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Abstract. Our main objective of this research is to study the time-fractional coupled nonlinear partial 

differential equations viz., the system of third order KdV equations and the generalized coupled Hirota 
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simple to use. 
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1.  Introduction 

   The advantage of applying fractional models of differential equations in physical systems is actually 

their non local property. Fractional order derivative is a non local property while integer order derivative is 

local in nature. It shows that the upcoming state of physical system is also dependent on all of its historical 

states in addition to its present state. Hence, the fractional models are more realistic and fractional 

derivatives are often used in mathematical modeling of acoustics, fluid mechanics, anomalous diffusion, 

electrochemistry, signal processing, biology, etc., [1–5]. Most of the nonlinear FDEs do not possess exact 

solutions, therefore some numerical techniques are necessary to be used. In the past two decades, the 

problem of handling numerical solutions of FDEs has attracted the attention of many researchers. They are 

taking keen interest in developing numerical techniques for FPDEs. Recently, various techniques have been 

developed to solve nonlinear FPDEs such as, Adomian decomposition method [6], differential transform 

method [7], homotopy perturbation method [8], homotopy analysis method [9], homotopy analysis 

transform method [10], homotopy perturbation transform method [11,12], etc. 

     The area of fractional calculus and fractional differential equations (FDEs) has many applications in 

applied sciences and technology.  In fact, many physical processes can be modeled using differential 

equations, where the fractional order derivatives can be considered in comparison to the system of 

differential equations which involves the integer order derivatives. [13-16]. In particular, Sun et al. [17] 

introduced real world applications in many branches of science and engineering, where nonlocality plays a 

key role. In this study, they have marked the several researchers around the globe, who have successfully 

proposed and analyzed mathematical models involving differential equations involving fractional order 

derivatives.  

            Fernandez et al. [18] have considered an integral transform introduced by generalized multi-

parameter Mittag-Leffler functions. Moreover, Prakash et al.[19] suggested a new computational technique; 

namely new iterative sumudu transform method to solve numerically nonlinear time- 

fractional Zakharov-Kuznetsov equation in two dimensions. Also, Yusuf et al [20] have investigated the 

time fractional dispersive long wave equation and its corresponding integer order.  

 Motivated by the above discussions, in this paper, we propose the fractional variational iteration method 

(FVIM) [21-23] to get the approximate analytic solution of nonlinear time-fractional coupled PDEs and 

results are compared with recently developed techniques homotopy perturbation transform method [24]. 
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FVIM directly attacks the nonlinear FDEs without a need to find certain polynomials for nonlinear terms 

and gives result in an infinite series, that rapidly converges to analytical solution. This method does not 

require linearization, discretization, little perturbations or any restrictive assumptions.  

        The time –fractional coupled PDEs describe particle motion with memory in time. Space-fractional 

derivative arises when variations are heavy-tailed and describes particle motion that accounts for variation 

in the flow field over the entire system. Also, the fraction in the time derivative suggests a modulation or 

weighting of system memory. Therefore, the study of time-fractional coupled PDEs is very important. 

       This paper is organized in the following manner. Section 1 is introductory. In section 2, we  

represents the brief review of preliminary descriptions of Caputo fractional derivative. In section 3, the 

working of numerical method FVIM. Section 4, illustrates two numerical examples on which, FVIM is 

applied to find the approximate solutions. In last Section 5, we have concluded the paper. 

2.  Preliminaries 

Definition 2.1 [3]. Consider a real function h (χ), χ > 0. It is called in space 𝐶𝜁 , 𝜁 𝜖 𝑅 if  a real no. b (> 𝜁), 

s.t. h (χ) = χ b h1 (χ), ℎ1 𝜖 𝐶[0, ∞). It is clear that 𝐶𝜁 
⊂  𝐶𝛾 if γ ≤ 𝜁.  

Definition 2.2 [3]. Consider a function h (χ), χ > 0. It is called in space 𝐶𝜁
𝑚, 𝑚 𝜖 𝑁 ∪ {0} if ℎ(𝑚)𝜖 𝐶𝜁. 

Definition 2.3 [3]. Left sided Caputo fractional derivative of ℎ, ℎ 𝜖 𝐶−1
𝑚 , 𝑚 ∈ 𝑁 ∪ {0}, 

   𝐷𝑡
𝛽

ℎ(𝑡) = {
[𝐼𝑚−𝛽ℎ(𝑚)(𝑡)], 𝑚 − 1 < 𝛽 < 𝑚, 𝑚 𝜖 𝑁,

𝑑𝑚

𝑑𝑡𝑚 ℎ(𝑡), 𝛽 = 𝑚,
 

𝒂.   𝐼𝑡
𝜁

ℎ(𝑥, 𝑡) =
1

𝛤𝜁
∫ (𝑡 − 𝑠)𝜁−1ℎ(𝑥, 𝑠)𝑑𝑠;  𝜁, 𝑡 > 0.

𝑡

0
  

𝒃.  𝐷𝜏
ν𝑉(𝑥, 𝜏) = 𝐼𝜏

𝑚−ν 𝜕𝑚𝑉(𝑥,𝜏)

𝜕𝑡𝑚 , 𝑚 − 1 < ν ≤ 𝑚.  

𝒄.   𝐷𝑡
𝜁

𝐼𝑡
𝜁

ℎ(𝑡) = ℎ(𝑡) , 𝑚 − 1 < ζ ≤ 𝑚, 𝑚 𝜖 𝑁. 

𝒅.   𝐼𝑡
𝜁

𝐷𝑡
𝜁

ℎ(𝑡) = ℎ(𝑡) −  ∑ ℎ𝑘(0+)
𝑡𝑘

𝑘!

𝑚−1
1  , 𝑚 − 1 < ζ ≤ 𝑚, , 𝑚 𝜖 𝑁. 

 𝒆.  𝐼𝑣𝑡𝜁 =  
𝛤(𝜁+1)

𝛤(𝑣+𝜁+1)
𝑡𝑣+𝜁 . 

Definition 2.4. Laplace transform of Caputo fractional derivative is  

𝐿[𝐷𝛼𝑔(𝑡)] = 𝑝𝛼𝐹(𝑝) − ∑ 𝑝𝛼−𝑘−1

𝑛−1

𝑘=0

𝑔(𝑘)(0), 𝑛 − 1 < 𝛼 ≤ 𝑛. 

3.  Basic plan of FVIM      

 To illustrate the process of solution by FVIM, we consider the time-fractional coupled nonlinear partial 

differential equation 

𝐷𝑡
𝛼𝑢(𝑥, 𝑡) + 𝑆(𝑥, 𝑡) + 𝑄(𝑥, 𝑡) = 𝑔(𝑥, 𝑡),           0 <  𝛼 ≤ 1,                             (1) 

By FVIM, correction functional is formed as
 

𝑢𝑛+1(𝑥, 𝑡) =  𝑢𝑛(𝑥, 𝑡) +  ∫ 𝜆 [
𝜕𝛼𝑈𝑛(𝑥,𝜏)

𝜕𝑡𝛼
+ 𝑆(𝑥, 𝑡) + 𝑄(𝑥, 𝑡) − 𝑔(𝑥, 𝑡)]

𝑡

0
 (dτ)α                                              (2) 

where λ is a Lagrangian multiplier.

        

 

Now by variational theory, Lagrangian multiplier λ must satisfy 
𝜕𝛼𝜆

𝜕𝑡𝛼
|𝜏=𝑡    and   1 + λ|𝜏=𝑡 = 0.  

 Consequently, we obtain  λ = -1, 

and hence, from Eq.(3), We have 

𝑢𝑛+1(𝑥, 𝑡) =  𝑢𝑛(𝑥, 𝑡) −  ∫ [
𝜕𝛼𝑈𝑛(𝑥,𝜏)

𝜕𝑡𝛼 + 𝑆(𝑥, 𝑡) + 𝑄(𝑥, 𝑡) − 𝑔(𝑥, 𝑡)]
𝑡

0
 (dτ)α                                                (3) 

Now from Eq. (3), we can obtain successive approximations un(x, t), n ≥ 0. The functions un are restricted 

variations which means 𝛿𝑢𝑛̃ = 0. In this way, we get sequences un+1(x, t), n ≥ 0. Finally, the exact solution 

is obtained as  

                𝑢(𝑥, 𝑡) =  lim
𝑛→∞

𝑢𝑛(𝑥, 𝑡).  

4. Numerical Experiments 
In this section, we apply the proposed technique FVIM to some test examples. 

Example 4.1. Consider a linear time–fractional system of third order KdV equations            
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                      𝐷𝑡
𝛼𝑢 = 𝑢𝑥𝑥𝑥 + 𝑢𝑢𝑥 + 𝑣𝑣𝑥, 𝐷𝑡

𝛼𝑣 = −2𝑣𝑥𝑥𝑥 + 𝑢𝑣𝑥    0 <  𝛼 ≤ 1,                                          (4)                                              

with initial condition 𝑢(𝑥, 0) =  (3 − 6𝑡𝑎𝑛ℎ2 𝑥

2
) , 𝑣(𝑥, 0) =  (3√2𝑡𝑎𝑛ℎ2 𝑥

2
),                                                  (5) 

when 1  , the exact solution of Eqs.(4) - (5) is 

𝑢(𝑥, 𝑡) =  3 − 6𝑡𝑎𝑛ℎ2 (
𝑥+𝑡

2
) , 𝑣(𝑥, 𝑡) = 3√2𝑡𝑎𝑛ℎ2 (

𝑥+𝑡

2
)  

The initial solution can be taken as 𝑢0 =  (3 − 6𝑡𝑎𝑛ℎ2 𝑥

2
) , 𝑣0 = (3√2𝑡𝑎𝑛ℎ2 𝑥

2
), then 

u1(x, t) =  u0 −  ∫ [
∂αu0

∂τα −
∂3u0

∂x3 +  u0
∂u0

∂x
+ v0

∂v0

∂x
]

t

0
 (dτ)α,    

               =  
3

2
sech2 (

x

2
) (3 − cosh x +

tαsech3 (
x

2
) (−19 sinh(

x

2
)+5 sinh  (

3x

2
)  ) 

⎾(1+α)
),  

v1(x, t) =  v0 −  ∫ [
∂αv0

∂τα + 2
∂3v0

∂x3 +  u0
∂v0

∂x
]

t

0
 (dτ)α  

               =  3√2tanh2 (
x

2
) −

tα

⎾(1+α)
(−3√2sech2 (

x

2
) tanh (

x

2
) (3 − 6tanh2 (

x

2
)) + 2 (−6√2sech4 (

x

2
) tanh (

x

2
) +

                     3√2sech2 (
x

2
) tanh3 (

x

2
)))  

Continuing in this way, the next iterations can be computed using Maple 13.  

Finally, the solution is found as  

                        𝑢(𝑥, 𝑡) =  lim
𝑛→∞

𝑢𝑛(𝑥, 𝑡),  𝑣(𝑥, 𝑡) =  lim
𝑛→∞

𝑣𝑛(𝑥, 𝑡). 

 

 
                                                   (a)                                 

 

               

                                                                                     (b) 
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                                                                                           (c) 

   
         (d) 

 

Fig. 1: Exact solution vs approximate solution. (a) Exact solution for u(x,t); (b) 3rd order approx. solution 

when 𝛼 = 1 for u(x,t); (c) Exact solution for v(x,t); (d) 3rd order approx. solution when 𝛼 = 1 for v(x,t); 

Example 4.2 . Consider a linear time–fractional generalized KdV equations            

𝐷𝑡
𝛼𝑢 =

1

2
𝑢𝑥𝑥𝑥 − 3𝑢𝑢𝑥 + 3(𝑣𝑤)𝑥,                                                     

𝐷𝑡
𝛼𝑣 = 3𝑢𝑣𝑥− 𝑣𝑥𝑥𝑥,                                                    0 <  𝛼 ≤ 1,                                                                (6) 

 𝐷𝑡
𝛼𝑤 = 3𝑢𝑤𝑥− 𝑤𝑥𝑥𝑥, 

with initial condition  

𝑢(𝑥, 0) =  (
−1

3
+ 2𝑡𝑎𝑛ℎ3𝑥) , 𝑣(𝑥, 0) =  (tanh 𝑥), 𝑤(𝑥, 0) =  (

8

3
tanh 𝑥)                                                              (7) 

when 1  , the exact solution of Eqs.(6) - (7) is  

𝑢(𝑥, 𝑡) =  
−1

3
+ 2𝑡𝑎𝑛ℎ3(𝑥 + 𝑡), 𝑣(𝑥, 𝑡) =  tanh(𝑥 + 𝑡), 𝑤(𝑥, 𝑡) =  

8

3
 tanh  (𝑥 + 𝑡),  

 

The initial solution can be taken as 

 𝑢0 =  (
−1

3
+ 2𝑡𝑎𝑛ℎ3𝑥) , 𝑣0 =  (tanh 𝑥), 𝑤0 =  (

8

3
tanh 𝑥), then 

u1(x, t) =  u0 −  ∫ [
∂αu0

∂τα −
1

2

∂3u0

∂x3 + 3 u0
∂u0

∂x
+ 3

∂v0w0

∂x
]

t

0
 (dτ)α    

               =  
−1

3
+ 2𝑡𝑎𝑛ℎ3𝑥 − 

2𝑡𝛼𝑠𝑒𝑐ℎ2𝑥 (−3+2 tanh 𝑥 (−4+ 12 𝑠𝑒𝑐ℎ2𝑥 tanh 𝑥−3 𝑡𝑎𝑛ℎ3𝑥+9 𝑡𝑎𝑛ℎ4𝑥))

⎾(1+α)
,  

v1(x, t) =  v0 −  ∫ [
∂αv0

∂τα +
∂3v0

∂x3 +  3 u0
∂v0

∂x
]

t

0
 (dτ)α  

               =  tanh 𝑥 − 
𝑡𝛼𝑠𝑒𝑐ℎ2𝑥 (1+2𝑠𝑒𝑐ℎ2𝑥−2 𝑡𝑎𝑛ℎ2𝑥 (2+3 tanh 𝑥) )

⎾(1+α)
   

w1(x, t) =  w0 −  ∫ [
∂αv0

∂τα +
∂3w0

∂x3 + 3 u0
∂w0

∂x
]

t

0
 (dτ)α  
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                =
8

3
(tanh x −  

𝑡𝛼𝑠𝑒𝑐ℎ2𝑥 (1+2𝑠𝑒𝑐ℎ2𝑥 − 4𝑡𝑎𝑛ℎ2𝑥+ 6𝑡𝑎𝑛ℎ3𝑥  )

⎾(1+α)
 )     

 

Continuing in this way, the next iterations can be computed using Maple 13.  

Finally, the solution is found as  

               𝑢(𝑥, 𝑡) =  lim
𝑛→∞

𝑢𝑛(𝑥, 𝑡), 𝑣(𝑥, 𝑡) =  lim
𝑛→∞

𝑣𝑛(𝑥, 𝑡) & 𝑤(𝑥, 𝑡) =  lim
𝑛→∞

𝑤𝑛(𝑥, 𝑡).  

 

 
 

    (a) 

 

 

 

 

 
 

(b) 
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         (c) 

 

                                      

 
        (d) 

 

 
   (e) 
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 (f) 

 

Fig. 2: Exact solution vs approximate solution. (a) Exact solution for u(x,t); (b) 3rd order approx. solution 

when 𝛼 = 1 for u(x,t); (c) Exact solution for v(x,t); (d) 3rd order approx. solution when 𝛼 = 1 for v(x,t); (e) 

Exact solution for w(x,t); (f) 3rd order approx. solution when 𝛼 = 1 for w(x,t). 

5. Conclusion 

      In this work, fractional variational iteration method (FVIM) has been successfully applied to obtain an 

approximate solution of coupled nonlinear partial differential equations. On comparing the results of this 

method with HPTM [12], it is observed that FVIM is extremely simple and easy to handle the nonlinear 

terms. Maple 13 package is used to calculate series obtained from iteration. Further, the method needs much 

less computational work, which shows the fast convergent for solving nonlinear partial differential 

equations.  
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