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Abstract :  A Reverse vertex-magic total labeling of a graph with  v  vertices and e  edges is defined  as a one-to-one map taking 

the vertices and edges onto the integers 1,2,…, v e  with the property that the subtract of the  label on a vertex and the labels on 

its incident edges is a constant independent of the choice of vertex. Properties of these labelings are studied. It is shown how to 

construct labelings for several families of graphs, including cycles, paths, complete graphs of odd order and the complete bipartite 

graph ,n nK . It is also shown that labelings are impossible for some other classes of graphs. 

 

IndexTerms – Vertex-magic Labeling, Regular Graphs, paths, Cycles. 

  

I. INTRODUCTION 

 

All graphs are finite, simple and undirected. The graph G has vertex set  ( )V V G  and edge set ( )E E G  and we let  

( )e E G  and ( )v V G . A general reference for graph theoretic notions is [ ]. We will deal only with connected graphs, 

although the concepts apply equally to graphs with more than one connected component. 

 A labeling for a graph is a map that takes graph elements to numbers (usually positive or non-negative integers). In this paper the 

domain is the set of all vertices and edges_ while other labelings have used the vertex set alone, or more rarely the edge set alone. 

The most complete recent survey of graph labelings is [  ]. 

  Various authors have introduced labelings that generalize the idea of a magic square. Kotzig and Rosa[  ], for example, defined a 

magic labeling to be a labeling on the vertices and edges in which the labels are the integers from 1 to v e   and where the sum 

of labels on an edge and its two endpoints is constant. Related labelings have been studied by other authors and there are 

numerous variations in the terminology used. Readers are referred to[ ] for a discussion of these matters and a standardization of 

the terminology. That paper studies in detail the kind of labeling described above, which we will now refer to as an edge􀀀magic 

total labeling. 

In this paper we introduce the notion of a reverse vertex-magic labeling. This will be an assignment of the integers from 1 to 

v e  to the vertices and edges of G so that at each vertex, the vertex label and the labels on the edges incident at that vertex 

subtract to a fixed constant. More formally, a one-to-one map f  from E V  onto the integers {1,2,..., }e v  is a reverse 

vertex-magic labeling if there is a constant k so that for every vertex x 

 

                        

( ) ( , )f x f x y k 
                               

(1)  

where the sum is over all vertices y adjacent to x. Let us call the sum of labels at vertex x the weight of the vertex, so we require 

( )wt x k  for all x. The constant k is called the magic constant for f  . 

It is not hard to find examples of labelings for some graphs. One labeling for the graph 4K e  is shown in Figure 1. On the other 

hand, not every graph has a labeling. For the graph K2,since ( ) ( )f x f y , then ( ) ( , ) ( ) ( , )f x f x y f y f x y   , and so 

no labeling is possible. 
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In subsequent sections_ we show how to construct reverse vertex-magic labelings for several families of graphs and in some cases 

carry out complete enumerations of the admissible labelings. In addition, we determine several classes of graphs which cannot be 

labeled. The general flavour of the results that we have discovered so far can be summed up very roughly as follows: if there is 

not much variation among the degrees of the vertices then the graph possesses a labeling; if there is, then it does not. 

2. Basic Counting 

 

Set M e v   and let vS  be the sum of the vertex labels and eS  the sum of the edge labels. Clearly, since the labels are the 

numbers 1,2,…,M, we have as the sum of all labels 

                        

2

1

( 1) .
M

v eS S i M C   

                                          

 
At each vertex ix  we have ( ) ( , )if x f x y k  . We sum this over all v vertices ix . This subtracts each vertex label once 

and each edge label twice, so that  

                      
2v eS S vk 

                       
(2)  

 

 
Combining these two equations gives us 

2( 1) 3 eM C S vk  
                                     

(3)  

 

The edge labels are all distinct ( as are all the vertex labels). The edges could conceivably receive the e smallest labels or, at the 

other extreme, the e largest labels, or anything between. Consequently we have 

                                                  
1 1

e M

e

e

i S i


                                 (4)  

 

A similar result holds for vS . Combining (3) and  (4) we get 

     2 2 2 2( 1) 3 ( 1) 3 ( 1) 2 ( 1)M C e C vk v C M C       
 

which will give the range of feasible values for k. 

 
It is clear from (1) that when k is given and the edge labels are known, then the vertex labels are determined. So the labeling is 

completely described by the edge labels. Surprisingly, however, the vertex labels do not completely determine the labeling. 

Having assigned the vertex labels to a graph, it may be possible to assign the edge labels to the graph in several different ways. 

Figure 2 shows two labelings of W4, which have the same vertex labels but a different edge labeling. 

 

3. Regular Graphs  

 

 If a regular graph possesses a labeling, we can create a new labeling from it. Given a labeling f  for any graph G, define the map 

f   on E V  by 
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( ) 1 ( )i if x M f x   
               

for any vertex ix
,  and 

( ) 1 ( ),f xy M f xy for any edge xy                  

Clearly f   is also a one-to-one map from the set E V    to  1,2,...,e v  and we will call f    the dual of f . We have the 

following: 

 
Theorem 1: The dual of a reverse vertex-magic labeling for a graph G is a labeling if and only if G is regular. 

Proof:- Suppose f  is a reverse vertex-magic labeling for  G with ( )iwt x k . Then 

                     
( ) ( ) ( )i iwt x f x f xy     

                                1 ( ) ( 1 ( )M f x M f xy       

                                          ( 1)( 1)r M k    . 

where r is the number of edges incident at x. Clearly this is constant if and only if r is constant; in other words, if and only if G is 

regular. Then ( 1)( 1)r M k    is the magic sum for the dual.                     

The general problem of whether one can use a reverse vertex-magic labeling of a graph G to produce a labeling of some sub graph 

or super graph of G appears to be very difficult. The next theorem answers a very special case of this question for regular graphs. 

 

Theorem 2: Let G be a regular graph having a reverse vertex-magic labeling in which the label 1 is assigned to some edge e . 

Then the graph G e  has a reverse vertex-magic labeling. 

 

Proof:- Suppose G is an r-regular graph. Define a new mapping g  by ( ) ( ) 1i ig x f x   and ( ) ( ) 1g xy f xy  .  Now g  is 

a one-to-one mapping from E V  to  0,1,2,..., 1e v   . If we now delete the edge e  which is labeled 0 by g) from G, 

then g is a one-to-one map from ( )E e V   to  0,1,2,..., 1e v  . Also  

                       ( ) ( ) 1 ( ( ) 1)g i iwt x f x f xy     

                                             ( ) 1f iwt x r    

                                           1k r   . 

Thus  ( )g iwt x  is a constant k  and so g is a reverse vertex-magic labeling for  g e . 

 

Theorem 3:- If G is a regular graph and e an edge such that G - e has a reverse vertex-magic labeling, then that labeling is derived 

from a reverse vertex-magic labeling of G by the process described in Theorem 2. 

 

Proof:- Suppose G is an r-regular graph and let f  be any reverse vertex-magic labeling for  G - e where e is the edge 1 2x x . 

Adjoin the edge 1 2x x to G - e and define f( 1 2x x ). Now simply adding 1 to all the labels defines a new mapping  f   which is 

easily seen to be a reverse vertex-magic labeling for G having the label 1 appearing on the edge 1 2x x . If the reverse vertex-magic 

of f  is k, then the reverse vertex-magic of f   is 1k r  . 

 

4.Cycles and Paths 

 

The easiest regular graphs to deal with are the cycles. For cycles (and only for cycles) a opposite vertex-magic labeling is 

equivalent to a reverse edge-magic labeling and the reverse edge-magic labelings have already received some attention(see[  ] and 

the other papers cited there). 

 

Theorem 4:- The n-cycle Cn has a reverse vertex-magic labeling for any 3n  . 

 

Proof:- The constructions of Theorems of [  ] provide a reverse edge-magic labeling g for Cn for every    3n  . In other words 

there is a constant k so that 

 1 1( ) ( ) ( )i i i if x x f x f x k 
    

 
 

for all vertices xi of Cn. 

 If we define a new mapping f  by 1( ) ( )i i if x f x x 
 and 1 1( ) ( )i i if x x f x 

 , then we clearly have k as the weight at each 

vertex and so f  is a reverse vertex-magic labeling of G. 
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Corollary 1:-  The path Pn with n vertices has a reverse vertex – magic  labeling for any 3n  . 

 

Proof:- For each  3n   at least one of the reverse edge-magic labelings f   referred to in the proof of the theorem assigns the 

label 1 to a vertex. Then the corresponding reverse vertex-magic labeling f  will assign the label 1 to some edge e.  By Theorem 

2, Cn- e will have a reverse vertex-magic labeling. 

 

Corollary 2:-  Every labeling of Pn is derived from a labeling of Cn. 

 

Proof:- This follows immediately from Theorem 3. 

Using equations (3) and  (4), we can readily determine the feasible values of k for the n-cycle. We find 

                                     
5 1 1

2 2

v v
k

  
   

A systematic search has found exactly  4 labelings for the 3-cycle; one for each feasible value of k. As mentioned above, once k is 

given, the edge labels completely determine the labeling, so we list only the edge labels. 

                         k = 1           1,2,3    

                         k = -2         1,3,5   

                         k =-5         2,4,6 

                         k = -8        4,5,6 

Since the cycles are regular graphs, the duality described in Section 2 applies. The labeling with k= -8  is dual to the labeling with 

k = 1, and the labeling with k = -5 is dual to that with k= -2. 

 

There are exactly 6 labelings for the 4-cycle and again they come in dual pairs. Every feasible value of k admits a labeling. They 

are listed below, with the edge labels given in cyclic order: 

                         k = 0            1,3,2,6 

                         k = -3           1,4,6,5 

                         k = -3           1,5,2,8 

                         k =  -6          3,4,8,5 

                        k = -6            1,7,4,8  

                        k = -9            3,7,6,8 

 
For the  5-cycle, we find  13 2k   . There are  6 labelings. For k=2  there is a unique solution 

(1,4,2,5,3) and for k = -2 we find (1,5,9,3,7) and also (1,7,3,4,10). Each of these has a dual. 

 

For C6, C7, C8, C9, C10, we identify the number of non-isomorphic labelings to be 20,118, 282,7092 respectively. 

 

One of the Olympic rings problem referred to in the Introduction can be interpreted as asking for a labeling on the path of 5  

vertices; one of the solutions the students found is shown in Figure 3. 
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In the case of a path with v vertices, we have 1e v   and 2 1M v e v     and therefore 

(2 1) 3 ev v S vk  
 

So 0(mod )eS v  and consequently, from  (2) also. Equations  (3)  and (4) then give us 

                        

1 1
(5)

2 2

v v
k

 
  

 
 

For a path with 3 vertices, equation (5) implies that  1 2k   . According to Theorem (5), the labelings of P3  will be derived 

from those of C3  which assign the label 1 to an edge. There are two such listed previously and they produce the labelings for P3 

shown in Figure 4.  

              
 

For the path with  4 vertices, equation (5) implies that  5 1k   . Four of  the six labelings of the 4-cycle listed previously 

yield a derived labeling for the 4-path. This time there is a labeling for all feasible values of k (we list the edge labels only): 

                         k = 1          2,1,5 

                          k = -2         4,5,3 

                         k = -2         4,1,7 

                         k = -5         6,3,7   

For v  = 5 ,  equation (5)  implies that 3 3k   .  

                         k =3               2,4,1,3 

                         k = -3            4,8,2,6 

                         k= -3             9,3,2,6 

                                                                      

Further systematic search discovered 10 labelings for 6v  , there are  66 for 7v   and for 8v    there are  131 labelings. 
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