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INTRODUCTION, DEFINITIONS AND NOTATIONS 

Suppose 𝑓  be an entire function of several complex variables holomorphic in the closed polydisc 

𝑈 =  {(𝑧1, 𝑧2, … 𝑧𝑛) ∶  |𝑧𝑖|  ≤  𝑟𝑖 , 𝑖 =  1,2, … , 𝑛   ∀  𝑟1 ≥ 0, 𝑟2 ≥ 0,… , 𝑟𝑛 ≥ 0} 

and   𝑀𝑓(𝑟1, 𝑟2, … , 𝑟𝑛) =  max  {|𝑓(𝑧1, 𝑧2, … , 𝑧𝑛)|: |𝑧𝑖| ≤  𝑟𝑖 , 𝑖 =  1,2, … , n}. 

Then in the light of maximum principal and Hartogs’s theorem {[7], 𝑝. 2, 𝑝. 51},𝑀 𝑓(𝑟1, 𝑟2, … , 𝑟𝑛) is an increasing function of 

 𝑟1, 𝑟2, … , 𝑟𝑛 . For any two entire functions f and g of two complex variables, the ratio 
𝑀𝑓(𝑟1,𝑟2,…,𝑟𝑛)

𝑀𝑔(𝑟1,𝑟2,…,𝑟𝑛)
 𝑎𝑠 𝑟1, 𝑟2, … , 𝑟𝑛 → ∞ is called the 

growth of f with respect to g. Taking this into account, the following definition is well known: 

 

DEFINITION 1. ([7], p.339, see also [1]) The order 𝑣𝑛𝜌𝑓 and lower order 𝑣𝑛𝜆𝑓 of an entire function 𝑓(𝑧1, 𝑧2, … 𝑧𝑛) are defined as 

fvn
 lim sup

𝑟1,𝑟2,…,𝑟𝑛→∞

log log𝑀𝑓(𝑟1,𝑟2,…,𝑟𝑛)

logMexp(𝑧1,𝑧2,…𝑧𝑛)(𝑟1,𝑟2,…,𝑟𝑛)
   and   fvn

 = lim inf
𝑟1,𝑟2,…,𝑟𝑛→∞

log log𝑀𝑓(𝑟1,𝑟2,…,𝑟𝑛)

logMexp(𝑧1,𝑧2,…𝑧𝑛)(𝑟1,𝑟2,…,𝑟𝑛)
 

We see that the order fvn
  and lower order fvn

  of an entire function 𝑓(𝑧1, 𝑧2, …𝑧𝑛) is defined in terms of the growth of 

𝑓(𝑧1, 𝑧2, …𝑧𝑛) with respect to the exponential function 𝑒𝑥𝑝 (𝑧1, 𝑧2, …𝑧𝑛). The rate of growth of an entire function generally 

depends upon the order (lower order) of it. The entire function with higher order is of faster growth than that of lesser order. But 

if orders of two entire functions are the same, then it is impossible to detect the function with faster growth. In that case, it is 

necessary to compute another class of growth indicators of entire functions called their types and thus one can define type of an 

entire function 𝑓(𝑧1, 𝑧2, …𝑧𝑛) denoted by fvn
   in the following way. 

DEFINITION 2. [6] The type fvn
  of an entire function 𝑓(𝑧1, 𝑧2, …𝑧𝑛) is defined as 

fvn
 = lim sup

𝑟1,𝑟2,…,𝑟𝑛→∞

log𝑀𝑓(𝑟1,𝑟2,…,𝑟𝑛)

[(𝑟1𝑟2…𝑟𝑛)]
fvn


 ,0 < fvn

 < ∞ 

Similarly, the lower type fvn
  of an entire function 𝑓(𝑧1, 𝑧2, … 𝑧𝑛) may be defined as 

fvn
 = lim inf

𝑟1,𝑟2,…,𝑟𝑛→∞

log 𝑀𝑓(𝑟1,𝑟2,…,𝑟𝑛)

[(𝑟1𝑟2…𝑟𝑛)]
fvn


, 0 < fvn

 < ∞ 

Similarly in order to determine the relative growth of two entire functions of several complex variables having same non-zero 

finite lower order one may introduce the concept of weak type fvn
  of 𝑓(𝑧1, 𝑧2, …𝑧𝑛) of finite positive lower order fvn

 which is 

as follows 

DEFINITION 3. [6] The weak type fvn
   of an entire function 𝑓(𝑧1, 𝑧2, … , 𝑧𝑛) of finite positive lower order fvn

   is defined by 

fvn
 = lim inf

𝑟1,𝑟2,…,𝑟𝑛→∞

log 𝑀 𝑓(𝑟1,𝑟2,…,𝑟𝑛)

[(𝑟1𝑟2…𝑟𝑛)]
fvn


, 0 < fvn

 < ∞ 
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Likewise, one may define the growth indicator fvn
  of an entire function 𝑓(𝑧1, 𝑧2, …𝑧𝑛) of finite positive lower order fvn

   in the 

following way 

fvn
 = lim sup

𝑟1,𝑟2,…,𝑟𝑛→∞

log 𝑀 𝑓(𝑟1,𝑟2,…,𝑟𝑛)

[(𝑟1𝑟2…𝑟𝑛)]
fvn


, 0 < fvn

 < ∞ 

 

Bernal (see [2], [3]) introduced the definition of relative order between two entire functions of single variable. During the past 

decades, several authors (see [8],[9],[10],[11]) made closed investigations on the properties of relative order of entire functions of 

single variable. Using the idea of Bernal’s relative order (see [2], [3]) of entire functions of single variable, Banerjee and Datta [4] 

introduced the definition of relative order of entire functions of two complex variables to avoid comparing growth just with 

𝑒𝑥𝑝(𝑧1, 𝑧2, …𝑧𝑛) which is as follows.  

gvn
 = inf{𝜇 > 0,𝑀 𝑓(𝑟1, 𝑟2, … , 𝑟𝑛) < 𝑀 𝑔(𝑟1

𝜇 , 𝑟2
𝜇 , … , 𝑟𝑛

𝜇);  𝑟𝑖 ≥ 𝑅(𝜇),   𝑖 = 1,2, … , 𝑛} 

= lim sup
𝑟1,𝑟2,…,𝑟𝑛→∞

log𝑀𝑔
−1 𝑀 𝑓(𝑟1, 𝑟2, … , 𝑟𝑛)

𝑙𝑜𝑔(𝑟1𝑟2 …𝑟𝑛)
 

where 𝑔 is also an entire function holomorphic in the closed polydisc 

U =  {(𝑧1, 𝑧2, … , 𝑧𝑛) ∶  |𝑧𝑖| ≤ 𝑟𝑖  , 𝑖 =  1,2, … , 𝑛 ∀ 𝑟𝑖 ≥ 0}  

and the definition coincides with the classical one if 𝑔(𝑧1, 𝑧2, … , 𝑧𝑛) = 𝑒𝑥𝑝(𝑧1𝑧2, … 𝑧𝑛) . 

Likewise, one can define the relative lower order of 𝑓 with respect to 𝑔 denoted by gvn
  as follows 

gvn
 = lim inf

𝑟1,𝑟2,…,𝑟𝑛→∞

log 𝑀𝑔
−1 𝑀 𝑓(𝑟1,𝑟2,…,𝑟𝑛)

𝑙𝑜𝑔(𝑟1𝑟2…𝑟𝑛)
 

Now in the case of relative order of entire functions of two complex variables, it therefore seems reasonable to define suitably the 

relative type and relative weak type respectively in order to compare the relative growth of two entire functions of two complex 

variables having same non zero finite relative order or relative lower order with respect to another entire function of two complex 

variables. Recently Datta introduced such definitions which are as follows. 

DEFINITION 4. Let 𝑓(𝑧1, 𝑧2, … 𝑧𝑛) and 𝑔(𝑧1, 𝑧2, … 𝑧𝑛) be any two entire functions such that 

 0 < gvn
 < ∞. Then the relative type )( fgvn

  of 𝑓(𝑧1, 𝑧2, … , 𝑧𝑛) with respect to 𝑔(𝑧1, 𝑧2, …𝑧𝑛)  is defined as.  

gvn
 =inf {𝑘 > 0,𝑀 𝑓(𝑟1, 𝑟2, … , 𝑟𝑛) < 𝑀 𝑔 (𝑘𝑟1

gvn


, 𝑘𝑟2
gvn


, … , 𝑘𝑟𝑛

gvn


)} 

for all sufficiently large values of 𝑟1 , 𝑟2, and 𝑟𝑛. 

Equivalent formula for gvn
  is,  

gvn
 = lim sup

𝑟1,𝑟2,…,𝑟𝑛→∞

𝑀𝑔
−1 𝑀 𝑓(𝑟1,𝑟2,…,𝑟𝑛)

[(𝑟1𝑟2…𝑟𝑛)]
gvn


 

Likewise, one can define the relative lower type of an entire function 𝑓(𝑧1, 𝑧2, … 𝑧𝑛) to 𝑔(𝑧1, 𝑧2, … 𝑧𝑛)   denoted by gvn
 as follows 

gvn
 = lim inf

𝑟1,𝑟2,…,𝑟𝑛→∞

𝑀𝑔
−1 𝑀 𝑓(𝑟1,𝑟2,…,𝑟𝑛)

[(𝑟1𝑟2…𝑟𝑛)]
gvn


 , 0 < gvn

 < ∞. 

DEFINITION 5. [6] The relative weak type )( fgvn
  of an entire function 𝑓(𝑧1, 𝑧2, … , 𝑧𝑛) with respect to another entire function 

𝑔(𝑧1, 𝑧2, … , 𝑧𝑛) having finite positive relative lower order )( fgvn
   is defined as 

)( fgvn
 = lim inf

𝑟1,𝑟2,…,𝑟𝑛→∞

𝑀𝑔
−1 𝑀 𝑓(𝑟1,𝑟2,…,𝑟𝑛)

[(𝑟1𝑟2…𝑟𝑛)]
gvn

  

 

Also one may define the growth indicator )( fgvn
  of an entire function 𝑓 with respect to an entire function 𝑔 in the following 

way 

)( fgvn
 = lim sup

𝑟1,𝑟2,…,𝑟𝑛→∞

𝑀𝑔
−1 𝑀 𝑓(𝑟1,𝑟2,…,𝑟𝑛)

[(𝑟1𝑟2…𝑟𝑛)]
gvn


, 0 < gvn

 < ∞ 

 

Considering 𝑔(𝑧1, 𝑧2, … , 𝑧𝑛) = 𝑒𝑥𝑝 (𝑧1𝑧2 …𝑧𝑛) one may easily verify that Definition 4 and Definition 5 coincide with Definition 

2 and Definition 3 respectively. 

 

In the paper we investigate some relative growth properties of entire functions of several complex variables with respect to 

another entire function of several complex variables on the basis of relative type and relative weak type of several complex 

variables. We do not explain the standard definitions and notations in the theory of entire functions as those are available in [7]. 
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LEMMA . [5] Let f and g be any two entire functions of several complex variables then 
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THEOREMS 

In this section we present the main results of the paper. 
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PROOF: From the definitions of fvn
 and fvn

  we have for all sufficiently large values of     𝑟1, 𝑟2, … , 𝑎𝑛𝑑 𝑟𝑛 that  

𝑀𝑓(𝑟1, 𝑟2, … , 𝑟𝑛) ≤ 𝑒𝑥𝑝 {   fvn
 [(𝑟1𝑟2 … 𝑟𝑛)]

fvn


}                                                                                                             (1) 

𝑀𝑓(𝑟1, 𝑟2, … , 𝑟𝑛) ≥ 𝑒𝑥𝑝 {   fvn  [(𝑟1𝑟2 … 𝑟𝑛)]
fvn


}                                                                                                             

(2) 

 

and also for a sequence of values of 𝑟1, 𝑟2, … , 𝑎𝑛𝑑 𝑟𝑛 tending to infinity, we get that 

𝑀𝑓(𝑟1, 𝑟2, … , 𝑟𝑛) ≥ 𝑒𝑥𝑝 {   fvn
 [(𝑟1𝑟2 … 𝑟𝑛)]

fvn


}                                                                                                             (3)     

𝑀𝑓(𝑟1, 𝑟2, … , 𝑟𝑛) ≤ 𝑒𝑥𝑝 {   fvn
 [(𝑟1𝑟2 … 𝑟𝑛)]

fvn


}                                                                                                             (4) 

Similarly from the definitions of gvn
  and fvn

  , it follows for all sufficiently large values of 𝑟1, 𝑟2, … , 𝑟𝑛 that 

𝑀𝑔(𝑟1, 𝑟2, … , 𝑟𝑛) ≤ 𝑒𝑥𝑝 {   gvn
 [(𝑟1𝑟2 … 𝑟𝑛)]

gvn


}     

i.e. , (𝑟1, 𝑟2, … , 𝑟𝑛) ≤ 𝑀𝑔
−1 [𝑒𝑥𝑝 {   gvn

 [(𝑟1𝑟2 …𝑟𝑛)]
gvn


}]                                                             

and    𝑀𝑔
−1(𝑟1, 𝑟2, … , 𝑟𝑛) ≥

[
 
 
 
 

  gnv

n gv

nrrr 



1

21 ...log
















]
 
 
 
 

                                                                                                                         

(5) 

Thus  𝑀𝑔(𝑟1, 𝑟2, … , 𝑟𝑛) ≥ 𝑒𝑥𝑝 {   gvn
 [(𝑟1𝑟2 … 𝑟𝑛)]

gvn


} 

i.e., 𝑀𝑔
−1(𝑟1, 𝑟2, … , 𝑟𝑛) ≤

[
 
 
 
 

  gnv

n gv

nrrr




1

21 ...log

















]
 
 
 
 

                                                                                                                           (6) 

and for a sequence of values of 𝑟1, 𝑟2, … , 𝑟𝑛 tending to infinity, we obtain that 
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𝑀𝑔(𝑟1, 𝑟2, … , 𝑟𝑛) ≥ 𝑒𝑥𝑝 {   gvn
 [(𝑟1𝑟2 …𝑟𝑛)]

gvn


} 

Thus 𝑀𝑔
−1(𝑟1, 𝑟2, … , 𝑟𝑛) ≤

[
 
 
 
 

  gnv

n gv

nrrr 



1

21 ...log

















]
 
 
 
 

                                                                                                                         (7) 

𝑀𝑔(𝑟1, 𝑟2, … , 𝑟𝑛) ≥ 𝑒𝑥𝑝 {   gvn
 [(𝑟1𝑟2 …𝑟𝑛)]

gvn


} 

i.e., 𝑀𝑔
−1(𝑟1, 𝑟2, … , 𝑟𝑛) ≥

[
 
 
 
 

  gnv

n gv

nrrr




1

21 ...log

















]
 
 
 
 

                                                                                                                           (8) 

From the definitions of fvn
 and fvn


,
 we have for all sufficiently large values of nrrr ,...,, 21  that 

𝑀𝑓(𝑟1, 𝑟2, … , 𝑟𝑛) ≤ 𝑒𝑥𝑝 {   fvn  [(𝑟1𝑟2 …𝑟𝑛)]
fvn


}                                                                                                               

(9) 

𝑀𝑓(𝑟1, 𝑟2, … , 𝑟𝑛) ≥ 𝑒𝑥𝑝 {   fvn
 [(𝑟1𝑟2 …𝑟𝑛)]

fvn


}                                                                                                              (10) 

and also for a sequence of values of 𝑟1, 𝑟2, … , 𝑎𝑛𝑑 𝑟𝑛tending to infinity, we get that 

𝑀𝑓(𝑟1, 𝑟2, … , 𝑟𝑛) ≥ 𝑒𝑥𝑝 {   fvn  [(𝑟1𝑟2 …𝑟𝑛)]
fvn


}                                                                                                             

(11)     

𝑀𝑓(𝑟1, 𝑟2, … , 𝑟𝑛) ≤ 𝑒𝑥𝑝 {   fvn
 [(𝑟1𝑟2 …𝑟𝑛)]

fvn


}                                                                                                              (12) 

Similarly from the definitions of 𝑣𝑛𝜏𝑔 𝑎𝑛𝑑  𝑣𝑛𝜏𝑔̅, it follows for all sufficiently large values of nrrr ,...,, 21  that 

𝑀𝑔(𝑟1, 𝑟2, … , 𝑟𝑛) ≤ 𝑒𝑥𝑝 {   gvn  [(𝑟1𝑟2 … 𝑟𝑛)]
gvn


} 

i.e., (𝑟1, 𝑟2, … , 𝑟𝑛) ≤ 𝑀𝑔
−1 [𝑒𝑥𝑝 {   gvn  [(𝑟1𝑟2 …𝑟𝑛)]

gvn


}] 

and  𝑀𝑔
−1(𝑟1, 𝑟2, … , 𝑟𝑛) ≥

[
 
 
 
 

  gnv

n gv

nrrr 



1

21 ...log












]
 
 
 
 

                                                                                                                         

(13) 

Thus  𝑀𝑔(𝑟1, 𝑟2, … , 𝑟𝑛) ≥ 𝑒𝑥𝑝 {   gvn
 [(𝑟1𝑟2 …𝑟𝑛)]

gvn


} 

i.e.,  𝑀𝑔
−1(𝑟1, 𝑟2, … , 𝑟𝑛) ≤

[
 
 
 
 

  gnv

n gv

nrrr 



1

21 ...log

















]
 
 
 
 

                                                                                                                         

(14) 

and for a sequence of values of 𝑟1, 𝑟2, … , 𝑟𝑛 tending to infinity, we obtain that 

𝑀𝑔(𝑟1, 𝑟2, … , 𝑟𝑛) ≥ 𝑒𝑥𝑝 {   gvn  [(𝑟1𝑟2 …𝑟𝑛)]
gvn


} 
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Thus  𝑀𝑔
−1(𝑟1, 𝑟2, … , 𝑟𝑛) ≤

[
 
 
 
 

  gnv

n gv

nrrr 



1

21 ...log












]
 
 
 
 

                                                                                                                       

(15) 

𝑀𝑔(𝑟1, 𝑟2, … , 𝑟𝑛) ≤ 𝑒𝑥𝑝 {   gvn
 [(𝑟1𝑟2 … 𝑟𝑛)]

gvn


} 

i.e., 𝑀𝑔
−1(𝑟1, 𝑟2, … , 𝑟𝑛) ≥

[
 
 
 
 

  gnv

n gv

nrrr 



1

21 ...log

















]
 
 
 
 

                                                                                                                          

(16) 

Now from (3) and in view of (13), we get for a sequence of values of nrrr ,...,, 21  tending to infinity that 

𝑀𝑔
−1𝑀𝑓(𝑟1, 𝑟2, … , 𝑟𝑛)

[𝑟1𝑟2 … 𝑟𝑛]
gv

fv

n

n




≥

 
 

gnv

n

n

fv

fv





1













 

 

Since in view of lemma 

gnv

n

n

n

gv

fv

gv f







1

)( 







                                                                                                                                                                

(17) 

Similarly from (2) and in view of (16) it follows for a sequence of values of nrrr ,...,, 21   tending to infinity that    

𝑀𝑔
−1𝑀𝑓(𝑟1, 𝑟2, … , 𝑟𝑛)

[𝑟1𝑟2 … 𝑟𝑛]
gv

fv

n

n




≥

 
 

gnv

n

n

gv

fv






1
















 

 

Since in view of lemma 

gnv

n

n

n

gv

fv

gv f







1

)(











                                                                                                                                                               (18) 

Again in view of (14), we have from (9) for all sufficiently large values of nrrr ,...,, 21 and in view of lemma 

𝑀𝑔
−1𝑀𝑓(𝑟1, 𝑟2, … , 𝑟𝑛)

[𝑟1𝑟2 … 𝑟𝑛]
gv

fv

n

n




≥

 
 

gnv

n

n

gv

fv






1
















 

 

gnv

n

n

n

gv

fv

gv f







1

)(











                                                                                                                                                                 

(19) 

Again in view of (6), we have from (1) for all sufficiently large values of nrrr ,...,, 21  that 

𝑀𝑔
−1𝑀 𝑓(𝑟1, 𝑟2, … , 𝑟𝑛) ≤ 𝑀𝑔

−1 [𝑒𝑥𝑝 {   fvn
 [(𝑟1𝑟2 … 𝑟𝑛)]

fvn


}] 
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 

 
 

gnv

n

n

gnv

fnv
gv

fv

n

nfg

rrr

rrrMM 







1

21

21

1

...

),...,,(
















                                                                                                                               (20)                                                                                                  

Since in view of lemma 

gnv

n

n

n

gv

fv

gv f







1

)( 







                                                                                                                                                               (21)  

Further in view of (6), we have from (9) for all sufficiently large values of nrrr ,...,, 21  that 

𝑀𝑔
−1𝑀 𝑓(𝑟1, 𝑟2, … , 𝑟𝑛) ≤ 𝑀𝑔

−1 [𝑒𝑥𝑝 {   fvn  [(𝑟1𝑟2 …𝑟𝑛)]
fvn


}] 

That is,  

 

 
 

gnv

n

n

gnv

fnv
gv

fv

n

nfg

rrr

rrrMM 







1

21

21

1

...

),...,,(
















                                                                                                                               (22)                                                                                                                                                                                              

Since in view of lemma, we get that )( fgv

gv

fv

n

n

n 



 and as )0(  is arbitrary, therefore it follows from above that 

gnv

n

n

n

gv

fvL

gv f







1

)(
*














                                                                                                                                                               

(23) 

 

Thus the theorem follows from (17), (18), (19), (21) and (23).  

Further from (2) and in view of (13), we get for all sufficiently large values of nrrr ,...,, 21  that 

    fnv

n nfvgnfg rrrMrrrMM


 ...exp),...,,( 21

1

21

1  
 

That is, 

 

 

 
 

gnv

n

n

gnv

fnv
gv

fv

n

nfg

rrr

rrrMM 







1

21

21

1

...

),...,,(
















 

Since in view of lemma, we get that )( fgvngnv

fnv 



    and as )0(  is arbitrary, therefore we get that 

gnv

n

n

n

gv

fv

gv f







1

)( 







                                                                                                                                                               (24) 

Also in view of (7), we get from (1) for a sequence of values of nrrr ,...,, 21  tending to infinity that 

    fnv

n nfvgnfg rrrMrrrMM


 ...exp),...,,( 21

1

21

1    

 

 
 

gnv

n

n

gnv

fnv

gv

fv

n

nfg

rrr

rrrMM 



 


1

21

21

1

...

),...,,(




















                                                                                                                               
(25)

 

That is, 

gnv

n

n

n

gv

fv

gv f







1

)(











                                                                                                                                                                

(26) 
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Likewise from (4) and in view of (6), it follows for a sequence of values of nrrr ,...,, 21  tending to infinity that 

    fnv

n nfvgnfg rrrMrrrMM


 ...exp),...,,( 21

1

21

1  
                                                                                                 

(27) 

 

We get, 

 

 
 

gnv

n

n

gnv

fnv
gv

fv

n

nfg

rrr

rrrMM 







1

21

21

1

...

),...,,(
















                                                                                                                               

(28) 

 

We get from (28) that, 

gnv

n

n

n

gv

fv

gv f







1

)( 







                                                                                                                                                               (29) 

Since in view of lemma, )( fgvngnv

fnv 



    and as )0(  is arbitrary, therefore further in view of (15), we get from (9) for a 

sequence of values of nrrr ,...,, 21 tending to infinity that 

𝑀𝑔
−1𝑀 𝑓(𝑟1, 𝑟2, … , 𝑟𝑛) ≤ 𝑀𝑔

−1 [𝑒𝑥𝑝 [( fvn
 + 𝜀) [ nrrr ...21 ]

fvn


]] 

Then, 

 

 
 

gnv

n

n

gnv

fnv
gv

fv

n

nfg

rrr

rrrMM 







1

21

21

1

...

),...,,(
















                                                                                                                                

(30) 

As in view of lemma )( fgvngnv

fnv 



    and as )0(  is arbitrary  

gnv

n

n

n

gv

fvL

gv f







1

)(
*









                                                                                                                                                               (31) 

Similarly from (12) and in view of (14), it follows for a sequence of values of  nrrr ,...,, 21  tending to infinity that 

 

𝑀𝑔
−1𝑀 𝑓(𝑟1, 𝑟2, … , 𝑟𝑛) ≤ 𝑀𝑔

−1 [𝑒𝑥𝑝 [( fvn
 + 𝜀) [ nrrr ...21 ]

gvn


]] 

Then, 

 

 
 

gnv

n

n

gnv

fnv

gv

fv

n

nfg

rrr

rrrMM 



 


1

21

21

1

...

),...,,(




















                                                                                                                                 

(32) 

As in view of lemma, )( fgvngnv

fnv 



    and as )0(  is arbitrary  

gnv

n

n

n

gv

fv

gv f







1

)(











                                                                                                                                                                  (33) 

Again in view of (7), we get from (9) for a sequence of values of nrrr ,...,, 21 tending to infinity that 

𝑀𝑔
−1𝑀 𝑓(𝑟1, 𝑟2, … , 𝑟𝑛) ≤ 𝑀𝑔

−1 [𝑒𝑥𝑝 [( fvn
 + 𝜀) [ nrrr ...21 ]

fvn


]] 
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Then,

  

 
 

gnv

n

n

gnv

L
fnv gv

fv

n

nfg

rrr

rrrMM 



 



1

21

21

1

*

...

),...,,(




















                                                                                                                     

(34) 

As in view of lemma, )( fgvngnv

fnv 



    and as )0(  is arbitrary  

gnv

n

n

n

gv

fv

gv f







1

)(











                                                                                                                                                               (35) 

Similarly from (12) and in view of (6), it follows for a sequence of values of nrrr ,...,, 21  tending to infinity that 

𝑀𝑔
−1𝑀 𝑓(𝑟1, 𝑟2, … , 𝑟𝑛) ≤ 𝑀𝑔

−1 [𝑒𝑥𝑝 [( fvn
 + 𝜀) [ nrrr ...21 ]

fvn


]] 

Then,

 
 

 
 

gnv

n

n

gnv

fnv
gv

fv

n

nfg

rrr

rrrMM 







1

21

21

1

...

),...,,(
















                                                                                                                     

(36) 

As in view of lemma, )( fgvngnv

fnv 



    and as )0(  is arbitrary  

gnv

n

n

n

gv

fv

gv f







1

)( 







                                                                                                                                                                

(37) 

Hence the second part of the theorem follows from (24), (26), (29), (31), (33), (35) and (37). 

 

THEOREM 2. Let 𝑓(𝑧1, 𝑧2, … , 𝑧𝑛) and 𝑔(𝑧1, 𝑧2, … , 𝑧𝑛) be any two entire functions with 
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Proof: We obtain from (11) and (13), for a sequence of values of nrrr ,...,, 21  tending to infinity that 
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As in view of lemma, )( fgvngnv
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Further we obtain from (10) and (16), for a sequence of values of nrrr ,...,, 21  tending to infinity that 
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Now from (3) and in view of (5), we get for a sequence of values of nrrr ,...,, 21  tending to infinity that 
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Also from (2) and in view of (8), it follows for a sequence of values of nrrr ,...,, 21 ending to infinity that 
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(41) 

As in view of lemma, )( fgvngnv

fnv 



    and as )0(  is arbitrary, from (40) we get that 
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lim 𝑠𝑢𝑝
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Similarly, we get from equation (41) that 
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In view of lemma, )( fgvngnv
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and as )0( is arbitrary 

Likewise from (3) and in view of (13), we get for a sequence of values of nrrr ,...,, 21  tending to infinity that 

𝑀𝑔
−1𝑀 𝑓 ( nrrr ,...,, 21 ) ≥ 𝑀𝑔
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In view of lemma, )( fgvngnv
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From (2) and in view of (16), we get for a sequence of values of nrrr ,...,, 21  tending to infinity that 
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Again from (6) and (9), we have for all sufficiently large values of nrrr ,...,, 21  that 

𝑀𝑔
−1𝑀 𝑓 ( nrrr ,...,, 21 ) ≤ 𝑀𝑔

−1 [𝑒𝑥𝑝 [(  fvn ) [ nrrr ...21 ]
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
]] 
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Therefore, 
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In view of lemma, )( fgvngnv
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Thus the theorem follows from (38), (39), (42), (43), (45), (47) and (48). 

Further from (10) and in view of (13), we get for all sufficiently large values of nrrr ,...,, 21  that 

𝑀𝑔
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In view of lemma, )( fgvngnv
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(49) 

Again from (2) and in view of (5), we get for all sufficiently large values of nrrr ,...,, 21  that 
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(50) 

In view of lemma, )( fgvngnv

fnv 



 and as )0( is arbitrary, we get from (50) that 
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That is, 
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Again from (2) and in view of (13), we get for all sufficiently large values of nrrr ,...,, 21  that 
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We get from (7) and (9) for a sequence of values of nrrr ,...,, 21 tending to infinity that 
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Similarly, from (12) and in view of (6), it follows for a sequence of values of nrrr ,...,, 21 tending to infinity that 
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In view of lemma, )( fgvngnv
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Hence the second part of the theorem follows from (49), (51), (52), (53) and (54). 

 

COROLLARY. Let 𝑓 𝑎𝑛𝑑 𝑔 be any two entire functions of several complex variables such that 𝑔 

is of regular growth: Then 
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