PROPERTIES OF COMBINATION USING SUBFACTORIAL

G.GUNASUNDARI
Sri akilandeswari womens college
Vandavasi
Tamilnadu

Abstract

In this paper it is an attempt to derive some combination formulas using the ideas of subfactorial

Using this concept I have derived and proved the results of combination which and been already proved.

Keywords:

Combination, permutation, factorial, subfactorial

Introduction

The idea of this journal was highlighted on solving a mathematical puzzle where I firstly came to know about the notation subfactorial. I already derived the properties of permutation and in this paper I decided to solve the properties of combination using subfactorial. Here in this paper I solved the properties of combinations

Definition of subfactorial

!n is the number of dearrangement of n objects. That is the number of permutation of n objects in order that no object stands in its original position

Relation between factorial and subfactorial

$n!=!(n+1)$
we know that

$$
\begin{array}{rlrl}
n! & =1 & & n=0 \\
& =n(n-1)! & n>0 \\
!n & =1 & n=0 \\
& =(n-1)(n-1)! & n>0
\end{array}
$$

Result 1

$!(\mathrm{n}+1)=\mathrm{n}!\mathrm{n}$
!n=(n-1)!(n-1)
$=(\mathrm{n}-1)(\mathrm{n}-2)(\mathrm{n}-3)!(\mathrm{n}-3)$

Example:

$!5=4!4$

$$
=4 * 3!3
$$

$$
=4 * 3 * 2!2
$$

$$
=4 * 3 * 2 * 1!1
$$

$$
=4 * 3 * 2 * 1 * 1
$$

$$
=24
$$

Result 2

$n c_{r}=\frac{!(n+1)}{!(n-r+1)!(r+1)}$

Result 3

$\mathrm{n} c_{0}=1$

Proof:

$$
\begin{aligned}
\mathrm{n} c_{0}= & \frac{!(n+1)}{!(n-0+1)!(0+1)} \\
& =\frac{!(n+1)}{!(n+1)!1} \\
& =1
\end{aligned}
$$

Example

$$
\begin{aligned}
5 c_{0}= & \frac{!(6)}{!(6)!(0+1)} \\
& =\frac{1}{!1} \\
& =1
\end{aligned}
$$

Result 4

$n c_{n}=1$

Proof:

$$
\begin{aligned}
n c_{n}= & \frac{!(n+1)}{!(n-n+1)!(n+1)} \\
& =\frac{!(n+1)}{!(1)!(n+1)} \\
& =1
\end{aligned}
$$

Example

$$
\begin{aligned}
5 c_{5}= & \frac{!(5+1)}{!(5-5+1)!(5+1)} \\
& =\frac{!6}{!1!6} \\
& =1
\end{aligned}
$$

Result 5

$n c_{r}=\frac{n p_{r}}{!(r+1)}$

Proof:

$$
\begin{aligned}
n c_{r}= & \frac{!(n+1)}{!(n-r+1)!(r+1)} \\
& =\frac{!(n+1)}{!(n-r+1)} * \frac{1}{!(r+1)} \\
& =\frac{n p_{r}}{!(r+1)}
\end{aligned}
$$

Example:

$$
\begin{aligned}
5 c_{3}= & \frac{!(5+1)}{!(5-3+1)!(3+1)} \\
& =\frac{!6}{!3!4} \\
& =\frac{!6}{!3} * \frac{1}{!4} \\
& =\frac{5 p_{3}}{!(3+1)}
\end{aligned}
$$

Result 6

$n c_{r}+n c_{r-1}=(n+1) c_{r}$

Proof:

$n c_{r}+n c_{r-1}=\frac{!(n+1)}{!(n-r+1)!(r+1)}+\frac{!(n+1)}{!(n-r+1+1)!(r-1+1)}$

$$
\begin{aligned}
& \quad=!(n+1)\left[\frac{1}{!(n-r+1)!(r+1)}+\frac{1}{(n-r+1)!(n-r+1)!(r)}\right] \\
& =!(\mathrm{n}+1)\left[\frac{1}{!(n-r+1) r!(r)}+\frac{1}{(n-r+1)!(n-r+1)!(r)}\right] \\
& =\quad!(\mathrm{n}+1) \frac{n-r+1+r}{(n-r+1)!(n-r+1) r!(r)} \\
& =!(\mathrm{n}+1) \frac{n+1}{(n-r+1)!(n-r+1) r!(r)} \\
& =\frac{!(n+2)}{!(n-r+2)!(r+1)} \\
& =\mathrm{n}+1 c_{r}
\end{aligned}
$$

Result 7

$n c_{r}=\frac{n}{r}(n-1) c_{r-1}$

Proof:

$$
\begin{aligned}
\frac{n}{r}(n-1) c_{r-1} & =\frac{n}{r} \frac{!(n-1+1)}{!(n-1-r+1+1)!(r-1+1)} \\
& =\frac{n}{r} \frac{!(n)}{!(n-r+1)!(r)} \\
& =\frac{!(n+1)}{!(n-r+1)!(r+1)} \\
& =\mathrm{n} c_{r}
\end{aligned}
$$

Result 8

$n c_{r}=\frac{n(n-1)}{r(r-1)}(n-2) c_{r-2}$

Proof:

$$
\begin{aligned}
& \frac{n(n-1)}{r(r-1)}(n-2) c_{r-2}=\frac{n(n-1)}{r(r-1)} \frac{!(n-2+1)}{!(n-2-r+2+1)!(r-2+1)} \\
&=\frac{n(n-1)}{r(r-1)} \frac{!(n-r+1)!(r-1)}{} \\
&=\frac{n!n}{r!r!(n-r+1)} \\
&=\frac{!(n+1)}{!(n-r+1)!(r+1)} \\
&=\mathrm{n} c_{r}
\end{aligned}
$$

Conclusion

In this paper I have derived some properties of combination using the idea called subfactorial. And in future I decided to solve few more formulas using this fact subfactorial

References:

Gunasundari G "properties of permutation using subfactorial" Vidhyawarta international multilingual research journal, April 2018, issue 48, vol-01 ISSN 23199318

