The sequence of time points can simply be treated as isomorphic to the natural numbers, 

and therefore we do not specify the time unit.  

We adopt a modified version of the Time Sequence concept in [11]’ as the basic data construct in our temporal data model. A 

temporal data value is a 4-tuple <S, V, ValidFrom, ValidTo> 

Where S is the surrogate or the identity of the object, V is a time-varying attribute of concern, and [ValidFrom, ValidTo) 

represents the lifespan of the tuple. Naturally, within a tuple, the ValidFrom value is always smaller than the ValidTo value. 

Semantically, the object S has attribute value V during the period [ValidFrom, ValidTo)2. A temporal relation is a set of 

temporal data values (i.e. a set of 4-tuples). 

An example of a temporal relation is Faculty (Name, Rank, ValidFrom, ValidTo) Together with the following integrity 

constraints 

and assumptions, this example is used in subsequent sections for illustration purposes. The name is the identity of a faculty 

member. For attribute Rank, we consider only three different ranks - ‘Assistant’, ‘Associate’ and ‘Full’.  

We will assume in this example that an assistant professor can be promoted only to an associate professor and then to full 

professor. In other words, there is a chronological ordering among the data values that the Rank attribute can assume. For the 

same faculty member, e.g. ”Smith” as illustrated in Figure 1, UValidTol<ValidFrom2” and “ValidTozSValidRoms” must hold. 

The period [ValidFrom, ValidTo) in a tuple is the time during which the faculty member holds the indicated rank. We also 

assume that a faculty member is at exactly one rank at any time between becoming an assistant 

professor and termination as a full professor. As we mentioned above, for any tuple t, “t.ValidFrom<t.ValidTo” always holds. 

 

Smith Assistant ValidFrom1 ValidTo1 

Smith Associate ValidFrom2 ValidTo2 

Smith Full ValidFrom3 ValidTo3 

Fig-1. A Sample Faculty Relation 

‘A Time Sequence is a totally ordered sequence of temporal data values <Surrogate, Attribute-value, Time>. For continuous 

Time Sequence, the attribute due of an object between any two-time points (i.e. between consecutive temporal data values) can 

be computed using an interpolation function.’We consider only the valid times in TQuel temporal database taxonomy [7]. Also, 

for simplicity, we often use TS (which stands for Time Start) to abbreviate ValidFrom, and TE (which stands for Time End) to 

abbreviate ValidTo. A stepwise-constant interpolation function is applied between the lime points ValidFrom and ValidTo. V 

can be generated as a list of attributes.‘Borrowed from 1321. Also, the relation is in TNF 

 

4 CONVENTIONAL APPROACHES 

 

In this section, we describe the deficiencies of conventional relational database systems in processing temporal queries. Allen 

[3] presents thirteen elementary temporal operators of time-intervals which are listed in Figure 2. These temporal operators are 

actually just syntactic sugar for the query-specific constraints which are given in the right-hand column of Figure 2 and can be 

easily incorporated into query languages like SQL and Quel. 
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Temporal queries using these extended constructs are usually processed in the following way. First, they are translated into 

equivalent queries in a relational language such as Quel. The translated queries are then optimized and processed by 

conventional relational query processors. This approach is generally not effective for temporal query processing as we 

demonstrate below.  

 

Suppose we have a relation Faculty ( Name, Rank, ValidFrom, ValidTo) as described in the previous section. Consider the 

following 

Quel query modified from [3214: Superstar - Who got promoted from assistant to full professor while at least one other faculty 

remained at the associate rank? 

                Range of fl is Faculty 

                Range of f2 is Faculty 

                Range of f3 is Faculty 

  Retrieve into Stars (Name=fl.Name,ValidRom=fl.ValidFrom, 

                               ValidTo=B.ValidTo) 

                Where fl.Name=B.Name and f3.Rank=“Associate” 

  And fl.Rank=“Assistant” and f2.Rank=”Full” 

  And (fl overlap f3) and (f2 overlap f3)’ 

These “overlap” operators can be translated directly into equivalent 

Clauses (e.g. in Quel) involving inequalities. That is, 

(fl overlap f3) = fl.ValidFkom<f3.ValidTo 

                 ^fJ.ValidFrom<fl.ValidTo 

(0 overlap f3) = f2.ValidFrom<f3.ValidTo 

                              ^f3.ValidFrom<f?.ValidTo 

 

 ‘The original TQuel query in is: 

The range of fl is Faculty 

The range of f2 is Faculty 

Range of a is Associate 

Retrieve into Stars(Name=fl.Name) Valid from beginning of fl to begin of E! 

Where fl.Named2.Name When (fl overlap a) and (f2 overlap a) 

and fl.Rank=“Assistant” and f2.Rank=“Full” ‘This overlap operator defined in [11] is different from “overlaps” in [3]; it is 

defined in a general sense and therefore it may also mean the “equal”, “start”, “finishes” or “during” relationships in Figure 2. 

For the sake of exposition, we follow [11]. 

 

 

 
Figure-2 The 13 possible temporal relationships 

 
 

This algebraic expression can be represented as a parse tree[9], as depicted in Figure 3(a). The parse tree can then ameliorated 

by applying well-known traditional algebraic manipulation methods, e.g. the selections and projection are pushed as far down 

the parse tree as possible(see Figure 3(b)). 
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There are several interesting observations about the "conventionally optimized" parse tree in Figure 3(b): 

 

1. There are three references to the Faculty relation in the parse tree implying that it is joined with itself twice conventional 

systems would scan the relation several times. If we view the query as a "Superstar" pattern matching in the Faculty relation, 

one might wonder if we are able to answer this query with only a single scan of the relation. Roughly speaking, we are looking 

for a pattern composed of three-tuples - an assistant professor, a full professor and an associate professor. That is, instead of 

performing multiple joins, a single scan might be possible by recognizing this query qualification as describing a pattern in the 

data.  

 

2. The first join in the parse tree can be efficiently implemented as an equi-join using a conventional approach such as nested-

loop join, merge join or hash join. The second join, a scaled less-than join, is a Cartesian product charted by a selection with the 

condition being a conjunction of inequality predicates - 6' '. Traditionally, the best strategy for processing less-than joins appears 

to be the 

'Note that range search (e.g. salary > 10K and salary < 20K) is different 

from this form of query qualification. 

 
 

Figure-3 (a) Parse tree for the superstar expression (b) its optimized version 

 

Conventional nested-loop join method. With only a single inequality as the join condition, we have no optimal but the nested-

loop join method. Since time points are totally ordered and the join condition is a concurrence of several inequalities over time 

domain, one might wonder if there are any more efficient processing alternatives. In the past, little courtesy has been given to 

this form of qualification because: in traditional database applications, queries seldom contain less-than joins, and when 

inequalities do occur, in most situations the join condition has d y a single inequality predicate; for example, in an 

Employee/Department database, we might want to retrieve employees who earn more than their manager. The situation is quite 

different when we consider temporal databases: less-than joins appear more frequently and naturally because temporal queries 

often involve patterns of events, and therefore less-than joins need to be explicitly considered in query optimization, the join 

condition often contains a conjunction of several Inequality predicates which further indicates that optimization might be 

possible. Recall that there is an integrity constraint in the Faculty relation: a chronological ordering of data dues – ‘Assistant’, 

'Associate' and 'Full'. This ordering implies that being an assistant professor must occur before being promoted to a full 

professor i.e. "fl.ValidTo<f2.ValidFrom” always holds in the presence of (fl.Name=D.Name).  

 

These constraints, together with the "intra-tuple" integrity constraints,  

 

fi.ValidFrom<fi.ValidTo for i=1,2,3 

 

imply "fl.ValidTo<f2.ValidFrom” and "f3.ValidFrom< f2. ValidTo". Therefore these inequalities in 6' are redundant i.e. they 

are subsumed by other inequalities. The important point is not so much this particular case; rather it is the process of semantic 

query optimization each department: emp is the employee, depth is the department that the employee works with, salary is the 

employee's salary 

 
 

Figure 4: A stream processor to sum all employees' salaries in 
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The above Observations suggest that, in addition to traditional set-oriented relational operators, we may need other alto process 

temporal queries. In subsequent sections, we will present and discuss a number of such alternatives. 

 

4 STREAM PROCESSING APPROACH 

 

We discuss a stream processing approach for temporal query processing in this section. Algorithms that implement temporal 

operators are presented. The tradeoffs between sort orders, the amount of indigenous workspace and multiple passes over input 

streams are discussed. For properly sorted streams of tuples, we show that temporal operators can often be carried out with a 

single pass of input streams and the amount of workspace required can be small. 

 

4.1 What is stream processing? 

 

Abstractly, a stream can be demarcated as an ordered arrangement of data objects [1,10]. Stream processing resembles the 

notion of data flow processing in database systems [4,7]. A classic example of stream processing is the merge-join; it is 

efficiently executed and the sort ordering of its output can be utilized by subsequent operations [10]. 

There are several intrinsic characteristic s of stream processing in database systems. First, a computation on a stream has access 

only to one element at a time and only in the specified ordering of the stream. Second, the implementation of a function as a 

stream processor may keep some local state information in order to avoid multiple readings of streams. The state information 

represents a summary of the history of a computation on the portion of a stream that has been read so far; the state may be 

composed of copies of some objects or some summary information of the objects previously read (e.g. sum, min, count etc.) 

Using the local state information, the implementation of a stream processor can be expressed in terms of functions on the 

individual objects at the head of each input stream and the current state. For example, a simple stream processor, which is 

depicted in Figure 4, lists all the departments and computes the total salaries of all employees in each department. The point 

here is that the state contains summary information (i.e. the partial sum), and the function (i.e. sum) is expressed in terms of the 

current state and an input object. 

Third, there are often tradeoffs among the following factors: 

(1) The minimal size of the local workspace which depends on the function itself and the statistics of a specific instance of the 

data stream,  

(2) Sort order of input streams, and  

(3) Multiple passes over input streams.  

  Very often stream processing requires input streams to be properly sorted in order to perform the computation while 

only reading the input streams once. In addition, the sort orderings of input streams greatly affect the size of local workspace 

required. Conversely, suppose there is enough local workspace to keep all data objects. Then only a single pass over the input 

streams is required and (theoretically) the sort ordering would not be important. In the next section, we discuss the application 

of stream processing algorithms to temporal databases. In these discussions, the sort ordering of streams plays a major role. 

 

4.2 Sort Orderings 

Suppose we have temporal relations X(S, V,TS,TE)7 and Y(S,V, TS,TE). We are interested in the effect of various sort 

orderings on the efficiency with which it is possible to implement the temporal operators (listed in Figure 2) in the stream 

processing paradigm. Because of space limitation, we concentrate on the "during" relationship which has only inequalities in its 

explicit constraints? The implementation of Overlap and before operators in the stream processing paradigm are discussed in 

[16]. Before we proceed, we should note that the temporal operators listed in Figure 2 are in fact join and semi join operations. 

Because of this, the only form of state information we need consider in subsets of the tuples previously read and not any 

summary information such as sum, min, etc. 

 

4.2.1 Contain-join( X ,Y) 

Contain-join(X,Y) outputs the concatenation of tuples X and Y if the lifespan of X contains that of Y; that is, "X.ValidFrom < 

Y.ValidFrom h Y.ValidTo<X.ValidTo" - i.e. the "during" relationship in Figure 2. The generic algorithm for Contain-join(X,Y) 

is shown in Figure 5. The specific instance of this generic algorithm depends on the sort orderings of streams. In this paper, we 

present the Contain-join algorithm in more detail for the case when both relations X and Y are sorted on the attribute ValidFrom 

in ascending order (see Figure 6(a)). The following conventions and notations are used in the algorithm:  

 

 

(1) there is 

an input buffer for reading tuples from each stream (denoted 

as <Buffer-x, Buffer-y>), and the tuples in these buffers are denoted as Xb and Yb respectively;  

(2) the expected difference 

between ValidFrom values of two consecutive X tuples is r, (similarly, RV for Y tuples), and  

(3) 2 denotes the absolute value of 

the difference between yb.validFrom and xb.ValidFrom. 
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Figure-5 Generic Join Algorithm  

 

'Recall that TS and TE stand for ValidFrom and ValidTo respectively. 'For a temporal operator with equality predicate(s), an 

obvious stream processing method appears to be sorting both relations on attributes that are involved in the equalities followed 

by a conventional merge-join (and perhaps combined with filtering using other predicates of the operator.) 

 

 

 
 

 
Figure-6 Contain-join: Both X and Y are sorted on TS in ascending order (only time attributes are shown) 
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The heuristic algorithm which can be used to decide whether to read an X tuple or a Y tuple is as follows. If the next X tuple is 

read, the expected ValidFrom due is Zb.ValidFrom+rx. The number of Y tuples that would be garbage-collected can be 

estimated as the number of Y tuples in the workspace with ValidFrom value in the interval [za.ValidRom, Zb.ValidFrom+rx. If 

the next Y tuple is read, the expected ValidFrom value is yb.ValidFrom+ty. The number of disposable X tuples can be estimated 

as the number of X tuples in the workspace with ValidTo value in the interval [ya.ValidRom, by.ValidFrom+ty]. Based on these 

two estimations, a decision is made on which would yield a greater reduction in the number of tuples in the workspace. Using 

this heuristic, the state (i.e. workspace contents) can be characterized as follows: (1) if we keep reading X tuples such 

that all Y tuples in the state have been garbage-collected, the maximal set of X tuples that are required consists of all X tuples 

that span the time instant ya.ValidFrom. (2) conversely, if we keep reading Y tuples such that there is no X state tuple, the 

maximal set of Y state tuples that is required consists of those whose ValidFrom value lies in the lifespan of Zb. 

 

We now summarize the state information requirements of processing the Contain-join for other sort orderings in Table 1. The 

algorithm for the case (b), i.e. when the relation X is sorted on ValidFrom and the relation Y is sorted on ValidTo, is similar to 

the one presented above (readers may refer to 1161 for details). Note that (1) it is generally inappropriate to have one relation 

sorted in ascending order and the other in descending order. (2) sorting both relations X and Y on attribute ValidTo in 

descending order would have the same effect as sorting them on attribute ValidFrom in ascending order because of symmetry 

(although the ValidFrom and ValidTo attributes exchange their roles); the lower half of Table 1 is, therefore, the mirror image 

of the upper half. 

 

Table-1 Effect of various sort orders on Contain-join, Contain-semijoin & Contained- semijoin 

 

 
4.2.2 Contained- & Contain-semijoin(X,Y)" 

 

Contain-semijoin(X, Y) is defined as {x I x belongs to X and 3 y belong to  Y s.t. 2's lifespan contains y's lifespan}. Contained-

semijoin(X, Y) is 

defined as {z I z EX and 3 y E Y s.t. 2's lifespan is contained in y's lifespan}. In a later section, we show that Contained-

semijoin may be used to efficiently process the Superstar query. 

 

For semijoins, a stream processor can output a tuple as soon as it finds the first matching tuple. Based on this observation, we 

devise an optimized algorithm which requires just one buffer for each input stream. Suppose the relation X is sorted on attribute 

ValidFrom and the relation Y is sorted on ValidTo in ascending order as shown in Figure 7. The Contain-semijoin(X, Y) 

algorithm for this sort order is as follows. 

‘The separation of this join algorithm into several phases is primarily for the sake of explanation; it is possible that Steps 2, 3 

and 4 can be combined 

together to gain better performance. 

 

http://www.jetir.org/


© 2018 JETIR  December 2018, Volume 5, Issue 12                               www.jetir.org  (ISSN-2349-5162) 
 

JETIR1812209 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 77 

 

Figure-7 Contain-semi joins: X is sorted on TS and Y is on TE in ascending order 

 

Contain-semijoin(X,Y): 

 
 

 

It should be mentioned that the above algorithm can be applied to Contained-semi join(Y, X) for the same sort ordering with a 

slight modification - when the semi join condition is satisfied, yb is output and the next Y tuple is read. For other sort orderings 

(e.g. both streams are sorted on ValidFrom), we list the local workspace requirements in Table 1. We note that for Contain-

semijoin(X, X) and Contained-semijoin( X, X), the stream of tuples may be scanned twice if we apply the semijoin algorithm 

presented above. To avoid this kind of inefficiency, we, therefore, devise a more efficient algorithm which scans the stream only 

once provided that it is sorted properly. As an example, suppose the relation X has primary sort ordering on the attribute 

ValidFrom and secondary sort ordering on ValidTo in ascending order. The algorithm for Contained-semijoin(X, X) is as 

follows.  

 
"It does not matter what the relationship between ZB.ValidTo and yb.ValidTo is. 

It is interesting to consider using a semijoin algorithm as a preprocessor for a join operation. Intuitively, the advantages are: (1) 

the output stream from a semijoin operation has the same sort ordering as the input stream - &-preserving; (2) with proper sort 

orderings, the semijoin algorithms scan input streams only once, and a number of "dangling" tuples may be eliminated, which 

may reduce the size of workspace to join operations. 

 

5 SEMANTIC QUERY OPTIMIZATION 

 

Semantic query optimization techniques have been introduced and shown to be potentially useful in many studies [8]. However, 

the technique has not been widely used in conventional systems. The reason, we speculate, might be that conventional 

application domains ax seldom rich enough in semantics, i.e. they contain only a few useful semantic constraints which the 

query optimizer can profitably exploit.  

 

For temporal databases, time is unarguably rich in semantics and many temporal semantic properties/constraints do occur 

naturally. It is, therefore, our belief that, unlike conventional applications, semantic query optimization can play a significant 

role in temporal databases. In this section, we discuss informally the significance of semantic query Optimization in temporal 

query processing; its formal treatment is now underway. Earlier we mentioned an interesting integrity constraint in the Faculty 

relation, namely the chronological ordering of data values which the attribute Rank can assume - 'Assistant', 'Associate' and 

'FUI'.  
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For every faculty, being an assistant professor must occur before being promoted to an associate professor, which must then 

occur before becoming a full professor. There are two consequences if the database system does not capture and use this 

constraint. First, and most important, the optimizer would not be able to recognize that the less-than join in the Superstar 

example is, in fact, a Contained-semijoin. The less-than join operation shown in Figure 3(b) can be described pictorially using 

Figure 8. The equi-join on "fl.Name=fL.The name" (in Figure 3(b)) concatenates those fl and f2 tuples corresponding 

 
Figure-8 (a) The less-than join in the superstar query, and (b) its equivalent contained-semijoin condition after sematic 

optimisation 

 

to those assistant professors promoted to full professors. The less than join then selects those fl and f2 tuple pairs which satisfy 

the less-than join condition (0') as shown in Figure 8(a). With the above semantic constraint, it is not " It to see that 

fl.ValidFrom<B.ValidTo and B.ValidFiom<f2.ValidTo is redundant and the less-than join condition can be reduced to a 

Contained-semijoin condition as shown in Figure 8(b). Being able to recognize a Contained-semijoin allows the database 

system to make use of sort orderings and therefore the stream 

processing techniques mentioned in the previous section. The second consequence of the constraint on the Rank attribute is that 

we are able to eliminate two redundant inequalities in 0'; their presence makes it harder to recognize the join as Contained-

semijoin and there is also some overhead due to testing redundant qualification. Eliminating redundant qualifications is indeed a 

by-product of semantic query optimization. 

 

6 CONCLUSIONS & FUTURE WORK 

 

We have illustrated deficiencies of conventional systems for temporal query processing using the complex Superstar query. This 

example leads to several observations which suggest new requirements for temporal query processing strategies.  

The most interesting and important observation is that less-than joins occur more often and naturally in temporal queries, and 

usually contain a conjunction of a number of inequalities. For the Superstar example, it may be more efficient to implement the 

less-than join using Contain-semijoin instead of using nested-loop join algorithm especially when tuples are properly sorted. 

These observations motivate our investigation of the stream processing strategies and suggesting new avenues of research in 

temporal query optimization techniques. We have considered stream processing techniques for processing various temporal join 

and semijoin operators.  

Given data integrity constraints and a temporal query, we discussed the effect of various sort orderings of streams of tuples on 

the efficiency with which the operator is implemented and the local workspace requirement in the stream processing 

environment. In particular, we note that the optimal sort order may depend on the query itself and the statistics of data instances.  

We have also discussed semantic query optimization in temporal databases. In temporal databases such as in (321, relations are 

augmented with time attributes such as Validation and ValidTo. Users are not allowed to update these attributes directly 

although a set of temporal operators are provided for data manipulation. From an algebraic manipulation point of view, these 

system-defined attributes are the same as any user-defined attributes. The main difference becomes evident when the semantics 

of Validfiom and ValidTo attributes are utilized in the semantic query optimization process. As we can see from the 

Superstar example, the system might not be able to evaluate the query using Contained-semijoin without knowing the “intra-

tuple” integrity constraint. There are many directions for future research. We are currently pursuing the following areas: a 

complete temporal data model, statistical information gathering and formalizing semantic query optimization in temporal 

databases.  
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