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ABSTRACT 

In traditional studies of graph theory, the graphs allow only one edge to be incident to any 

two vertices, not necessarily distinct, and the graph morphisms must map edges to edges and vertices to 

vertices while preserving incidence. The most common category considered in (undirected) graph theory is a 

category where graphs are defined as having at most one edge incident to any two vertices and at most one 

loop incident to any vertex. Graph coloring is one of the early areas of graph theory. The problem of coloring 

a map so that adjacent regions get different colors translates into a graph coloring problem in the following 

way: Given a map with regions, we form a graph G by representing each region with a vertex and putting an 

edge between two vertices if the corresponding regions are adjacent on the map. There is a coloring of the 

map such that neighboring regions get different colors if and only if there is an assignment of labels to the 

vertices of G such that vertices which are joined by an edge are assigned different labels. 
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INTRODUCTION 
 

Graph theory is one of the branches of modern mathematics having experienced a most impressive 

development in recent years. In the beginning, Graph theory was only a collection of recreational or 

challenging problems like Euler tours or the four colouring of a map, with no clear connection among them, 

or among techniques used to attach them. The aim was to get a “yes” or “no” answer to simple existence 

questions. Under the impulse of Game Theory, Management Sciences and Transportation Network Theory, 

the main concern shifted to the maximum size of entities attached to a graph. 

 

A graph: 

A graph is a pictorial representation of a set of objects where some pairs of objects are connected by links. 

The interconnected objects are represented by points termed as vertices, and the links that connect the vertices 

are called edges. 
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Figure 1 A an example of a graph 

Applications of Graph Theory 

 

Graphs are among the most ubiquitous models of both natural and human-made structures. They can be used 

to model many types of relations and process dynamics in physical, biological and social systems. Many 

problems of practical interest can be represented by graphs. 

Graph-theoretic methods, in various forms, have proven particularly useful in Linguistics, since natural 

language often lends itself well to discrete structure. Traditionally, syntax and compositional semantics follow 

tree-based structures, whose expressive power lies in the Principle of Compositionality, modeled in a 

hierarchical graph. Within lexical semantics, especially as applied to computers, modeling word meaning is 

easier when a given word is understood in terms of related words; semantic networks are therefore important 

in computational linguistics. Still other methods in phonology (e.g. Optimality Theory, which uses lattice 

graphs) and morphology (e.g. finite-state morphology, using finite-state transducers) are common in the 

analysis of language as a graph. Indeed, the usefulness of this area of mathematics to linguistics has borne 

organizations such as Text Graphs, as well as various 'Net' projects, such as Word Net, Verb Net and others. 

 

In Mathematics, graphs are useful in geometry and certain parts of topology, e.g. Knot Theory. Algebraic 

graph theory has close links with group theory. A graph structure can be extended by assigning a weight to 

each edge of the graph. Graphs with weights or weighted graphs are used to represent structures in which pair 

wise connections have some numerical values. For example, if a graph represents a road network, the weights 

could represent the length of each road. A digraph with weighted edges in the context of graph theory is called 

a network. Network analysis has many practical applications, for example, to model and analyze traffic 

networks. The field of mathematics plays a vital role in various fields. One of the important areas in 

mathematics is graph theory which is used in structural models. This structural arrangements of various 

objects or technologies lead to new inventions and modifications in the existing environment for enhancement 

in those fields. Graph theoretical concepts are widely used to study and model various applications, in different 

areas. They include, study of molecules, construction of bonds in chemistry and the study of atoms. Similarly, 

graph theory is used in sociology for example to measure actors’ prestige or to explore diffusion mechanisms. 
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Representation of a graph 

 

It is customary to represent a graph by a diagram and refer to the diagram itself as the graph. Each point is 

represented by a small dot and each line is represented by a line segment joining the two points with which 

the line is incident. Thus a diagram of graph depicts the incidence relation holding between its points and 

lines. In drawing a graph it is immaterial whether the lines are drawn straight or curved, long or short and 

what is important is the incidence relation between its points and lines. 

N-Graph 

 

A basic construction in the theory of n-graphs is fusion. Consider two points u and v in an n-graph G (or in 

two n-graphs G1 and G2 and let G* be the n-graph obtained by 

 

(1) removing u, v and all edges connecting them 

(2) Re-connecting the ‘free’ edges (previously incident to one of u or v) of like color. 

 

Then G* is said to be obtained from G by fusion on u and v. If there are m ≥ 1 edges connecting u and v then 

the graph removed in step (1) is called an m-dipole and the fusion is called removing a dipole. The inverse 

operation is called adding a dipole. If J denotes the set of colors of a dipole D of an n-graph G and if u and v 

lie in the same residue of type [n] -.J, then D is called degenerate. Otherwise D is non-degenerate. 

Call two n-graphs equivalent if one can be obtained from the other by a sequence of adding or removing non-

degenerate dipoles. Figure. 1.9 shows three equivalent 3-graphs. First dipole dl is added and then dipole d2 is 

removed. Removing a non-degenerate dipole in G corresponds in G to removing a ball and identifying two 

hemispheres on the boundary in the natural way. This makes the ‘if’ part of the following theorem reasonable. 

What is surprising is that the converse is also true [4]. 

 

Colored Graph Properties 

 

Definition 1. A colored graph is a graph in which each vertex is assigned a color. A properly colored graph 

is a colored graph whose color assignments conform to the coloring rules applied to the graph. The chromatic 

number of a graph G, denoted _(G), is the least number of distinct colors with which G can be properly 

colored. 

 

The concept of the chromatic number of a graph is one of the most interesting in all of graph theory. While 

there is no general rule defining a graph's chromatic number, we instead place an upper bound on the 

chromatic number of a graph based on the graph's maximum vertex degree. That is, we say that for a graph G 

with maximum vertex degree , X (G) ≤ f () where f () is some function of the maximum vertex degree. 
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The remainder of this paper deals with the problem of finding a suitable upper bound for the chromatic number 

of any graph in each of three sets of coloring rules. We begin with the simplest set of rules, regular coloring. 

 

 

Figure 2 properly colored graph of chromatic number 4 

Regular Coloring 

As stated above, regular coloring is a rule for coloring graphs which states that no two adjacent vertices may 

have the same color. See Figure 3 for an example. In the figure, graph G is properly colored by regular coloring 

rules, while G’ is not, as it contains two adjacent vertices that are both colored with color R. 

 

 

Figure 3 Two colored graphs G is properly colored, G’ is not. 

 

 
 

Given this coloring rule, it becomes apparent why we may safely ignore disconnected graphs in our 

exploration of graph coloring. As the coloring rules deal with vertices that are adjacent, the colors on the 

vertices of each disjoint part of a disconnected graph have no bearing whatsoever on the colors of the vertices 

on any other disjoint part. Thus, we may treat the each of the disjoint parts of the graph as if they were 

individual, connected graphs. 

 

Relationship between Colorings in Some Regular Graphs 

 

The concept of range coloring of order k was first presented by Lozano et al. (2009). In this paper, we shows 

that if a regular graph G admits an equitable range coloring c of order  with ( + 1) colors then there is an 
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equitable total coloring of G - with the same set of colors - that extends c. We also show that there are infinite 

graphs satisfying this theorem. Such graphs are called Harmonics. We generate Harmonic Graphs which are 

Cartesian products of cycles and their complements. These graphs are regular and they admit an equitable 

total coloring under the above conditions. 

 

Concepts: 

A graph G(V, E) is k-regular if all its vertices have the same degree k. A complete graph on n vertices is a (n 

− 1)-regular graph; and it is denoted Kn. Let M be a matching in a graph G; a vertex v of G is said M-saturated 

by G if some edge of M is incident to v; otherwise v is M-unsaturated. A matching that saturates all vertices 

of G is called a perfect matching. 

 

Cartesian product of Graphs 

 

The Cartesian product G  H of two graphs G and H with vertex sets V (G) and V (H) is the graph such that 

its vertex set is V (G)  H(G). Any two vertices (g, h) and (g’,h’) of the GH are adjacent whenever g = g’ 

and h is adjacent to h’ in H or h = h’ and g is adjacent with g’ in G. This definition can be found in Kemnitz 

& Marangio (2003), Seoud et al. (1997) or Zmazek & Zerovnik (2002). 

 

Conclusion 

The equitable coloring is valuable because it can be used in task allocation in general, in order to guarantee 

the balance in the distribution of tasks. A colouring of a strongly regular graph is an allocation of colours (or 

treatments) to the vertices of the graph. Such a colouring is balanced if every pair of distinct colours occurs 

equally often on the ends of an edge. When the graph is the complete regular multipartite graph a balanced 

colouring is just a balanced incomplete-block design, or 2-design. strongly regular graphs may be generalized 

to arbitrary association schemes. When the association scheme is a collection of circular blocks then a 

colouring is balanced if the design in blocks is a 2-design and there is undirectional neighbour balance at all 

distances around the circle. 
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