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Abstract: The Internet of Things (IoT), firstly coined by Kevin Ashton as the title of a presentation in 1999 , is a technological 

revolution that is bringing us into a new ubiquitous connectivity, computing, and communication era. The development of IoT 

depends on dynamic technical innovations in a number of fields, from wireless sensors to nanotechnology. For these ground-

breaking innovations to grow from ideas to specifice products or applications, in the past decade, we have witnessed worldwide 

efforts from academic community, service providers, network operators, and standard development organizations, etc (see, e.g., 

the recent comprehensive surveys .Generally, current research on IoT mainly focuses on how to enable general objects to see, 

hear, and smell the physical world for themselves, and make them connected to share the observations. In this paper, we argue 

that only connected is not enough, beyond that, general objects in future IoT should have the capability to learn, think, and 

understand the physical world by themselves. 

 

1. NECESSITY OF IOT AND BIG DATA IMPLEMENTATION 

IoT will enable big data, big data needs analytics, and analytics will improve processes for more IoT devices. IoT and 

big data can be used to improve various functions and operations in diverse sectors. Both have extended their capabilities to wide 

range of areas. The figure below shows the areas of big data produced. Some or the other way, data is produced through 

connected devices. 

 

 

 

 

 

 

 

 

 

 

 

The important basis behind why to implement IoT and big data are: 

 

1. Analytical monitoring 

 

2. More Uptime 

 

3. Lower reject rates 

 

4. Higher throughput 

 

5. Enhanced safety 

 

6. Efficient use of labor 
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7. Enable mass customization 

 

8. Analyze the activities for real-time marketing 

 

9. Improved situational alertness 

 

10. Improved quality 

 

11. Sensor-driven decision analytics 

 

2. IMPACTS OF IOT ON BIG DATA 

The massive amount of revenue and data that the IoT will generate, its impact will be felt across the 

entire big data universe, forcing companies to upgrade current tools and processes, and technology to evolve 

to accommodate this additional data volume and take advantage of the insights all this new data 

undoubtedly will deliver. 

Data Storage:  

 When we talk about IoT, one of the first things that comes to mind is a huge, continuous 

stream of data hitting the data storage. In response to this direct impact on big data storage 

infrastructure, many organizations are moving toward the Platform as a Service model 

instead of keeping their own storage infrastructure, which would require continuous 

expansion to handle the load of big data. PaaS is a cloud-based, managed solution that 

provides scalability, flexibility, compliance, and a sophisticated architecture to store valuable 

IoT data. Cloud storage options include private, public, and hybrid models. If companies 

have sensitive data or data that is subject to regulatory compliance requirements that require 

heightened security, a private cloud model might be the best fit. Otherwise, a public or hybrid 

model can be chosen as storage for IoT data.  

 

Open source: 

 The IoT isn’t built solely using open source software, but open source plays a key role. Linux 

serves as the operating system for many connected devices. Open source networking 

standards make it possible for devices from different vendors to communicate. Some IoT 

devices are even designed to be hack able by users in a way that extends the open source 

software concept to include open hardware. In all of these ways, the IoT plays on open 

source’s strengths and brings open source to new frontiers.  

Big Data:  

 The IoT promises to take big data to a new level. IoT devices not only generate huge amounts 

of information, which can then be fed to data analytics tools. They also rely on data-based 

logic in order to perform many of their “smart” functions. Take your Nest thermostat, for 

example. It collects data from your home, then runs analytics based on the data it collected 
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along with external information (like weather reports) to predict when to turn on your 

furnace.  

Cybersecurity: 

 Security and privacy aren’t new concerns. But they are on the minds of consumers now more 

than ever, thanks to the seemingly never-ending reports of breaches at major organizations. 

The IoT serves both to feed and to alleviate those concerns. IoT devices raise huge new 

security challenges, especially when it comes to things like critical infrastructure. But they 

also offer ways to help keep users more secure by adding extra barriers of defense to data and 

persons.  

3. CHALLENGES IMPLEMENTING IOT ON BIG DATA 

IoT is not free from challenges. Issues of Governance, security, Interoperability, privacy, 

regulations, providing power to billions of sensors and standardization issues can slow down the progress of 

Internet of Things. Due to the absence of a generic governance, there are many confusions and 

inconsistencies. The absence of a universal numbering system is a bane for providing a true IoT 

environment. In the current context, systems like EPC Global and ubiquitous ID systems are used to address 

the issue of global ID systems. There is a challenge of implementing common security protocols. So, 

interoperability is an issue while interacting with IoT objects developed by different manufacturers. 

 

Major challenges that can fetch momentous rewards when they are solved. 

 

1. Huge data volumes 

2. Difficulty in data collection 

3. Incompatible standards 

4. New security threats 

5. No reliability in the data 

6. Fundamental shifts in business models 

7. Huge amount of data to analyze 

8. A rapidly evolving privacy landscape 

 

4. HETEROGENEOUS DATA PROCESSING 

In practical IoT applications, the massive data are generally collected from heterogeneous sensors (e.g., cameras, 

vehicles, drivers, and passengers), which in turn may provide heterogeneous sensing data (e.g., text, video, and voice). 

Heterogeneous data processing (e.g., fusion, classification) brings unique challenges and also offers several advantages and new 

possibilities for system improvement. 

 

Mathematically, random variables that characterize the data from heterogeneous sensors may follow disparate 

probability distributions. Denote zn as the data from the n-th sensor and   
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Z := fzngN
n=1 as the heterogeneous data set, the marginal’s fzngN

n=1 are generally non-identically or heterogeneously 

distributed. In many IoT applications, problems are often modeled as multi-sensor data fusion, distribution estimation or 

distributed detection. In these cases, joint probability density function (pdf) f(Z) of the heterogeneous data set Z is needed to 

obtain from the 

marginal pdfs ff(zn)gN
n=1. 

For mathematical tractability, one often chooses to assume simple models such as the product model or multivariate 

Gaussian model, which lead to suboptimal solutions . Here we recommend another approach, based on copula theory, to tackle 

heterogeneous data processing in IoT. In copula theory, it is the copulas function that couples multivariate joint distributions to 

their marginal distribution functions, mainly thanks to the following theorem: Sklar’ Theorem : Let F be an N-dimensional 

cumulative distribution function (cdf) with continuous marginal cdfs  

F1; F2; :::; FN .  

Then there exists a unique copulas function C such that for all z1; z2; :::; zN in  

F (z1; z2; :::; zN ) = C F1(z1); F2(z2); :::; FN (zN ) :  

The joint pdf can now be obtained by taking the N-order derivative of 

 @N  

f(z1; z2; :::; zN ) =  C F1(z1); F2(z2); :::; FN (zN )  

@z1 @z2 :::@zN  

= fp(z1; z2; :::; zN )c F1(z1); F2(z2); :::; FN (zN ) ;  

where fp(z1; z2; :::; zN ) denotes the product of the marginal pdfs ff(zn)gN
n=1 and c( ) is the copula density weights the product 

distribution appropriately to incorporate dependence between the random variables. The topic on the design or selection of proper 

copula functions is well summarized. 

 

5. NONLINEAR DATA PROCESSING 

In IoT applications such as multi-sensor data fusion, the optimal fusion rule can be derived from the multivariate joint 

distributions obtained in. However, it is generally mathematically intractable since the optimal rule generally involves nonlinear 

operations. Therefore, linear data processing methods dominate the research and development, mainly for their simplicity. 

However, linear methods are often oversimplified to deviate the optimality. 

 

In many practical applications, nonlinear data processing significantly outperforms their linear counterparts. Kernel-

based learning (KBL) provides an elegant mathematical means to construct powerful nonlinear variants of most well-known 

statistical linear techniques, which has recently become prevalent in many engineering application. Briefly, in KBL theory, data x 

in the input space X is projected onto a higher dimensional feature space F via a nonlinear mapping as follows: 

: X ! F;   x 7! (x):  

 

For a given problem, one now works with the mapped data (x) 2 F instead of x 2 X . The data in the input space can be 

projected onto different feature spaces with different mappings. The diversity of feature spaces provides us more choices to gain 

better performance. Actually, without knowing the mapping explicitly, one only needs to replace the inner product operator of a 

linear technique with an appropriate kernel k (i.e., a positive semi-definite symmetric function), 

k(xi; xj) := h (xi);  (xj)iF ;  8xi; xj 2 X :  

 

http://www.jetir.org/


© 2018 JETIR  December 2018, Volume 5, Issue 12                               www.jetir.org  (ISSN-2349-5162) 
 

JETIR1812677 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 583 

 

The most widely used kernels can be divided into two categories: projective kernels (functions of inner product, e.g., polynomial 

kernels) and radial kernels (functions of distance, e.g., Gaussian  

kernal 

 

 

 

 

 

 

 

 

Fig. 3. An introductory binary classification example . By mapping data x = (x1; x2) in 2-D input space X = R2 (left) via nonlinear 

mapping ( ) onto a 3-D feature space F = R3 (right), the data become linearly separable. 

 

6. HIGH-DIMENSIONAL DATA PROCESSING 

In IoT, massive or big data always accompanies high-dimensionality. For example, images and videos observed by 

cameras in many IoT applications are generally very high-dimensional data, where the dimensionality of each observation is 

comparable to or even larger than the number of observations. Moreover, in kernel-based learning methods discussed above, the 

kernel function nonlinearly maps the data in the original space into a higher dimensional feature space, which transforms virtually 

every dataset to a high-dimensional one. Mathematically, we can represent the massive data in a compact matrix form. Many 

practical applications have experimentally demonstrated the intrinsic low-rank property of the high-dimensional data matrix, such 

as the traffic matrix in large scale networks  and image frame matrix in video surveillance , which is mainly due to common 

temporal patterns across columns or rows, and periodic behavior across time, etc. 

 

Low-rank matrix plays a central role in large-scale data analysis and dimensionality reduction. In the following, we 

provide a brief tutorial on using low-rank matrix recovery and/or completion1 algorithms for high-dimensional data processing, 

from simple to complex. 

 

1) Low-rank matrix recovery with dense noise and sparse anomalies: Suppose we are given a large sensing data matrix Y, and 

know that it may be decomposed as 

Y = X + V;  

where X has low-rank, and V is a perturbation/noise matrix with entry-wise non-zeros. We do not know the low-dimensional 

column and row space of X, not even their dimensions. To stably recover the matrix X from the sensing data matrix Y, the 

problem of interest can be formulated as classical principal component analysis (PCA): 

X  jjXjj  subject to jjY  XjjF   ";  

min   

f g   

where " is a noise related parameter, jj jj and jj jjF stands for the nuclear norm (i.e., the sum of the singular values) and the 

Frobenious norm of a matrix. Furthermore, if there are also some abnormal data A injected into the sensing data matrix Y, we 

have 

Y = X + V + A;  
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where A has sparse non-zero entries, which can be of arbitrary magnitude. In this case, we do not know the low-dimensional 

column and row space of X, not know the locations of the nonzero entries of A, and not even know how many there are. To 

accurately and efficiently recover the low-rank data matrix X and sparse component A, the problem of interest can be formulated 

as the following tractable convex optimization: where is a positive rank sparsely controlling parameter, and jj jj1 stands for the l1-

norm (i.e., the number of nonzero entries) of a matrix. 

2) Joint matrix completion and matrix recovery: In practical IoT applications, it is typically difficult to acquire all entries of the 

sensing data matrix Y, mainly due to i) transmission loss of the sensing data from the sensors to the data center, and ii) lack of 

incentives for the crowd sources to contribute all their sensing data. 

In this case, the sensing data matrix Ye is made up of noisy, corrupted, and incomplete observations, 

 

       Y := P (Y) = P (X + A + V);  

where   [M]  [N] is the set of indices of the acquired entries, and P is the orthogonal projection onto the 

   e  

linear subspace of matrices supported on , i.e., if (m; n) 2 , P (Y) = ym;n; otherwise, P (Y) = 0. To stably recover the low-rank and 

sparse components X and A, the problem can be further formulated as 

X;A jj X jj jj A jj1  subject to jjP (Y) P (X + A + V) jjF ":  

min   +     

f g 

 

All the problems formulated in  and  fall into the scope of convex optimization, efficient algorithms can be developed based on 

the results  

 

7. PARALLEL AND DISTRIBUTED DATA PROCESSING 

So far, all the data processing methods introduced above are in essence centralized and suitable to be implemented at a 

data center. However, in many practical IoT applications, where the objects in the networks are organized in an ad hoc or 

decentralized manner, centralized data processing will be inefficient or even impossible because of single-node failure, limited 

scalability, and huge exchange overhead, etc. Now, one natural question comes into being: Is there any way to disassemble 

massive data into groups of small data, and transfer centralized data processing into decentralized processing among locally 

interconnected agents, at the price of affordable performance loss? 

 

In this subsection, we argue that alternating direction method of multipliers (ADMM) serves as a promising theoretical 

framework to accomplish parallel and distributed data processing. Suppose a very simple case with a IoT consisting of N 

interconnected smart objects. They have a common objective as follows 

 

NXmin f(x) = fi(x);  

xi=1 

 

where x is an unknown global variable and fi refers to the term with respect to the i-th smart object. By introducing local variables 

fxi 2 RngN
i=1 and a common global variable z, the problem in  can be rewritten as 

This is called the global consensus problem, since the constraint is that all the local variables should agree, i.e., be equal. 

The augmented Lagrangian of problem  can be further written as 

The resulting ADMM algorithm directly from  is the following: 
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 xk
i
+1 := argminxi fi(xi) + yi

kT (xizk) + 2 jjxi  

 zkjj2
F--Nzk+1 := N1 X 

  xki+1 + 1= yiki=1 

 yi
k+1 := yi

k +  (xi
k+1   zk+1): 

  

The first and last steps are carried out independently at each smart object, while the second step is performed at a fusion 

center.  

 

 

8. CONCLUSION  

          In this paper, we have provided a high-level tutorial on massive data analytics in terms of heterogeneous, nonlinear, high-

dimensional, and distributed and parallel data processing, respectively. Actually, in practical IoT applications, the obtained 

massive sensing data can be of mixed characteristics, which is much more challenging. Moreover, the development of practical 

and effective algorithms for specific IoT applications are also urgently needed. Since there is a major impact of IoT on big data 

we need to quickly improvise the complete structure to manage the daily changing circumstances. There are a few areas of 

concern and security and privacy and data collection efficiency are probably the most difficult problems we are facing. Security 

compromise and inefficiencies in data collection mechanisms result in a loss of status, money, time and effort. But there is hope 

because both the IoT and the big data are at an emerging stage and there will be upgrade. 
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