
© 2018 JETIR December 2018, Volume 5, Issue 12 www.jetir.org (ISSN-2349-5162)

JETIR1812237 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 261

 An algorithm to improve quality of image perception

1Deepa Narayanan
1Student

1 Department of Computer Science,
1Vivekanand Education Society’s Institute of Technology, Mumbai, India

Abstract : OpenCV provides an inbuilt functionality which improves the perception of an input image. However, if the

redundancy in the background is greater than the ROI (Region of Interest), the perception algorithm in OpenCV may give loss of

accuracy in the image as the output. For example, while scanning the image of a passbook. Main purpose of this research is to

improve the quality of image perception by extracting the major coordinates that surround the ROI and supplying the same to the

perception algorithm given by OpenCV. Various image processing techniques have been applied in this paper on the sample test

image and a combination of them provides dramatic results. The different algorithms used are also compared and outcomes of the

same are tabulated to provide optimum results.

IndexTerms - ApproxPolyDP, contours, Image Perception, masking, OpenCV, threshold

I. INTRODUCTION

Digitalization is progressing at a rapid rate. It has become mandatory to convert the manual documents in digital form. For

simplifying the same, OCRs have been used, which help people to convert text from images to type written format. However, this

has to be done by scanning the documents properly and then supplying it to the OCR tools. As humans, it is not expected to see

much of perfection from the user who is scanning the document with his camera lens and supplying to the OCR for textual

conversion. Perception is an important aspect when it comes to image correction and it captures a 3D image in 2D frame. While

correcting the perception of an image it is important to note that the ROI is not lost and at the same time, get rid of redundant

background. The research begins with exploring the primary requirements of what the perspective transformation requires to

correct the input image. Drawing contours around our ROI helps to determine which portion of image should be retained and which

should be shun off. By default OpenCV demands a 3x3 transformation matrix, where straight lines are left uncorrected and slanted

lines are tried to get in alignment with the 2 dimensional axis. It is mandatory to supply the 4 coordinates to the algorithm out of

which 3 ought to be non linear. This ensures that the coordinates are the 4 end points of our ROI. Manually entering the coordinates

to correct the image may seem a bit tedious as it deals with pixel level coordinates. This research aims at defining a process by

which, we are able to locate the contour of our ROI and thereby self-generate the four coordinates for supplying it to the perception

algorithm. Proposed in this paper is the methodology employed to extract the ROI..

II. PROPOSED METHODOLOGY

A series of image processing steps were applied to build this algorithm. This proposed system is compared with other alternatives

for comparison purposes.

The methodology for the proposed system is as follows

1) Grayscaling

Gray scaling of images are done to reduce the complexity. In this method, we convert the colored images to grayscale form to

define the edges prominently for applying algorithms like canny edge detection and masking. In order to reduce computational

complexity the grayscale representations are often in place of operating on color images directly [2]. In image processing, gray

scaling helps us to improve the efficiency by providing focus on our real time application than dealing with complex colors in the

RGB. All interfaces like Matlab and Python provide simplified development in grayscale mode. [1] [6]

The simple in built function provided by OpenCV,

imgray = cv2.cvtColor(im,cv2.COLOR_BGR2GRAY) …eq (1)

where im is the name of input image and the imgray is the variable

This equation will convert original image to gray scale

http://www.jetir.org/

© 2018 JETIR December 2018, Volume 5, Issue 12 www.jetir.org (ISSN-2349-5162)

JETIR1812237 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 262

Fig.1: Grayscale image

2) Adaptive threshold

Adaptive Thresholding results in binarization of images by depicting variations in different threshold values.[6] A threshold value

is defined beforehand and those which exceed the set value are described by black and the rest by white. [2] This method is useful

in performing segmentation by fixing the pixels of images depending on the intensity values and threshold value and is applied on

the gray scale of original image. Here, the spatial image pixels can be changed over dynamically and it can be used to calculate

the threshold for smaller regions in the images. [3]

The adaptive threshold value to applied using the following function,

thresh=cv2.adaptiveThreshold(imgray,255,cv2.ADAPTIVE_T HRESH_MEAN_C,cv2.THRESH_BINARY,51,2) …eq (2)

where, imgray is the gray scaled image as mentioned in equation (1), ADAPTIVE_THRESH_MEAN_C is the threshold value

from the mean of neighborhood area, the maximum value of which is 255. The block size decides the size of neighborhood area.

In this case 51 is the block size calculated from it and 2 is the constant value subtracted from the threshold.

The image from equation (1) is converted to binarized image with the help of Adaptive Thresholding as in,

Fig.2: Binarization

http://www.jetir.org/

© 2018 JETIR December 2018, Volume 5, Issue 12 www.jetir.org (ISSN-2349-5162)

JETIR1812237 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 263

3) Contour generation

3.1 Contours

Contours are defined as a curve which traces the boundary of objects having the same color intensity. After successfully

binarizing the image, now it is time to trace out the edges of our ROI. An image may contain redundant data in the background as

well. It is majorly used to differentiate all the distinct objects in the given image. Better results are generated on binary images,

hence the above step has been recommended. During this process contours are generated around every small complete object that

may not be required by us. However, we just need to concentrate on the largest contour generated that will by default be our ROI.

Contour generation can be improvised by removing the noise from the image. For this some filter algorithms can be used. [4]

The following function has been used to get optimal outline along the ROI

contours,hierarchy=cv2.findContours(thresh,cv2.RETR_EXT ERNAL,cv2.CHAIN_APPROX_NONE) …eq (3)

Every contour generated is stored as a vector of points after detecting them, Numpy array of (x, y) coordinates. [6] The information

topology is stored in the hierarchy parameter which decides if a generated contour has any parent or child. The input image is taken

from the previous step, thresh. RETR_EXTERNAL flag returns the extreme outer flags only. This may help us to get rid of some

minor redundant portions in the image which do not belong to our ROI or form a separate region inside the ROI.

CHAIN_APPROX_NONE has been used to extract all the boundary points of the contours. Instead we could also use

CHAIN_APPROX_SIMPLE which could directly give us 4 coordinates of the boundary points, but as mentioned earlier,

considering our image has much redundant data in the background, the coordinates so generated were very far or within the ROI

thereby generating data loss.

3.1 Extracting the largest contour

The largest contour is recovered in the following format,

largest_areas = sorted(contours, key=cv2.contourArea)

cnt = largest_areas[-1] …eq (4)

Out of all the generated contours, we will concentrate on the largest one as that will be the ROI or the scanned document.

largest_areas will contain all the regions arranged in increasing order of their areas, out of them we extract the largest one that is,

the last in sorted list. cnt contains a collection of points in the form of numpy array. [6]

4) Masking and plotting

In order to remove the actual contouring boundary and get the ROI as a continuous object, we apply mask. This has been used to

recalculate each pixels value in an image so that the inner contours that may still exist as a separate entity may merge with the

major ROI, thereby leaving a masked ROI according to a mask matrix. This mask holds values that will adjust how much influence

neighboring pixels (and the current pixel) have on the new pixel value. The image is then cropped out of the mask and stored in

black and white format. This is the masked portion for sample image, Figure (3).

Fig.3: Masking and plotting

http://www.jetir.org/

© 2018 JETIR December 2018, Volume 5, Issue 12 www.jetir.org (ISSN-2349-5162)

JETIR1812237 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 264

4.1 ApproxPolyDp

ApproxPolyDp is used to improve the coordinate plotting precision and mark out circles along the edges. In order to print more

points along the contours, ApproxPolyDp and epsilon (0.01 gives better results than 0.1) is used. ApproxPolyDp, helps to

approximately points forming a near-to-perfect polygon. It is used for contour approximation. Depending upon the precision

specified, it approximates a contour shape to another shape with less number of vertices. The maximum distance from contour to

approximated contour is denoted by an epsilon which is supplied as the second parameter. It is an accuracy parameter.[6]

epsilon = 0.01*cv2.arcLength(cnt,True)

approx = cv2.approxPolyDP(cnt,epsilon,True) …eq (5)

4.2 Four Point coordinate plotting

The requirement is only for 4 points from the above plotted points to give it to the perspective algorithm. Hence it is a must to filter

out them. 2 approaches were tried :

4.2.1 To find the min max from x and y coordinates and generating 4 points.

The coordinates extracted in approx is stored in the form of numpy array. The maximum and minimum of X and Y coordinates

are noted from this array to give the four extreme coordinates.

cv2.circle(im,(xmin,ymin),10,[255,0,102],-1)

cv2.circle(im,(xmin,ymax),10,[255,0,102],-1)

cv2.circle(im,(xmax,ymin),10,[255,0,102],-1)

cv2.circle(im,(xmax,ymax),10,[255,0,102],-1)

4.2.2 Find the point that either lies inside or on the contours to get more precision.

for points in approx:
x1 = points[0][0]

y1 = points[0][1]

dist = cv2.pointPolygonTest(cnt,(x1,y1),False)

if dist == -1 or dist == 0:
cv2.circle(im,(x1,y1),15,[43,255,0],-1)

print("Green Coordinates")

print(x1,y1)

III. CANNY EDGE DETECTION AND HULL DEFECT CONVEXITY

In order to test with various other algorithms, two more image processing steps were tried, namely Canny Edge Detection and

Hull Defect Convexity. The Canny edge detection algorithm can be initiated by smoothening the image with Gaussian filter

followed by computing gradient intensity representation. It is a multi-stage algorithm and we will go through each stages such as

noise reduction, finding intensity gradient of the Image…etc. Tracking of edges by suppressing the weak one and highlighting the

strong ones is done with the help of Canny Edge Detection. Hull Convexity is used to trace all points that may give a complete

polygon. This helps in determining the skeleton of the ROI. The algorithm checks for any defects along the convex space and

corrects by reforming the bulges if any. [6]

hull = cv2.convexHull(cnt,returnPoints = False)

defects = cv2.convexityDefects(cnt,hull) …eq (6)

IV. COMPARISON

Other methods were tried as well, however, the masking of the above was optimum. Testing of the same was done on 14 images.

Various methods included applying Canny Edge Detection with 0.01 epsilon value, Hull Defect Convexity, Hull Defect

Convexity with 0.01 epsilon value and lastly Adaptive Threshold with masking on the gray scale image as shown,

http://www.jetir.org/

© 2018 JETIR December 2018, Volume 5, Issue 12 www.jetir.org (ISSN-2349-5162)

JETIR1812237 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 265

Table IV: Comparison with test images

V. FLOWCHART

 A

http://www.jetir.org/

© 2018 JETIR December 2018, Volume 5, Issue 12 www.jetir.org (ISSN-2349-5162)

JETIR1812237 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 266

 A

http://www.jetir.org/

© 2018 JETIR December 2018, Volume 5, Issue 12 www.jetir.org (ISSN-2349-5162)

JETIR1812237 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 267

 B

B

Fig.3: Flowchart

VI. PERCEPTION ALGORITHM

The 4 coordinate points generated with the help of above algorithm needs to be supplied to the perception algorithm as shown

below along with the dimensions of output image. Applications of this feature can be extended to supplying the corrected image

to the OCR so that there is minimum data loss and more accuracy in detection of text.[6]

points1 = np.float32([[x1,y1],[x2,y2],[x3,y3],[x4,y4]])

points2 = np.float32([[x1’,y1’],[x2’,y2’],[x3’,y3’],[x4’,y4’]])

final_img = cv2.getPerspectiveTransform(points1,points2) …eq (6)

VII. CONCLUSION

Thus, using image processing this research has helped us to successfully generate an algorithm which will accept the image and

inputs and mark our 4 corner points from the ROI which can be further given to the perception algorithm. Various steps mentioned

in the above procedure include a series of image processing with was applied on 14 different images to study the influence of

combination of different techniques as mentioned in analysis chart. The block size in adaptive threshold needs to be changed as per

the requirement of our document and the noise level in the image and neighborhood pixels can affect the binarization of image.

REFERENCES

[1] Khobragade, Kavita. (2012). A Comparative study of Converting Coloured Image to Gray-scale Image using Different

Technologies. (references)

[2] Kanan C, Cottrell GW (2012) Color-to-Grayscale: Does the Method Matter in Image Recognition? PLoS ONE 7(1): e29740.

2014 International Conference on Control, Instrumentation, Communication and Computational Technologies (ICCICCT)

[3] P. Roy, S. Dutta, N. Dey, G. Dey, S. Chakraborty and R. Ray, "Adaptive thresholding: A comparative study," 2014

International Conference on Control, Instrumentation, Communication and Computational Technologies (ICCICCT),

Kanyakumari, 2014, pp. 1182-1186.

[4] C. Huang, D. Chen and X. Tang, "Implementation of Workpiece Recognition and Location Based on Opencv," 2015 8th

International Symposium on Computational Intelligence and Design (ISCID), Hangzhou, 2015, pp. 228-232.

[5] Suzuki S. and Abe K., Topological Structural Analysis of Digitized Binary Images by Border Following.Computer Vision

Graphics and Images Processing,1985,vol.30, pp.32-46.

[6] “The OpenCV Reference Manual Release 2.4.9.0”,2014.

http://www.jetir.org/

