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Abstract:  Overdispersion is familiar in count data models particularly in the area of ecological and biological science because of 

non- independent, aggregations of data and an excess frequency of zeros. Every cluster levels received a singular level of a 

random effect that models the additional Poisson variation given within the data, are usually utilized to address overdispersion in 

count data.  However, studies investigating that the power of cluster level random effects as a way to data with overdispersion is 

scarce. A situation where the variance of the response variable exceeds the mean, and hence, both overdispersion and 

heterogeneity between groups parameters occur. In the appropriate imposition of the multilevel Poisson model may underestimate 

the standard error and overestimate the significance of the regression parameters, and consequently, giving misleading inference 

about the regression parameters. This paper suggested that the multilevel negative binomial models as alternatives for handling 

overdispersion; an algorithm is developed for the residual maximum likelihood estimate (REML) of the regression coefficients 

and variance component parameters. In addition, the predicted random effects can provide information on the interregional 

variation after adjustment for children characteristic and death features. In this paper we used an application and simulation study, 

a simulation study showed that the estimators obtained from multilevel negative binomial model perform well in all the setting 

considered. The simulations reveal that failing to account for overdispersion in mixed models can erroneously inflate measures of 

explained variance ( ), which may lead to researchers overestimating the predictive power of variables of interest. Application to a 

set of deaths of children under 18 year’s data is illustrated. The result revealed that the proposed model is better than the 

multilevel Poisson regression model and hence, there is a variation among regions in the deaths of children less than 18 years. 

Both the predicted probability and the information criteria indicated that the multilevel negative binomial model is better than the 

multilevel Poisson regression model. This work suggests the use of group level random effects provides a simple and robust 

means to a count data, but also that this ability to minimize bias is not uniform across all types of overdispersion and must be 

applied thoughtfully.    
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I. INTRODUCTION  

Count data are tremendously familiar in the field of biological and ecological sciences; researchers are often interested in 

quantifying the factors affecting variables such as how many offspring an individual produces, counts of parasite load, abundance 

of species within and between habitats, or the frequency with which individually perform certain behaviours perhaps the most 

known method employed to model count data is to assume the data approximate a Poisson distribution, and specify statistical 

models accordingly (Bolker et al., 2009). However, a persistent problem with Poisson model is that they often exhibit 

overdispersion, where the variance of the response variable is greater than the mean (Hilbe., 2011), resulting in a poor fit to the 

data. Accounting for overdispersion when it is present is critical; failing to do so can lead to biased parameter estimates (Crawley, 

2007; Hilbe 2011); and causes researchers to erroneously conclude that covariates have a significant effect when in fact they do 

not (Crawley, 2007; Richards, 2008; Zuur et al.; 2009). 

The need for accurate biological inference, therefore, we use tool to both identify and adequately deal with overdispersion to 

minimize the risk of type I error (Hilbe, 2011).  Primarily overdispersion occurs for two reasons” apparent over-dispersion’’ 

(Hilbe, 2011) arises when models are poorly specified such as by failing to include important predictors, an interaction between 

predictors that have already been measured or by specifying the incorrect links function   (Hilbe, 2011).   Conversely, “real over-

dispersion” can arise when there is an excess number of zeros in the data (Zuur et al.; 2009), or when the variance of the response 

truly is greater than the mean. In cases of the real overdispersion, the fit of the model to the data will be poor, even if the model 

uncovers significant results.   

The dependence of clustered data (children nested within regions) may result in spurious associations and misleading inferences 

(Leving et al., 1998). There has been little research in regional discrepancies as a relevant attribute of deaths of children 

variations. The aim of this paper is to compare the multilevel negative binomial model and the multilevel Poisson models that 

accommodate simultaneously the overdispersion and heterogeneity of the outcome variables. The approach is based on the 

generalized linear mixed model formulation (McGilchrist,1994), where the random effects are incorporated in the linear predictor 

of each component. Residual maximum likelihood estimation of the regression coefficients and the random component 

parameters is achieved via an EM algorithm (Lee et al., 2005). The predicted random effects from fitting the mixture model 

provided information on inter-hospital variations after adjustment for patient characteristics and relevant risk factors (Yau, Luang, 

and Lee, 2003; Ng et al., 2004). 
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In this chapter, we develop a score test for overdispersion in generalized linearity mixed effects models, Cox (1983), based on the 

multilevel negative binomial models. A simulation is conducted to assess the performance of the REML estimators of the models 

parameters. An empirical datasets in deaths of children in Ethiopia is used to illustrate the practical applications of the 

methodology. If the observed variance is larger than the assumed variance which is known as overdispersion and if the dispersion 

is ignored, statistical inference results in an inaccurate conclusion by underestimating the variability of the data.  

II. FORMULATIONS OF STATISTICAL MODEL 

2.1. THE MULTILEVEL NEGATIVE BINOMIAL MODEL 

Let ijY
 
( i =1, 2,…, k; j = 1, 2,…, in ) represents the response variable for the 𝑗𝑡ℎ observation in the 𝑖𝑡ℎ group, where k is the 

number of groups,  in is the number of individual observation i , the total number of observations being 𝑛 = ∑ 𝑛𝑖
𝑘
𝑖=1 . The 

probability density function of 𝑌𝑖𝑗  is assumed to be a negative binomial model for cluster i, the conditional distributions of the 

outcome variable
`

21 ),...,,(
iiniii yyyy  , given a set of cluster level random effect i

 
and the conditional overdispersion 

parameters c in a mean overdispersion parameterization, is
 

 𝑒𝑥𝑝 [∑{𝑙𝑜𝑔┌(𝑦𝑖𝑗 + 𝑐𝑖
−1) − 𝑙𝑜𝑔┌(𝑦𝑖𝑗 + 1) − 𝑙𝑜𝑔┌(𝑐𝑖

−1)} + 𝐶(𝑦𝑖𝑗 , 𝑐𝑖)

𝑛𝑖

𝑖=1

] … . (5.1) 

Where 𝐶(𝑦𝑖𝑗 , 𝑐𝑖) is defined as  −
1

𝑐𝑖
𝑙𝑜𝑔 {1 + 𝑒𝑥𝑝 (

𝑖𝑗
+ 𝑙𝑜𝑔𝑐𝑖)} − 𝑦𝑖𝑗𝑙𝑜𝑔 {1 + 𝑒𝑥𝑝 (−

𝑖𝑗
− 𝑙𝑜𝑔𝑐𝑖)} 

Where  𝑙𝑜𝑔 (𝜇𝑖𝑗) =   
𝑖𝑗

= 𝑥𝑖𝑗𝛽 + 𝑧𝑖𝑗𝛼𝑖   the mixed effect model for the mean response is 𝛼𝑖 = 𝛼 + 𝐷
1

2𝑢𝑖, ci is the dispersion 

parameter for group i, and 𝑥𝑖𝑗  is a p×1 vector of independent covariates. Where the ui`s are independently and identically 

distributed with normal distribution with zero mean and unit variance. Since we want to test homogeneity across and within 

groups we consider the random intercept model in which 𝑧𝑖𝑗 = 1for all i,j. Therefore αi`s  are independently and identically 

distributed with mean α  and variance D. Model (5.1) is an extension of the negative binomial regression model to include 

normally distributed random effects at different group levels. The standard negative binomial model is used to model over 

dispersed count data for which the variance is greater than that of a Poisson model. In a Poisson model, the variance is equal to 

the mean, and thus over dispersions are defined as the extra variability compared with the mean. Our interest is to test the null 

hypothesis 𝐻0: 𝐶 = 0 against the alternative 𝐻0: 𝐶 > 0. This implies that testing the dispersion parameters assuming that 

heterogeneity of individuals across groups (see carrasco and Jover, 2005). 

2.2. DERIVATION OF THE SCORE TEST BASED ON THE DISPERSION PARAMETER OF THE MULTILEVEL 

NEGATIVE BINOMIAL MODEL 

Now we assumed that the outcome variable 𝑦𝑖𝑗  , j=1, 2,…,ni, i=1, 2,…, k comes from the negative binomial model, then the 

probability distribution functions of   𝑦𝑖𝑗  is 

𝑓𝑖𝑗(𝑦𝑖𝑗 , 𝜇𝑖𝑗 , 𝑐𝑖) =
┌(𝑦𝑖𝑗 + 𝑐𝑖

−1)

𝑦𝑖𝑗! ┌(𝑐𝑖
−1)

(
1

1 + 𝑐𝑖𝜇𝑖𝑗(𝑥)
)

𝑐𝑖
−1

(
𝑐𝑖𝜇𝑖𝑗(𝑥)

𝜏 + 𝜇𝑖𝑗(𝑥)
)

𝑦𝑖𝑗

 

We assume a common over dispersion parameter c, that is,  𝑐1 = 𝑐2 = ⋯ = 𝑐𝑘 = 𝑐. 

Further, we assume the mixed effects model approach. 

𝜃𝑖𝑗 = 𝑙𝑜𝑔(𝜇𝑖𝑗) = 𝑋𝑖𝑗`𝛽 + 𝛼𝑖 … … … … … … … … . . … . (5.2 

Where 𝛽 is a vector of p unknown regression parameters and 𝛼𝑖`s are identically and independently distributed random variables 

having a normal distribution with mean 𝛼  and variance D. The log-likelihood function for the  ith group is given by  

𝑙𝑖(𝛽, 𝑐) = 𝑙𝑜𝑔 ∫ ∏ 𝑓𝑖𝑗(𝑦𝑖𝑗 , 𝛽, 𝑐/𝛼𝑖)𝑓𝑖𝑗(𝛼𝑖)

𝑛𝑖

𝑗=1

𝑑𝛼𝑖 … … … (5.3) 

Where 

𝑙𝑜𝑔𝑓𝑖𝑗(𝑦𝑖𝑗 , 𝛽, 𝑐/𝛼𝑖) = [ ∑ (1 + 𝑐𝑙) + 𝑦𝑖𝑗(𝑥𝑖𝑗`𝛽 + 𝛼𝑖) − (𝑦𝑖𝑗 + 𝑐−1)𝑙𝑜𝑔(1 + 𝑐𝑒𝑥𝑖𝑗`𝛽+𝛼𝑖)

𝑦𝑖𝑗−1

𝑙=1

] … . (5.4) 

Our purpose is to test the null hypothesis 𝐻0: 𝐶 = 0 against the alternative  𝐻𝐴: 𝐶 > 0. To obtain the score function we need to 

integrate out αi from (5.3). However, in practice, it is difficult to carry out the integration. So, instead, we use (5.4) to obtain the 

likelihood and develop the score test for given 𝛼𝑖. That is, for the development of the score test. We consider 𝛽 to be a nuisance 

parameter and αi to be known. We deal with the issue of αi being random. Later in this chapter, the resulting log-likelihood of 𝛽 

and c for given 𝛼𝑖  is 
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𝑙 = ∑ ∑ 𝑙𝑜𝑔𝑓𝑖𝑗(𝑦𝑖𝑗 , 𝛽, 𝑐/𝛼𝑖)

𝑛𝑖

𝑗=1

𝑘

𝑖=1

 

= ∑ ∑ [ ∑ 𝑙𝑜𝑔(1 + 𝑐𝑙) + 𝑦𝑖𝑗(𝑥𝑖𝑗`𝛽 + 𝛼𝑖) − (𝑦𝑖𝑗 + 𝑐−1)𝑙𝑜𝑔(1 +   𝑐𝑒𝑥𝑖𝑗`𝛽+𝛼𝑖)

𝑦𝑖𝑗−1

𝑙=0

] … (5.5)

𝑛𝑖

𝑗=1

𝑘

𝑖=1

 

Then the score function for testing the null hypothesis H0: C = 0 is obtained as (see also collings and Margoline, 1985) 

𝑆𝑐 =
𝜕𝑙

𝜕𝑐
│𝑐=0 = ∑ ∑

𝜕𝑙

𝜕𝑐
𝑙𝑜𝑔𝑓𝑖𝑗 (𝑦𝑖𝑗 , 𝛽,

𝑐

𝛼𝑖

│𝑐 = 0)

𝑛𝑖

𝑗=1

𝑘

𝑖=1

 

= ∑ ∑ {
(𝜇𝑖𝑗

2 − 2𝜇𝑖𝑗𝑦𝑖𝑗)

2
+ ∑ 𝑙

𝑦𝑖𝑗−1

𝑙=0

}

𝑛𝑖

𝑗=1

𝑘

𝑖=1

= ∑ ∑ {(𝑦𝑖𝑗 − 𝑒𝑥𝑖𝑗`𝛽+𝛼𝑖)
2

− 𝑦𝑖𝑗}

𝑛𝑖

𝑗=1

𝑘

𝑖=1

… … … . (5.6) 

 

So the score test statistic for testing  H0: C = 0 is  

TC =
Sc

2

I
 

where    𝐼 = 𝐼𝐶𝐶 − 𝐼𝐶𝛽𝐼𝛽𝛽
−1𝐼𝐶𝛽`,   𝐼𝐶𝐶 =  𝐸 (

𝜕𝑙𝑖

𝜕𝑐
│𝑐=0)

2

, 𝐼𝐶𝛽 = 𝐸 (−
𝜕2𝑙𝑖

𝜕𝑐𝜕𝛽
│𝑐=0)is a 1×p vector and  𝐼𝛽𝛽 = 𝐸 (−

𝜕2𝑙𝑖

𝜕𝛽𝑠𝜕𝛽𝑟
│𝑐=0)is p×p 

matrix. 

Now  

𝐸 (
𝜕𝑙

𝜕𝑐
∑ 𝑙𝑜𝑔𝑓𝑖𝑗

𝑛𝑖

𝑖=1

)

2

=
1

4
𝐸 [∑(𝑦𝑖𝑗 − 𝜇𝑖𝑗)

2
− ∑ 𝑦𝑖𝑗

𝑛𝑖

𝑗=1

𝑛𝑖

𝑗=1

]

2

 

=
1

4
𝐸 {∑(𝑦𝑖𝑗 − 𝜇𝑖𝑗)

4

𝑛𝑖

𝑗=1

+ ∑ ∑(𝑦𝑖𝑗 − 𝜇𝑖𝑗)
2

(𝑦𝑖𝑗` − 𝜇𝑖𝑗`)
2

+

𝑛𝑖

𝑗≠𝑗`

𝑛𝑖

𝑗=1

∑ 𝑦𝑖𝑗
2

𝑛𝑖

𝑗=1

+ ∑ ∑ 𝑦𝑖𝑗𝑦𝑖𝑗` −

𝑛𝑖

𝑗≠𝑗`

𝑛𝑖

𝑗=1

2 ∑(𝑦𝑖𝑗 − 𝜇𝑖𝑗)
2

𝑛𝑖

𝑗=1

𝑦𝑖𝑗} 

Using the first four moments of the Poisson distributions in the above expression 

   𝐸(𝑦𝑖𝑗 − 𝜇𝑖𝑗)
4

= 𝜇4 = 𝑘4 + 3𝑘2
2,   𝐸(𝑦𝑖𝑗 − 𝜇𝑖𝑗)

2
= 𝜇2 = 𝜎𝑖𝑗 

2 = 𝑘2 = 𝑘4 = 𝜇𝑖𝑗 

Where 𝐸 [(𝑦𝑖𝑗 − 𝜇𝑖𝑗)
2

𝑦𝑖𝑗] = 𝜇𝑖𝑗 + 𝜇𝑖𝑗
2  

After simplification it can be shown that  

𝐼𝐶𝐶 =
1

2
∑ (∑ 𝜇𝑖𝑗

2

𝑛𝑖

𝑗=1

+ ∑ ∑ 𝜇𝑖𝑗𝜇𝑖𝑗`

𝑛𝑖

𝑗≠𝑗`

𝑛𝑖

𝑗=1

)

𝑘

𝑖=1

 

𝐼𝐶𝛽 = 𝐼𝛽𝐶 = 𝐸 (−
𝜕2𝑙

𝜕𝑐𝜕𝛽
∑ 𝑙𝑜𝑔𝑓𝑖𝑗

𝑛𝑖

𝑖=1

) = 𝐸 (∑ 𝜇𝑖𝑗(𝑦𝑖𝑗 − 𝜇𝑖𝑗)

𝑛𝑖

𝑖=1

𝑥𝑖𝑗) = 0. 

And   

𝜕𝑙

𝜕𝛽
∑ 𝑙𝑜𝑔𝑓𝑖𝑗

𝑛𝑖

𝑖=1

= ∑(𝑦𝑖𝑗𝑥𝑖𝑗 − 𝜇𝑖𝑗𝑥𝑖𝑗)

𝑛𝑖

𝑖=1

 

𝜕2𝑙

𝜕𝛽𝑠𝜕𝛽𝑟

∑ 𝑙𝑜𝑔𝑓𝑖𝑗

𝑛𝑖

𝑖=1

= − ∑ 𝜇𝑖𝑗𝑥𝑖𝑗𝑥𝑖𝑗`

𝑛𝑖

𝑖=1

 

So 

𝐼𝛽𝛽 = 𝐸 (−
𝜕2𝑙

𝜕𝛽𝑠𝜕𝛽𝑠

∑ 𝑙𝑜𝑔𝑓𝑖𝑗

𝑛𝑖

𝑖=1

) = ∑ 𝜇𝑖𝑗𝑥𝑖𝑗𝑥𝑖𝑗`

𝑛𝑖

𝑖=1

 

Then, the score test statistic Tc can be written as  

𝑇𝑐 =
�̂�𝑐

2

𝐼𝐶𝐶

=
(∑ ∑ {(𝑦𝑖𝑗 − �̂�𝑖𝑗)

2
− 𝑦𝑖𝑗}

𝑛𝑖
𝑗=1

𝑘
𝑖=1 )

2

1

2
∑ (∑ �̂�𝑖𝑗

2𝑛𝑖
𝑗=1

+ ∑ ∑ �̂�𝑖𝑗�̂�𝑖𝑗`
𝑛𝑖
𝑗≠𝑗`

𝑛𝑖
𝑗=1

)𝑘
𝑖=1

 

Where  �̂�𝑖𝑗
2 = 𝑒𝑥𝑖𝑗`�̂�+𝛼𝑖  

�̂� is the maximum likelihood estimation of 𝛽 under the null hypothesis. Asymptotically, as 𝑘 → ∞, 𝑇𝑐 has a chi-square distribution 

with one degree of freedom. Note that the above results are based on 𝛼𝑖 being known. However, since 𝛼𝑖`𝑠 are random effects 

these should have been integrated out of (5.3). As indicated earlier such integration is difficult to carry out. So, we replace these 

by their estimates. One way of obtaining estimates of the random effects is through using an empirical Bayes procedure (see 
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collet, 2003). The Maximum likelihood estimates of 𝛽 and the empirical Bayes estimates of 𝛼𝑖 under the null hypothesis are given 

as follows. 

2.3. PARAMETRIC ESTIMATION OF THE PARAMETERS 𝜷 UNDER THE NULL HYPOTHESIS. 

Note that the mixed affects models (5.2) can be written as  

𝑙𝑜𝑔(𝜇𝑖𝑗) = 𝑥𝑖𝑗`𝛽 + √𝐷𝑢𝑖 … … … … . . (5.7) 

Where 𝑢𝑖 has a standard normal distribution and now define 
𝑖𝑗

= 𝑥𝑖𝑗`𝛽 for the linear component of the model obtained from the 

fixed effects, then (5.7) becomes 𝑙𝑜𝑔(𝜇𝑖𝑗) = 
𝑖𝑗

+ √𝐷𝑢𝑖. The kernel of the likelihood for 𝛽, D and 𝑢𝑖, i= 1, 2,…, k,  for Poisson 

data is given by  

       𝐿 = 𝐿(𝛽, 𝐷, 𝑢1, 𝑢2, 𝑢3, … , 𝑢𝑘) = ∏ ∏[𝑒𝑥𝑝{𝑦𝑖𝑗𝑙𝑜𝑔(𝜇𝑖𝑗) − 𝜇𝑖𝑗}]

𝑛𝑖

𝑗=1

𝑘

𝑖=1

        

= ∏ ∏ [𝑒𝑥𝑝 {𝑦𝑖𝑗 (
𝑖𝑗

+ √𝐷𝑢𝑖) − 𝑒𝑥𝑝 (
𝑖𝑗

+ √𝐷𝑢𝑖)}] … … (5.8)

𝑛𝑖

𝑗=1

𝑘

𝑖=1

 

Further, since 𝑢𝑖 is a random variables, it needs to be integrated out. Then the likelihood function for 𝛽 and D can be written as  

𝐿(𝛽, 𝐷) = ∏ ∫ ∏ [𝑒𝑥𝑝 {𝑦𝑖𝑗 (
𝑖𝑗

+ √𝐷𝑢𝑖) − 𝑒𝑥𝑝 (
𝑖𝑗

+ √𝐷𝑢𝑖)}]

𝑛𝑖

𝑗=1

𝑒𝑥𝑝 (−
𝑢𝑖

2

2
)

√2𝜋

∞

−∞

𝑘

𝑖=1

𝑑𝑢𝑖 . (5.9) 

The likelihood function (5.9) has (p+1) unknown parameters 𝛽1, 𝛽2, 𝛽3, … , 𝛽𝑘 and D. maximum likelihood estimates of the 

parameters 𝛽 and D are obtained by maximizing (5.9). The integration in (5.9) is difficult to carry out. However, this can be 

evaluated approximately by using Gauss-Hermite formula for numerical integration. Therefore, the marginal likelihood function 

(5.9) becomes  

∏ ∏ ∏ 𝑊𝑟

𝑚

𝑟=1

[𝑒𝑥𝑝 {𝑦𝑖𝑗 (
𝑖𝑗

+ √𝐷𝑠𝑟√2) − 𝑒𝑥𝑝 (
𝑖𝑗

+ √𝐷𝑠𝑟√2)}]

𝑛𝑖

𝑗=1

𝑘

𝑖=1

… (5.10) 

Where 𝑤1, 𝑤2, 𝑤3, … , 𝑤𝑚 are the weights with  

𝑊𝑟 =
2𝑚−1𝑚! √2

𝑚2[𝐻𝑚−1(𝑠𝑟)]2
 

Where m is the number of quadrature the points and 𝑠1, 𝑠2, 𝑠3, … . , 𝑠𝑚 are the roots of Hermite polynomial 

𝐻𝑚(𝑠) = (−1)𝑚𝑒−𝑠2/2 𝑑𝑚

𝑑𝑠𝑚 𝑒−𝑠2/2
. 

 The evaluation points 𝑠𝑟  (abscissas) and 𝑤𝑟 (weights) (Abramowitz and Stegun 1972).The values �̂� and �̂�, which maximize 

(5.10) or its logarithm can then be determined numerically. The computer package SAS procedure GLIMMIX or NLMIXED or R 

function glmm ML can be used to evaluate equation (5.10). 

2.4. PARAMETRIC ESTIMATIONS OF THE RANDOM EFFECTS 𝜶𝒊 

From equation (5.9) the joint posterior density of 𝑢1, 𝑢2, 𝑢3, … , 𝑢𝑘, given �̂�and �̂�, the maximum likelihood estimates of 𝛽 and 𝐷 

will be obtained. 

∏ ∏ [𝑒𝑥𝑝 {𝑦𝑖𝑗 (̂
𝑖𝑗

+ √�̂�𝑢𝑖) − 𝑒𝑥𝑝 (̂
𝑖𝑗

+ √�̂�𝑢𝑖)}]

𝑛𝑖

𝑗=1

𝑘

𝑖=1

𝑒𝑥𝑝(−𝑢𝑖
2/2)

√2𝜋
… (5.11) 

Where ̂
𝑖𝑗

= 𝑥𝑖𝑗`�̂�. 

Now, the log of the 𝑗𝑡ℎ term of (5.11) is given by  

𝐿𝑖(�̂�, �̂�, 𝑢𝑖) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 + ∏ [𝑦𝑖𝑗 (̂
𝑖𝑗

+ √�̂�𝑢𝑖) − 𝑒𝑥𝑝 (̂
𝑖𝑗

+ √�̂�𝑢𝑖)]

𝑛𝑖

𝑗=1

−
𝑢𝑖

2

2
… . (5.12) 

The empirical Bayes estimate 𝑢�̂� of 𝑢𝑖 is obtained by solving 
  𝜕𝐿𝑖(�̂�,�̂�,𝑢𝑖)

𝜕𝑢𝑖
= 0. This is equivalent to obtain 𝑢�̂� by solving  

  𝜕𝐿𝑖(�̂�, �̂�, 𝑢𝑖)

𝜕𝑢𝑖

= 0 + √�̂� ∑ 𝑦𝑖𝑗

𝑛𝑖

𝑗=1

−  𝑒𝑥𝑝 (̂
𝑖𝑗

+ √�̂�𝑢𝑖) (̂
𝑖𝑗

+ √�̂�𝑢𝑖) ` − 𝑢�̂� = 0 

√�̂� ∑ 𝑒𝑥𝑝 (̂
𝑖𝑗

+ √�̂�𝑢𝑖)

𝑛𝑖

𝑗=1

+ 𝑢�̂�  = √�̂� ∑ 𝑦𝑖𝑗

𝑛𝑖

𝑗=1

… … … … … … . . (5.13) 
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Equation (9.13) is a non-linear equation to be solved by using a numerical method. The empirical Bayes estimate of 𝛼𝑖  then 𝛼�̂� =

√�̂�𝑢�̂�.  

III. SIMULATION STUDY 

The simulation is conducted to assess the performance of the proposed score test estimates obtained via the EM algorithm. Data 

are simulated under the multilevel negative binomial and multi level Poisson regression. Empirical power of the score test based 

on 1000 replications generated from the multilevel negative binomial regression model under the hypothesis of homogeneity. 

Levels considered are 10%; 5% and 1%. The sample size scenarios for each test groups = 5, 10, 20, 50, 100 and number of 

observation=10; 20; 50; 100 and the dispersion parameters= 0.15, 0.25, 0.4, are considered and the simulated results are shown as 

in Table 1.  

 

Table 1. TestS of power and size effects of the over dispersion parameter in the multilevel NB model via simulated data 

Cluster (k) Observation 

(n) 

Dispersion 

parameter  

(C) 

D=0.15 D=0.5 

Significance level Significance level 

α=0.10 α=0.05 α=0.01 α=0.10 α=0.05 α=0.01 

5 10 0.15 0.94386 0.89848 0.74444 0.57799 0.45272 0.23122 

0.25 0.96127 0.92654 0.79804 0.68384 0.56481 0.32537 

0.40 0.99409 0.98618 0.94368 0.44304 0.32285 0.14091 

20 0.15 0.98176 0.96217 0.87710 0.49181 0.36823 0.17034 

0.25 0.99922 0.99779 0.98715 0.48815 0.36477 0.16802 

0.40 0.98303 0.96452 0.88296 0.39598 0.28066 0.11550 

50 0.15 0.97207 0.94488 0.83676 0.59008 0.46503 0.24079 

0.25 0.97916 0.95743 0.86558 0.56147 0.43608 0.21858 

0.40 0.98395 0.96622 0.88726 0.66029 0.53901 0.30223 

100 0.15 0.97784 0.95505 0.85994 0.51193 0.38745 0.18348 

0.25 0.97084 0.94274 0.83207 0.51670 0.39205 0.18669 

0.40 0.95951 0.92363 0.79219 0.56276 0.43737 0.21955 

10 10 0.15 0.99429 0.98661 0.94507 0.60536 0.48077 0.25328 

0.25 1.00000 1.00000 0.99998 0.77512 0.67026 0.43044 

0.40 0.98805 0.97402 0.90786 0.51173 0.38726 0.18335 

20 0.15 0.99081 0.97946 0.92320 0.64739 0.52509 0.29013 

0.25 0.92889 0.87543 0.70423 0.57594 0.45064 0.22962 

0.40 0.99836 0.99567 0.97776 0.67649 0.55670 0.31799 

50 0.15 0.98212 0.96284 0.87875 0.64321 0.52061 0.28629 

0.25 0.93991 0.89231 0.73337 0.60967 0.48525 0.25689 

0.40 0.94340 0.89775 0.74312 0.53620 0.41103 0.20017 

100 0.15 0.98822 0.97436 0.90877 0.39166 0.27686 0.11330 

0.25 0.98345 0.96529 0.88489 0.59670 0.47183 0.24615 

0.40 0.96442 0.93181 0.80881 0.46626 0.34424 0.15451 

20 10 0.15 1.00000 1.00000 1.00000 0.27433 0.17860 0.061706 

0.25 0.96698 0.93612 0.81783 0.52728 0.40232 0.19393 

0.40 0.99852 0.99606 0.97941 0.30693 0.20497 0.074563 

20 0.15 0.97750 0.95445 0.85853 0.43662 0.31701 0.13728 

0.25 0.99700 0.99251 0.96541 0.57201 0.44667 0.22659 

0.40 0.99076 0.97935 0.92288 0.36990 0.25794 0.10258 

50 0.15 0.94200 0.89556 0.73917 0.52100 0.39621 0.18961 

0.25 0.96629 0.93495 0.81537 0.33652 0.22952 0.087190 

0.40 0.97385 0.94798 0.84369 0.54490 0.41960 0.20639 

100 0.15 0.97651 0.95267 0.85439 0.55584 0.43045 0.21439 

0.25 0.99174 0.98134 0.92874 0.54156 0.41631 0.20399 

0.40 0.97054 0.94223 0.83094 0.51646 0.39182 0.18653 

50 10 0.15 0.99998 0.99992 0.99923 0.62811 0.50457 0.27275 

0.25 0.99724 0.99306 0.96744 0.62372 0.49995 0.26891 

0.40 0.99570 0.98963 0.95515 0.55190 0.42654 0.21149 

20 0.15 0.99408 0.98616 0.94363 0.74956 0.63979 0.39820 

0.25 0.99982 0.99942 0.99578 0.30600 0.20421 0.074183 

0.40 0.98739 0.97275 0.90438 0.39950 0.28376 0.11730 

50 0.15 0.99361 0.98517 0.94049 0.58210 0.45689 0.23444 

0.25 0.96191 0.92760 0.80019 0.57141 0.44606 0.22613 

0.40 0.99198 0.98181 0.93014 0.69056 0.57227 0.33223 
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100 0.15 0.97706 0.95365 0.85668 0.48103 0.35805 0.16355 

0.25 0.97722 0.95395 0.85736 0.52909 0.40408 0.19519 

0.40 0.96702 0.93620 0.81800 0.52140 0.39660 0.18988 

From Table 1, for large sample size, the multilevel Poisson model is efficient than the multilevel negative binomial model 

whereas in small sample size the multilevel negative binomial model is better than the multilevel Poisson regression model. In a 

small sample case, the dispersion parameter varies with the level of significance whereas in a large sample the level of 

significance has no effects on the dispersion parameter. The power study was extended for the situation in which data are 

generated from heterogeneous lognormal negative binomial distribution, the results which are not given here show similar 

behaviour to those when data are generated from the heterogeneous lognormal Poisson distribution. In summary, as k,c and ni 

increase, the power increases for all the statistics. 

The statistics, the multilevel negative binomial model, in general, shows highly inflated level properties. The statistics the 

multilevel Poisson model show some conservative level properties, however, as the values of c and k increase, empirical levels 

become closer to the nominal level. The power of the statistic multilevel negative binomial model is, in general, larger than those 

of multilevel Poisson model. The powers of both statistics are not similar in all the cases studied. We extended the simulation 

study of the properties of the two statistic interms of empirical size and power to situations where the over-dispersion parameter c 

is not the same for all groups. For this, we generated data from the heterogeneous negative binomial and lognormal Poisson 

distributions with heterogeneous over-dispersion parameter c. The results for size and power are given in Table 1 only for data 

that are generated from the heterogeneous negative binomial distribution. The level and power properties of all the statistics, in 

general, remain similar irrespective of which mechanism of over-dispersion is used to generate count data. This also seems to be 

true irrespective of whether the over-dispersion parameter c is varying or constant. 
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Figure 1. Simulated power and size effects of the overdispersion parameter in the multilevel NB models 

Table 2 .Comparisons of goodness of fit Statistic between the multilevel NEGBIN and Poisson models based on simulated data. 

Group(k) Observation(n) Model -2loglikelihood AIC BIC 

5 10 Multilevel  Poisson model 140.6 146.6 147.5 

Multilevel  NEGBIN model 129.2 137.2 138.4 

20 Multilevel  Poisson model 225.5 228.5 231.5 

Multilevel  NEGBIN model 248.1 256.1 260.1 

50 Multilevel  Poisson model 647.2 653.2 658.9 

Multilevel  NEGBIN model 608 616 623.7 

100 Multilevel  Poisson model 1453.7 1459.7 1467.5 

Multilevel  NEGBIN model 1175.5 1183.5 1194 

10 10 Multilevel  Poisson model 298.7 304.7 305.6 

Multilevel  NEGBIN model 243.4 251.4 252.6 

20 Multilevel  Poisson model 525 531 533.9 

Multilevel  NEGBIN model 521.7 529.7 533.6 

50 Multilevel  Poisson model 1292.9 1298.9 1304.6 

Multilevel  NEGBIN model 1315 1323 1330.4 

100 Multilevel  Poisson model 2720.5 2726.5 2734.4 

Multilevel  NEGBIN model 2524.7 2532.7 2542.9 

20 10 Multilevel  Poisson model 477.9 483.9 484.9 

Multilevel  NEGBIN model 531.5 539.5 540.7 

20 Multilevel  Poisson model 1039 1045 1048 

Multilevel  NEGBIN model 999.3 1007.3 1011.3 

50 Multilevel  Poisson model 2466.7 2472.7 2478.5 

Multilevel  NEGBIN model 2533.8 2541.8 2549.5 

100 Multilevel  Poisson model 5244.8 5250.8 5258.6 

Multilevel  NEGBIN model 4453.7 4461.7 4472 

50 10 Multilevel  Poisson model 1394.7 1400.7 1401.6 

Multilevel  NEGBIN model 1336.2 1344.2 1345.4 

20 Multilevel  Poisson model 2377.1 2383.1 2386.1 

Multilevel  NEGBIN model 2374.6 2382.6 2386.6 

50 Multilevel  Poisson model 6433.4 6439.4 6445.2 

Multilevel  NEGBIN model 6566.5 6574.5 6582 

100 Multilevel  Poisson model 12993 12999 13007 

Multilevel  NEGBIN model 11898 11906 11916 
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Figure  2. Comparisons of the multilevel Poisson and multilevel NB models 

The power study was extended for the situation in which data are generated from heterogeneous lognormal negative binomial 

distribution. The results which are not given here shows similar behaviour to those when data are generated from the 

heterogeneous lognormal Poisson distribution, in summary, as k,c and ni increase, the power increases for all the statistics. The 

statistic MNEBIN, in general, shows highly inflated level properties. The statistics MNEGBIN show some conservative level 

properties, however, as the values of c and k increase, empirical levels become closer to the nominal level. The power of the 

statistic MNEGBIN is, in general, larger than those of Poisson. The powers of both statistics are not similar in all the cases 

studied. We extended the simulation study of the properties of the two statistic interms of empirical size and power to situations 

where the over-dispersion parameter c is not the same for all groups. For this, we generated data from the heterogeneous negative 

binomial and lognormal–Poisson distributions with heterogeneous over-dispersion parameter c. The results for size and power are 

given in Table 2 only for data that are generated from the heterogeneous negative binomial distribution. The level and power 

properties of all the statistics, in general, remain similar irrespective of which mechanism of over-dispersion is used to generate 

count data. This also seems to be true irrespective of whether the over-dispersion parameter c is varying or constant. 

Table 3. Estimated Empirical power and size of the score test between the multilevel Poisson regression model and the multilevel 

negative binomial regression models under the hypothesis of homogeneity based on 1000 replications. Levels considered are 

10%; 5% and 1%. The sample size scenarios for each test = 10, 20, 50,100 and the number of groups = 5, 10, 20 and 50 are 

considered. 
Cluster (k) Observation

(n) 

Multilevel Poisson Model  Multilevel Negative Binomial Model 

Power at D=0.15 Power at D=0.15 

α=0.10 α=0.05 α=0.01 α=0.10 α=0.05 α=0.01 

5 

10 0.97221 0.94512 0.83729 0.93093 0.87852 0.70945 

20 0.99307 0.98406 0.93701 0.91172 0.84997 0.66291 

50 0.97598 0.95174 0.85224 0.97386 0.94800 0.84372 

100 0.97808 0.95548 0.86097 0.98068 0.96020 0.87226 

10 

10 0.99926 0.99790 0.98769 0.97943 0.95791 0.86673 

20 0.99136 0.98057 0.92644 0.98525 0.96867 0.89356 

50 0.97843 0.95611 0.86245 0.99343 0.98481 0.93933 

100 0.98096 0.96070 0.87348 0.97592 0.95162 0.85197 

20 

10 0.94187 0.89536 0.73881 0.99940 0.99828 0.98955 
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20 0.94689 0.90326 0.75316 0.99999 0.99995 0.99950 

50 0.98101 0.96080 0.87372 0.98468 0.96760 0.89080 

100 0.98768 0.97332 0.90592 0.97896 0.95706 0.86471 

50 

10 0.96108 0.92623 0.79741 0.99751 0.99366 0.96973 

20 0.91279 0.85153 0.66537 0.99779 0.99433 0.97232 

50 0.99780 0.99433 0.97234 0.97439 0.94893 0.84583 

100 0.98751 0.97298 0.90501 0.97162 0.94408 0.83500 

 

 

Figure 1. Comparisons of the power and size effects of the multilevel Poisson and the multilevel NB models 

IV. APPLICATION STUDY  

In this chapter, we focus on multilevel negative binomial regression model to take account of the coefficient of regression and 

random parameters in negative binomial counts with overdispersion. An algorithm for estimating parameters was obtained and a 

score test was presented for testing the multilevel negative binomial regression model against the multilevel Poisson regression 

model, and for testing the significance of the dispersion parameter. In the application study, the Ethiopian demographic and 

health-related survey under eighteen years Children death rate data is used to illustrate the proposed score tests. 

 

 

Table 4.  Fitting the dispersion parameters in Multilevel Negative Binomial Model with covariates 
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Number of children  Multilevel Poisson Multilevel negative binomial 

Estimate  S.E Z-value p-value Estimate S.E. Z-value P-value 

Residence 0.4479238 0.0251482 17.81 0.000∗∗ .2629343    .0341172      7.71    0.000∗∗ 

Educ. level -0.6493431 0.0245608 -26.44 0.000∗∗ .004331    .0033312      1.30 0.194      

Toiletfac 0.027909 0.0180485 1.55 0.122 .0621577    .0010159     61.19    0.000∗∗      

Religion 0.377617 0.0132241 28.56 0.000∗∗ -.0483643    .0026752    -18.08    0.000∗∗ 

HHSMembers 0 .0086175 0 .0024202 3.56 0.004∗∗ -.612779     .028402    -21.58    0.000∗∗ 

Age mother 0.056305 0 .0007035 80.04 0.000∗∗ .4060037    .0201374      20.16    0.000∗∗ 

Current Mari 0.2137659 0.0802338 3.66 0.008∗∗ .0183504    .0995902      0.18    0.854     

Agemarriage -0.038131 0.0019082 -19.98 0.000∗∗ .0012938    .0166597      0.08    0.938     

Sourcdrinkwat 0.0311697 0.0121839 2.56 0.011∗ -.0179391    .0237627     -0.75    0.450     

Constant -2.156525 0 .0662962 -32.53 0.000∗∗ -1.788503    .1096869    -16.31    0.000∗∗ 

       /lnalpha     -.7008252    .0272103    -25.76 0.000∗∗ 

alpha          

Region(var) 0 .1012529 0.1017809   .0479054    .0212992                         

LR test vs. Poisson model: chibar2(01) = 184.55       Prob >= chibar2 = 0.0000 

LR test of alpha=0: chibar2(01) = 3816.91              Prob >= chibar2 = 0.000 

*: Significant at 0.05 level. Alpha is clearly > 0!  Over dispersion is evident; LR test p<.05.  

 

From Table 4, the result showed that the multilevel negative binomial regression model is more efficient than multilevel Poisson 

regression model. Hence, overdispersion is evident and the proposed score test is appropriate to handle overdispersion. 

Table 5. Fitting statistic of Poisson and multilevel Poisson models for the number of death notice of children with covariates in 

EDHS, 2005 
       Model -2l AIC BIC 

Multilevel Negative binomial model 69347.06 69371.05 69468.77 

Multilevel Poisson model 73240 73095 73185.06 

The multilevel negative binomial model can be considered as a parametric version of assessing heterogeneity among regions with 

respect to the Deaths of children. Moreover, the AIC and BIC value of multilevel negative binomial model is smaller than the 

multilevel Poisson model. This indicates that the multilevel negative binomial model is better than the multilevel Poisson model.  

Table 6.  The observed and predicted probabilities of Multilevel Poisson model and multilevel negative binomial models 

Number of  Children 

Death 

Observed 

frequency  

Observed 

probability  

Predicted probability  

Multilevel Poisson Model Multilevel Negative Binomial Model 

0 12000 0.472069237 0.327120871 0.311111111 

1 5680 0.223446105 0.220180056 0.224713805 

2 3560 0.140047207 0.19380382 0.200808081 

3 1880 0.073957514 0.108047166 0.111245791 

4 1140 0.044846577 0.068320502 0.070841749 

5 500 0.019669552 0.032645033 0.033670034 

6 320 0.012588513 0.02318702 0.024579125 

7 80 0.003147128 0.005151118 0.004915825 

8 120 0.004720692 0.007569642 0.007676768 

9 40 0.001573564 0.002869634 0.002424242 

10 40 0.001573564 0.005065108 0.004040404 

11 20 0.000786782 0.001566147 0.001818182 

13 20 0.000786782 0.000606783 0.00047138 

18 20 0.000786782 0.003857189 0.003232323 

The predicted probabilities for the multilevel Poisson and the multilevel negative binomial regression model are presented in 

Table 4 and Fig 3. To check the analysis, whether the negative binomial and the multilevel negative binomial regression model 

would fit the data better, we fitted the maximum likelihood of the parameters and the maximized log likelihoods for them. The 

fitted statistic for multilevel Poisson model and the multilevel negative binomial regression model are shown in Table 4, we note 

that the AIC and BIC values for both models, the multilevel negative binomial model is better than the multilevel Poisson model, 

this can also be noticed from Fig 4, since the predicted probabilities from the multilevel negative binomial model is closer to the 

observed probabilities for each count. Then we can make a conclusion that the multilevel negative binomial model is essentially 

more appropriate than the multilevel Poisson model for the number of children of Death in EDHS, Ethiopia. 
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Figure 2. Comparisons of the multilevel Poisson and multilevel NB models using predicted Probabilities 

V. DISCUSSION AND CONCLUSION  
This paper proposed the multilevel negative binomial model and the multilevel Poisson model as an alternative for handling 

overdispersion specifically; two types of dispersions for two types of regression models, the multilevel Poisson regression model, 

and the multilevel negative binomial regression model, the fitting procedures can be carried out easily by using the EM 

algorithms. The estimations of the dispersion parameter, k, can be implemented by the maximum likelihood method. In this paper, 

we briefly discussed the goodness of fit measures which were already familiar to those who used multilevel negative binomial 

model and Multilevel Poisson model. The measures which are applicable to the two model likelihood ratio test, Akaike 

information criteria (AIC) and Bayesian Schwartz information criteria (BIC). 

In this paper the multilevel negative binomial model and the multilevel Poisson regression model were fitted, and compared using 

illustrative examples of an application datasets from the Ethiopian Demographic and health related survey, and simulation data 

were used.This paper showed that multilevel Poisson and multilevel negative binomial procedures is similar estimates for the 

regression parameters, the standard errors for the negative binomial model is larger than the multilevel Poisson model, therefore, 

the multilevel Poisson overestimates the significance of the regression parameters in the presence of overdispersion. This paper 

also showed that in the presence of overdispersion, the multilevel Poisson overestimates the significant of the rating factors. The 

variance of the multilevel negative binomial model is larger than the multilevel Poisson, and this allows the multilevel negative 

binomial models to handle overdispersion. This study demonstrates the application of the multilevel negative binomial and the 

multilevel Poisson to death of children; it highlights significance heterogeneity in the regions for children deaths. The method 

avoids arbitrary trimming and transformation of the data for a single component analysis (Quantin et al., 1999), that is, the 

assumption of a homogenous children population is no longer required. 

This paper used a simulation approach to test the ability of group level random effects to minimize overdispersion and thus 

recover unbiased parameter estimates in multilevel Poisson models. Simulation result revealed that the appropriateness of 

employing observations level random effects in mixed models depends on the process generating the overdispersion in the data. 

The likelihood ratio result showed that the predictors were significantly associated with the outcome variable (p<0.000). We 

derived a score test statistics MNB for testing homogeneity between and within individuals for clustered count data with over 

dispersed. We then compared these two statistics using simulations with the two statistics.  

The statistic the multilevel negative binomial model is based on a specific over-dispersion model, namely the multilevel negative 

binomial model and the multilevel Poisson model. The statistic multilevel negative binomial model, in general, shows highly 

inflated level properties. The statistics multilevel Poisson show some conservative level properties, however, as the values of c 

and k increase, empirical levels become closer to the nominal level. The power of the statistics multilevel negative binomial 

model is, in general, larger than the multilevel Poisson model.  

In terms of both level and power, there does not seem to be much difference in the performance of the two statistics. The level 

and power properties of all the statistics, in general, remain similar irrespective of which mechanism of overdispersion is used to 

generate count data. This also seems to be true irrespective of whether the over-dispersion parameter c is varying or constant. For 

testing homogeneity between and within individuals for clustered count data with over-dispersion, our recommendation, then, is 

to use multilevel negative binomial model might be preferable.  
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