ON THE BASIS OF RELATIVE TYPE AND RELATIVE WEAK TYPE OF ENTIRE FUNCTION OF SEVERAL COMPLEX VARIABLES

${ }^{1}$ Dharmendra Kumar Gautam, ${ }^{2}$ Anupma Rastogi, ${ }^{3}$ Balram Prajapati Department of Mathematics \& Astronomy, University of Lucknow, Uttar Pradesh, India
${ }^{1}$ Research Scholar, ${ }^{2}$ Associate Professor, ${ }^{3}$ Assistant Professor
${ }^{1}$ Department of Mathematics \& Astronomy,
${ }^{1}$ University of Lucknow, Pin-226007, India

Abstract

We introduced the idea of relative type and relative weak type of entire function of several complex variables with respect to another entire function of several complex variables and prove some result related to growth properties of it.

IndexTerms - Entire functions, relative type, relative weak type, several complex variables.

INTRODUCTION, DEFINITIONS AND NOTATIONS

Suppose f be an entire function of several complex variables holomorphic in the closed polydisc

$$
U=\left\{\left(z_{1}, z_{2}, \ldots z_{n}\right):\left|z_{i}\right| \leq r_{i}, i=1,2, \ldots, n \quad \forall r_{1} \geq 0, r_{2} \geq 0, \ldots, r_{n} \geq 0\right\}
$$

and $M_{f}\left(r_{1}, r_{2}, \ldots, r_{n}\right)=\max \left\{\left|f\left(z_{1}, z_{2}, \ldots, z_{n}\right)\right|:\left|z_{i}\right| \leq r_{i}, i=1,2, \ldots, \mathrm{n}\right\}$.
Then in the light of maximum principal and Hartogs's theorem \{[7], p.2, p.51\}, $M_{f}\left(r_{1}, r_{2}, \ldots, r_{n}\right)$ is an increasing function of $r_{1}, r_{2}, \ldots, r_{n}$. For any two entire functions f and g of two complex variables, the ratio $\frac{M_{f}\left(r_{1}, r_{2}, \ldots, r_{n}\right)}{M_{g}\left(r_{1}, r_{2}, \ldots, r_{n}\right)}$ as $r_{1}, r_{2}, \ldots, r_{n} \rightarrow \infty$ is called the growth of f with respect to g. Taking this into account, the following definition is well known:

DEFINITION 1. ([7], p.339, see also [1]) The order ${ }_{v n} \rho_{f}$ and lower order ${ }_{v n} \lambda_{f}$ of an entire function $f\left(z_{1}, z_{2}, \ldots z_{n}\right)$ are defined as

$$
{ }_{v_{n}} \rho_{f}=\limsup _{r_{1}, r_{2}, \ldots, r_{n} \rightarrow \infty} \frac{\log \log M_{f}\left(r_{1}, r_{2}, \ldots, r_{n}\right)}{\log M_{\exp \left(z_{1}, z_{2}, \ldots z_{n}\right)}\left(r_{1}, r_{2}, \ldots, r_{n}\right)} \quad \text { and } \quad{ }_{v_{n}} \lambda_{f}=\lim _{r_{1}, r_{2}, \ldots, r_{n} \rightarrow \infty} \frac{\log \log M_{f}\left(r_{1}, r_{2}, \ldots, r_{n}\right)}{\log M_{\exp \left(z_{1}, z_{2}, \ldots z_{n}\right)}^{\left(r_{1}, r_{2}, \ldots, r_{n}\right)}}
$$

We see that the order ${ }_{v_{n}} \rho_{f}$ and lower order ${ }_{v_{n}} \lambda_{f}$ of an entire function $f\left(z_{1}, z_{2}, \ldots z_{n}\right)$ is defined in terms of the growth of $f\left(z_{1}, z_{2}, \ldots z_{n}\right)$ with respect to the exponential function $\exp \left(z_{1}, z_{2}, \ldots z_{n}\right)$. The rate of growth of an entire function generally depends upon the order (lower order) of it. The entire function with higher order is of faster growth than that of lesser order. But if orders of two entire functions are the same, then it is impossible to detect the function with faster growth. In that case, it is necessary to compute another class of growth indicators of entire functions called their types and thus one can define type of an entire function $f\left(z_{1}, z_{2}, \ldots z_{n}\right)$ denoted by ${v_{n}} \sigma_{f}$ in the following way.

DEFINITION 2. [6] The type ${ }_{v_{n}} \sigma_{f}$ of an entire function $f\left(z_{1}, z_{2}, \ldots z_{n}\right)$ is defined as

$$
{v_{n}} \sigma_{f}=\limsup _{r_{1}, r_{2}, \ldots, r_{n} \rightarrow \infty} \frac{\log M_{f}\left(r_{1}, r_{2}, \ldots, r_{n}\right)}{\left[\left(r_{1} r_{2} \ldots r_{n}\right)\right]}, 0<{ }_{v_{n}}^{v_{n}} \sigma_{f}<\infty
$$

Similarly, the lower type $\quad v_{n} \sigma_{f}$ of an entire function $f\left(z_{1}, z_{2}, \ldots z_{n}\right)$ may be defined as

$$
v_{n} \bar{\sigma}_{f}=\liminf _{r_{1}, r_{2}, \ldots, r_{n} \rightarrow \infty} \frac{\log M_{f}\left(r_{1}, r_{2}, \ldots, r_{n}\right)}{\left[\left(r_{1} r_{2} \ldots r_{n}\right)\right]}{ }^{v_{n}} \rho_{f}, 0<{ }_{v_{n}} \sigma_{f}<\infty
$$

Similarly in order to determine the relative growth of two entire functions of several complex variables having same non-zero finite lower order one may introduce the concept of weak type ${v_{n}} \tau_{f}$ of $f\left(z_{1}, z_{2}, \ldots z_{n}\right)$ of finite positive lower order ${ }_{v_{n}} \lambda_{f}$ which is as follows
DEFINITION 3. [6] The weak type ${ }_{v_{n}} \tau_{f}$ of an entire function $f\left(z_{1}, z_{2}, \ldots, z_{n}\right)$ of finite positive lower order $v_{v_{n}} \lambda_{f}$ is defined by

$$
v_{n} \tau_{f}=\liminf _{r_{1}, r_{2}, \ldots, r_{n} \rightarrow \infty} \frac{\log M f\left(r_{1}, r_{2}, \ldots, r_{n}\right)}{\lambda_{\left[\left(r_{1} r_{2} \ldots r_{n}\right)\right]}^{v_{n}}}, 0<{ }_{v_{n}} \lambda_{f}<\infty
$$

Likewise, one may define the growth indicator ${v_{n}} \bar{\tau}_{f}$ of an entire function $f\left(z_{1}, z_{2}, \ldots z_{n}\right)$ of finite positive lower order ${ }_{v_{n}} \lambda_{f}$ in the following way

$$
v_{n} \bar{\tau}_{f}=\limsup _{r_{1}, r_{2}, \ldots, r_{n} \rightarrow \infty} \frac{\log M f\left(r_{1}, r_{2}, \ldots, r_{n}\right)}{\lambda_{\left[\left(r_{1} r_{2} \ldots r_{n}\right)\right]}^{v_{n}}}, 0<{ }_{v_{n}} \lambda_{f}<\infty
$$

Bernal (see [2], [3]) introduced the definition of relative order between two entire functions of single variable. During the past decades, several authors (see [8],[9],[10],[11]) made closed investigations on the properties of relative order of entire functions of single variable. Using the idea of Bernal's relative order (see [2], [3]) of entire functions of single variable, Banerjee and Datta [4] introduced the definition of relative order of entire functions of two complex variables to avoid comparing growth just with $\exp \left(z_{1}, z_{2}, \ldots z_{n}\right)$ which is as follows.

$$
\begin{gathered}
v_{n} \rho_{g}=\inf \left\{\mu>0, M_{f}\left(r_{1}, r_{2}, \ldots, r_{n}\right)<M_{g}\left(r_{1}{ }^{\mu}, r_{2}{ }^{\mu}, \ldots, r_{n}{ }^{\mu}\right) ; r_{i} \geq R(\mu), i=1,2, \ldots, n\right\} \\
=\lim _{r_{1}, r_{2}, \ldots, r_{n} \rightarrow \infty} \frac{\log M_{g}{ }^{-1} M_{f}\left(r_{1}, r_{2}, \ldots, r_{n}\right)}{\log \left(r_{1} r_{2} \ldots r_{n}\right)}
\end{gathered}
$$

where g is also an entire function holomorphic in the closed polydisc

$$
\mathrm{U}=\left\{\left(z_{1}, z_{2}, \ldots, z_{n}\right):\left|z_{i}\right| \leq r_{i}, i=1,2, \ldots, n \forall r_{i} \geq 0\right\}
$$

and the definition coincides with the classical one if $g\left(z_{1}, z_{2}, \ldots, z_{n}\right)=\exp \left(z_{1} z_{2}, \ldots z_{n}\right)$.
Likewise, one can define the relative lower order of f with respect to g denoted by ${ }_{v_{n}} \lambda_{g}$ as follows

$$
v_{n} \lambda_{g}=\liminf _{r_{1}, r_{2}, \ldots, r_{n} \rightarrow \infty} \frac{\log M_{g}^{-1} M_{f}\left(r_{1}, r_{2}, \ldots, r_{n}\right)}{\log \left(r_{1} r_{2} \ldots r_{n}\right)}
$$

Now in the case of relative order of entire functions of two complex variables, it therefore seems reasonable to define suitably the relative type and relative weak type respectively in order to compare the relative growth of two entire functions of two complex variables having same non zero finite relative order or relative lower order with respect to another entire function of two complex variables. Recently Datta introduced such definitions which are as follows.
DEFINITION 4. Let $f\left(z_{1}, z_{2}, \ldots z_{n}\right)$ and $g\left(z_{1}, z_{2}, \ldots z_{n}\right)$ be any two entire functions such that
$0<{ }_{v_{n}} \sigma_{g}<\infty$. Then the relative type ${ }_{v_{n}} \sigma_{g}(f)$ of $f\left(z_{1}, z_{2}, \ldots, z_{n}\right)$ with respect to $g\left(z_{1}, z_{2}, \ldots z_{n}\right)$ is defined as.

$$
{v_{n}}_{g} \sigma_{g}=\inf \left\{k>0, M_{f}\left(r_{1}, r_{2}, \ldots, r_{n}\right)<M_{g}\left(k r_{1}{ }^{v_{n}} \rho_{g}, k r_{2}{ }^{v_{n}} \rho_{g}, \ldots, k r_{n}{ }^{v_{n}} \rho_{g}\right)\right\}
$$

for all sufficiently large values of r_{1}, r_{2}, and r_{n}.
Equivalent formula for ${ }_{v_{n}} \sigma_{g}$ is,

$$
\sigma_{g}=\limsup _{r_{1}, r_{2}, \ldots, r_{n} \rightarrow \infty} \frac{M_{g}{ }^{-1} M_{f}\left(r_{1}, r_{2}, \ldots, r_{n}\right)}{\left[\left(r_{1} r_{2} \ldots r_{n}\right)\right]}{ }^{v_{n}} \rho_{g}
$$

Likewise, one can define the relative lower type of an entire function $f\left(z_{1}, z_{2}, \ldots z_{n}\right)$ to $g\left(z_{1}, z_{2}, \ldots z_{n}\right)$ denoted by ${ }_{v_{n}} \bar{\sigma}_{g}$ as follows

$$
v_{n} \bar{\sigma}_{g}=\liminf _{r_{1}, r_{2}, \ldots, r_{n} \rightarrow \infty} \frac{M_{g}^{-1} M_{f}\left(r_{1}, r_{2}, \ldots, r_{n}\right)}{\left[\left(r_{1} r_{2} \ldots r_{n}\right)\right]} \rho_{g}^{v_{n}} \rho_{g}, 0<v_{n} \rho_{g}<\infty .
$$

DEFINITION 5. [6] The relative weak type ${ }_{v_{n}} \tau_{g}(f)$ of an entire function $f\left(z_{1}, z_{2}, \ldots, z_{n}\right)$ with respect to another entire function $g\left(z_{1}, z_{2}, \ldots, z_{n}\right)$ having finite positive relative lower $\operatorname{order}_{v_{n}} \lambda_{g}(f)$ is defined as

$$
v_{n} \tau_{g}(f)=\liminf _{r_{1}, r_{2}, \ldots, r_{n} \rightarrow \infty} \frac{M_{g}{ }^{-1} M_{f}\left(r_{1}, r_{2}, \ldots, r_{n}\right)}{\left[\left(r_{1} r_{2} \ldots r_{n}\right)\right]^{v_{n}}} \lambda_{g}
$$

Also one may define the growth indicator ${ }_{v_{n}} \bar{\tau}_{g}(f)$ of an entire function f with respect to an entire function g in the following way

$$
v_{n} \bar{\tau}_{g}(f)=\limsup _{r_{1}, r_{2}, \ldots, r_{n} \rightarrow \infty} \frac{M_{g}{ }^{-1} M_{f}\left(r_{1}, r_{2}, \ldots, r_{n}\right)}{\left[\left(r_{1} r_{2} \ldots r_{n}\right)\right]{ }^{v_{n}}} \lambda_{g}, 0<{ }_{v_{n}} \lambda_{g}<\infty
$$

Considering $g\left(z_{1}, z_{2}, \ldots, z_{n}\right)=\exp \left(z_{1} z_{2} \ldots z_{n}\right)$ one may easily verify that Definition 4 and Definition 5 coincide with Definition 2 and Definition 3 respectively.

In the paper we investigate some relative growth properties of entire functions of several complex variables with respect to another entire function of several complex variables on the basis of relative type and relative weak type of several complex variables. We do not explain the standard definitions and notations in the theory of entire functions as those are available in [7].

LEMMA. [5] Let f and g be any two entire functions of several complex variables then

$$
\frac{v_{n} \lambda_{f}}{{ }_{v_{n}} \rho_{g}} \leq_{v_{n}} \lambda_{g}(f) \leq \min \left\{\frac{v_{n} \lambda_{f}}{v_{n} \lambda_{g}}, \frac{v_{n} \rho_{f}}{v_{n} \rho_{g}}\right\} \leq \max \left\{\frac{v_{n} \lambda_{f}}{v_{n} \lambda_{g}}, \frac{v_{n} \rho_{f}}{v_{n} \rho_{g}}\right\} \leq{ }_{v_{n}} \rho_{g} \leq \frac{v_{n} \rho_{f}}{v_{n} \lambda_{g}}
$$

THEOREMS

In this section we present the main results of the paper.
THEOREM 1. Let $f\left(z_{1}, z_{2}, \ldots, z_{n}\right)$ and $g\left(z_{1}, z_{2}, \ldots, z_{n}\right)$ be any two entire functions with

$$
0 \leq_{v_{n}} \lambda_{f} \leq_{v_{n}} \rho_{f}<\infty \text { and } 0 \leq_{v_{n}} \lambda_{g} \leq_{v_{n}} \rho_{g}<\infty . \text { Then }
$$

$$
\max \left\{\left[\frac{v_{n} \bar{\sigma}_{f}}{v_{n} \tau_{g}}\right]^{\frac{1}{v_{n} \lambda_{g}}},\left[\frac{v_{n} \sigma_{f}}{v_{n} \bar{\tau}_{g}}\right]^{\frac{1}{v_{n} \lambda_{g}}}\right\} \leq \leq_{v_{n}} \sigma_{g}(f) \leq \min \left\{\left[\frac{v_{n} \bar{\tau}_{f}}{v_{n} \tau_{g}}\right]^{\frac{1}{v_{n} \lambda_{g}}},\left[\frac{v_{n} \sigma_{f}}{v_{n} \bar{\sigma}_{g}}\right]^{\frac{1}{v_{n} \rho_{g}}},\left[\frac{v_{n} \bar{\tau}_{f}}{v_{n}}\right]^{\frac{1}{v_{n} \rho_{g}}}\right\}
$$

and

$$
\left[\frac{v_{n}}{v_{n} \bar{\sigma}_{f}}\right]^{\frac{1}{v_{n} \lambda_{g}}} \leq_{v_{n}} \bar{\sigma}_{g}(f) \leq \min \left\{\left[\frac{v_{n} \bar{\sigma}_{f}}{v_{n} \bar{\sigma}_{g}}\right]^{\frac{1}{v_{n} \rho_{g}}},\left[\frac{v_{n} \sigma_{f}}{v_{n} \sigma_{g}}\right]^{\frac{1}{v_{n} \rho_{g}}},\left[\frac{v_{n} \tau_{f}}{v_{n}}\right]^{\frac{1}{v_{n} \lambda_{g}}},\left[\frac{v_{n} \bar{\tau}_{f}}{\bar{v}_{n}}\right]^{\frac{1}{v_{n} \lambda_{g}}},\left[\frac{v_{n}}{\bar{v}_{f} \sigma_{g}}\right]^{\frac{1}{v_{n} \rho_{g}}},\left[\frac{v_{n} \tau_{f}}{v_{n}}\right]^{\frac{1}{v_{n} \rho_{g}}}\right\}
$$

PROOF: From the definitions of $v_{v_{n}} \sigma_{f}$ and $v_{n} \bar{\sigma}_{f}$ we have for all sufficiently large values of r_{1}, r_{2}, \ldots, and r_{n} that
$M_{f}\left(r_{1}, r_{2}, \ldots, r_{n}\right) \leq \exp \left\{\left({ }_{v_{n}} \sigma_{f}+\varepsilon\right)\left[\left(r_{1} r_{2} \ldots r_{n}\right)\right]^{v_{n}} \rho_{f}\right\}$
$M_{f}\left(r_{1}, r_{2}, \ldots, r_{n}\right) \geq \exp \left\{\left({ }_{v_{n}} \bar{\sigma}_{f}-\varepsilon\right)\left[\left(r_{1} r_{2} \ldots r_{n}\right)\right]^{v_{n}} \rho_{f}\right\}$
(2)
and also for a sequence of values of r_{1}, r_{2}, \ldots, and r_{n} tending to infinity, we get that
$M_{f}\left(r_{1}, r_{2}, \ldots, r_{n}\right) \geq \exp \left\{\left({ }_{v_{n}} \sigma_{f}-\varepsilon\right)\left[\left(r_{1} r_{2} \ldots r_{n}\right)\right]^{v_{n}} \rho_{f}\right\}$
$M_{f}\left(r_{1}, r_{2}, \ldots, r_{n}\right) \leq \exp \left\{\left(v_{n} \bar{\sigma}_{f}+\varepsilon\right)\left[\left(r_{1} r_{2} \ldots r_{n}\right)\right]^{v_{n}} \rho_{f}\right\}$
Similarly from the definitions of $v_{n} \sigma_{g}$ and $v_{n} \bar{\sigma}_{f}$, it follows for all sufficiently large values of $r_{1}, r_{2}, \ldots, r_{n}$ that
$M_{g}\left(r_{1}, r_{2}, \ldots, r_{n}\right) \leq \exp \left\{\left({ }_{v_{n}} \sigma_{g}+\varepsilon\right)\left[\left(r_{1} r_{2} \ldots r_{n}\right)\right]^{{ }_{n}} \rho_{g}\right\}$
i.e. , $\left(r_{1}, r_{2}, \ldots, r_{n}\right) \leq M_{g}^{-1}\left[\exp \left\{\left({ }_{v_{n}} \sigma_{g}+\varepsilon\right)\left[\left(r_{1} r_{2} \ldots r_{n}\right)\right]^{v_{n}} \rho_{g}\right\}\right]$
and

$$
\begin{equation*}
M_{g}^{-1}\left(r_{1}, r_{2}, \ldots, r_{n}\right) \geq\left[\left(\frac{\log \left(r_{1} r_{2} \ldots r_{n}\right)}{v_{n} \rho_{g}+\varepsilon}\right)^{\frac{1}{v_{n} \rho_{g}}}\right] \tag{5}
\end{equation*}
$$

Thus $M_{g}\left(r_{1}, r_{2}, \ldots, r_{n}\right) \geq \exp \left\{\left({ }_{v_{n}} \bar{\sigma}_{g}-\varepsilon\right)\left[\left(r_{1} r_{2} \ldots r_{n}\right)\right]^{v_{n}} \rho_{g}\right\}$
i.e., $M_{g}^{-1}\left(r_{1}, r_{2}, \ldots, r_{n}\right) \leq\left[\left(\frac{\log \left(r_{1} r_{2} \ldots r_{n}\right)}{\bar{\nu}_{n} \rho_{g}-\varepsilon}\right)^{\frac{1}{v_{n} \rho_{g}}}\right]$
and for a sequence of values of $r_{1}, r_{2}, \ldots, r_{n}$ tending to infinity, we obtain that
$M_{g}\left(r_{1}, r_{2}, \ldots, r_{n}\right) \geq \exp \left\{\left({ }_{v_{n}} \sigma_{g}-\varepsilon\right)\left[\left(r_{1} r_{2} \ldots r_{n}\right){ }^{{ }^{{ }_{n}}} \rho_{g}\right\}\right.$
Thus $M_{g}{ }^{-1}\left(r_{1}, r_{2}, \ldots, r_{n}\right) \leq\left[\left(\frac{\log \left(r_{1} r_{2} \ldots r_{n}\right)}{v_{n} \rho_{g}-\varepsilon}\right)^{\frac{1}{v_{n} \rho_{g}}}\right]$
$M_{g}\left(r_{1}, r_{2}, \ldots, r_{n}\right) \geq \exp \left\{\left(v_{v_{n}} \bar{\sigma}_{g}+\varepsilon\right)\left[\left(r_{1} r_{2} \ldots r_{n}\right)\right]^{v_{n}} \rho_{g}\right\}$
i.e., $M_{g}^{-1}\left(r_{1}, r_{2}, \ldots, r_{n}\right) \geq\left[\left(\frac{\log \left(r_{1} r_{2} \ldots r_{n}\right)}{\bar{v}_{n} \bar{\rho}_{g}-\varepsilon}\right)^{\frac{1}{v_{n} \rho_{g}}}\right]$

From the definitions of ${ }_{v_{n}} \tau_{f}$ and ${ }_{v_{n}} \bar{\tau}_{f}$, we have for all sufficiently large values of $r_{1}, r_{2}, \ldots, r_{n}$ that
$M_{f}\left(r_{1}, r_{2}, \ldots, r_{n}\right) \leq \exp \left\{\left(v_{n} \bar{\tau}_{f}+\varepsilon\right)\left[\left(r_{1} r_{2} \ldots r_{n}\right)\right]^{v_{n}} \lambda_{f}\right\}$
(9)
$M_{f}\left(r_{1}, r_{2}, \ldots, r_{n}\right) \geq \exp \left\{\left(v_{v_{n}} \tau_{f}-\varepsilon\right)\left[\left(r_{1} r_{2} \ldots r_{n}\right)\right]^{v_{n}} \frac{\lambda_{f}}{\}}\right\}$
and also for a sequence of values of r_{1}, r_{2}, \ldots, and r_{n} tending to infinity, we get that
$M_{f}\left(r_{1}, r_{2}, \ldots, r_{n}\right) \geq \exp \left\{\left(v_{n} \bar{\tau}_{f}-\varepsilon\right)\left[\left(r_{1} r_{2} \ldots r_{n}\right)\right]^{v_{n}} \lambda_{f}\right\}$
(11)
$M_{f}\left(r_{1}, r_{2}, \ldots, r_{n}\right) \leq \exp \left\{\left({ }_{v_{n}} \tau_{f}+\varepsilon\right)\left[\left(r_{1} r_{2} \ldots r_{n}\right)\right]^{v_{n}} \lambda_{f}\right\}$
Similarly from the definitions of ${ }_{v n} \tau_{g}$ and ${ }_{v n} \bar{\tau}_{g}$, it follows for all sufficiently large values of $r_{1}, r_{2}, \ldots, r_{n}$ that
$M_{g}\left(r_{1}, r_{2}, \ldots, r_{n}\right) \leq \exp \left\{\left(v_{v_{n}} \bar{\tau}_{g}+\varepsilon\right)\left[\left(r_{1} r_{2} \ldots r_{n}\right)\right]^{v_{n}} \lambda_{g}\right\}$
i.e., $\left(r_{1}, r_{2}, \ldots, r_{n}\right) \leq M_{g}{ }^{-1}\left[\exp \left\{\left({ }_{v_{n}} \bar{\tau}_{g}+\varepsilon\right)\left[\left(r_{1} r_{2} \ldots r_{n}\right)\right]^{v_{n}} \lambda_{g}\right\}\right]$
and
(13)

Thus $M_{g}\left(r_{1}, r_{2}, \ldots, r_{n}\right) \geq \exp \left\{\left({ }_{v_{n}} \tau_{g}-\varepsilon\right)\left[\left(r_{1} r_{2} \ldots r_{n}\right)\right]^{v_{n}} \lambda_{g}\right\}$
i.e.,

$$
M_{g}{ }^{-1}\left(r_{1}, r_{2}, \ldots, r_{n}\right) \geq\left[\left(\frac{\log \left(r_{1} r_{2} \ldots r_{n}\right)}{\bar{v}_{n} \bar{\tau}_{g}+\varepsilon}\right)^{\frac{1}{v_{n} \lambda_{g}}}\right]
$$

$M_{g}^{-1}\left(r_{1}, r_{2}, \ldots, r_{n}\right) \leq\left[\left(\frac{\log \left(r_{1} r_{2} \ldots r_{n}\right)}{v_{n} \tau_{g}-\varepsilon}\right)^{\frac{1}{v_{n} \lambda_{g}}}\right]$
(14)
and for a sequence of values of $r_{1}, r_{2}, \ldots, r_{n}$ tending to infinity, we obtain that
$M_{g}\left(r_{1}, r_{2}, \ldots, r_{n}\right) \geq \exp \left\{\left({ }_{v_{n}} \bar{\tau}_{g}-\varepsilon\right)\left[\left(r_{1} r_{2} \ldots r_{n}\right)\right]^{v_{n}} \lambda_{g}\right\}$

Thus

$$
M_{g}^{-1}\left(r_{1}, r_{2}, \ldots, r_{n}\right) \leq\left[\left(\frac{\log \left(r_{1} r_{2} \ldots r_{n}\right)}{\bar{v}_{n} \bar{\tau}_{g}-\varepsilon}\right)^{\frac{1}{v_{n} \lambda_{g}}}\right]
$$

$$
\begin{equation*}
M_{g}\left(r_{1}, r_{2}, \ldots, r_{n}\right) \leq \exp \left\{\left({ }_{v_{n}} \tau_{g}+\varepsilon\right)\left[\left(r_{1} r_{2} \ldots r_{n}\right)\right]^{v_{n}} \lambda_{g}\right\} \tag{15}
\end{equation*}
$$

i.e.,

$$
M_{g}^{-1}\left(r_{1}, r_{2}, \ldots, r_{n}\right) \geq\left[\left(\frac{\log \left(r_{1} r_{2} \ldots r_{n}\right)}{v_{n} \tau_{g}+\varepsilon}\right)^{\frac{1}{v_{n} \lambda_{g}}}\right]
$$

(16)

Now from (3) and in view of (13), we get for a sequence of values of $r_{1}, r_{2}, \ldots, r_{n}$ tending to infinity that
$\frac{M_{g}{ }^{-1} M_{f}\left(r_{1}, r_{2}, \ldots, r_{n}\right)}{{ }_{v_{n}} \rho_{f}}$
$\left[r_{1} r_{2} \ldots r_{n}\right]^{v_{n}} \lambda_{g}$$\left[\frac{\left(\frac{\left.v_{n} \sigma_{f}-\varepsilon\right)}{\left(v_{n} \bar{\tau}_{f}+\varepsilon\right)}\right]^{\frac{1}{v_{n} \lambda_{g}}}}{}\right.$
Since in view of lemma
${ }_{v_{n}} \sigma_{g}(f) \geq\left[\frac{v_{n} \sigma_{f}}{\bar{v}_{n}}\right]^{\frac{1}{v_{n} \lambda_{g}}}$
(17)

Similarly from (2) and in view of (16) it follows for a sequence of values of $r_{1}, r_{2}, \ldots, r_{n}$ tending to infinity that
$\frac{M_{g}{ }^{-1} M_{f}\left(r_{1}, r_{2}, \ldots, r_{n}\right)}{\frac{v_{n} \rho_{f}}{\lambda_{g}}} \geq\left[\frac{\left(v_{n} \bar{\sigma}_{f}-\varepsilon\right)}{\left(v_{n} \tau_{g}+\varepsilon\right)}\right]^{\frac{1}{v_{n} \lambda_{g}}}$
$\left[r_{1} r_{2} \ldots r_{n}\right]^{v_{n}}$
Since in view of lemma
$v_{n} \sigma_{g}(f) \geq\left[\frac{v_{n} \bar{\sigma}_{f}}{v_{n} \tau_{g}}\right]^{\frac{1}{v_{n} \lambda_{g}}}$
Again in view of (14), we have from (9) for all sufficiently large values of $r_{1}, r_{2}, \ldots, r_{n}$ and in view of lemma
$\frac{M_{g}^{-1} M_{f}\left(r_{1}, r_{2}, \ldots, r_{n}\right)}{\frac{v_{n} \lambda_{f}}{\lambda_{g}}} \geq\left[\frac{\left(v_{n} \bar{\tau}_{f}+\varepsilon\right)}{\left(v_{v_{n}} \tau_{g}-\varepsilon\right)}\right]^{\frac{1}{v_{n} \lambda_{g}}}$
$\left[r_{1} r_{2} \ldots r_{n}\right]^{v_{n}}$
$v_{n} \sigma_{g}(f) \geq\left[\frac{v_{n} \bar{\tau}_{f}}{v_{n} \tau_{g}}\right]^{\frac{1}{v_{n} \lambda_{g}}}$
(19)

Again in view of (6), we have from (1) for all sufficiently large values of $r_{1}, r_{2}, \ldots, r_{n}$ that
$M_{g}{ }^{-1} M_{f}\left(r_{1}, r_{2}, \ldots, r_{n}\right) \leq M_{g}{ }^{-1}\left[\exp \left\{\left({ }_{v_{n}} \sigma_{f}+\varepsilon\right)\left[\left(r_{1} r_{2} \ldots r_{n}\right)\right]^{v_{n}} \rho_{f}\right\}\right]$

Since in view of lemma
${ }_{v_{n}} \sigma_{g}(f) \leq\left[\frac{v_{n} \sigma_{f}}{v_{n}} \overline{\sigma_{g}}\right]^{\frac{1}{v_{n} \rho_{g}}}$
Further in view of (6), we have from (9) for all sufficiently large values of $r_{1}, r_{2}, \ldots, r_{n}$ that
$M_{g}^{-1} M_{f}\left(r_{1}, r_{2}, \ldots, r_{n}\right) \leq M_{g}^{-1}\left[\exp \left\{\left(v_{v_{n}} \bar{\tau}_{f}+\varepsilon\right)\left[\left(r_{1} r_{2} \ldots r_{n}\right)\right]^{v_{n}} \lambda_{f}\right\}\right]$
That is,
$\frac{M_{g}^{-1} M_{f}\left(r_{1}, r_{2}, \ldots, r_{n}\right)}{\left[r_{1} r_{2} \ldots r_{n}\right]_{v_{n}}^{v_{n} \rho_{f}}} \leq\left[\frac{\left(v_{n} \bar{\tau}_{f}+\varepsilon\right)}{\left(v_{n} \bar{\sigma}_{g}-\varepsilon\right)}\right]^{\frac{1}{v_{n} \rho_{g}}}$
Since in view of lemma, we get that $\frac{v_{n}}{\nu_{n} \rho_{g}} \leq_{v_{n}} \rho_{g}(f)$ and as $\varepsilon(>0)$ is arbitrary, therefore it follows from above that ${ }_{v_{n}} \rho_{g}^{L^{*}}(f) \leq\left[\frac{v_{n} \bar{\tau}_{f}}{\bar{v}_{n}}\right]^{\frac{1}{v_{n} \rho_{g}}}$
(23)

Thus the theorem follows from (17), (18), (19), (21) and (23).
Further from (2) and in view of (13), we get for all sufficiently large values of $r_{1}, r_{2}, \ldots, r_{n}$ that
$M_{g}^{-1} M_{f}\left(r_{1}, r_{2}, \ldots, r_{n}\right) \leq M_{g}^{-1}\left[\exp \left\{\left({\left(v_{n}\right.}_{\rho_{f}}-\varepsilon\right)\left[r_{1} r_{2} \ldots r_{n}\right]^{v_{n}} \rho_{f}\right\}\right]$
That is,

$$
\frac{M_{g}^{-1} M_{f}\left(r_{1}, r_{2}, \ldots, r_{n}\right)}{\left[r_{1} r_{2} \ldots r_{n}\right]_{v_{n}}^{v_{n} \rho_{f}}} \leq\left[\frac{\left(v_{v_{n}} \bar{\sigma}_{f}-\varepsilon\right)}{\left(v_{v} \overline{\tau_{g}}+\varepsilon\right)}\right]^{\frac{1}{v_{n} \lambda_{g}}}
$$

Since in view of lemma, we get that $\frac{v_{n} \rho_{f}}{v_{n} \lambda_{g}} \leq_{v_{n}} \rho_{g}(f)$ and as $\varepsilon(>0)$ is arbitrary, therefore we get that
${ }_{v_{n}} \bar{\rho}_{g}(f) \leq\left[\frac{v_{n} \bar{\sigma}_{f}}{\bar{v}_{n} \bar{\tau}_{g}}\right]^{\frac{1}{v_{n} \lambda_{g}}}$
Also in view of (7), we get from (1) for a sequence of values of $r_{1}, r_{2}, \ldots, r_{n}$ tending to infinity that
$M_{g}^{-1} M_{f}\left(r_{1}, r_{2}, \ldots, r_{n}\right) \leq M_{g}^{-1}\left[\exp \left\{\left(v_{v_{n}} \sigma_{f}+\varepsilon\right)\left[r_{1} r_{2} \ldots r_{n}\right]^{v_{n}} \rho_{f}\right\}\right]$
$\frac{M_{g}^{-1} M_{f}\left(r_{1}, r_{2}, \ldots, r_{n}\right)}{\left[r_{1} r_{2} \ldots r_{n}\right]_{v_{n}}^{v_{n} \rho_{f}}} \leq\left[\frac{\left({ }_{v_{n}} \sigma_{f}+\varepsilon\right)}{\left(v_{v_{n}} \sigma_{g}-\varepsilon\right)}\right]^{\frac{1}{v_{n} \rho_{g}}}$
That is,
${ }_{v_{n}} \bar{\rho}_{g}(f) \leq\left[\frac{v_{n} \sigma_{f}}{v_{n} \sigma_{g}}\right]^{\frac{1}{v_{n} \rho_{g}}}$
(26)

Likewise from (4) and in view of (6), it follows for a sequence of values of $r_{1}, r_{2}, \ldots, r_{n}$ tending to infinity that
$M_{g}^{-1} M_{f}\left(r_{1}, r_{2}, \ldots, r_{n}\right) \leq M_{g}^{-1}\left[\exp \left\{\left(v_{n} \bar{\sigma}_{f}+\varepsilon\right)\left[r_{1} r_{2} \ldots r_{n}\right]^{v_{n}} \rho_{f}\right\}\right]$
(27)

We get,
$\frac{M_{g}^{-1} M_{f}\left(r_{1}, r_{2}, \ldots, r_{n}\right)}{\left[r_{1} r_{2} \ldots r_{n}\right]_{v_{n}}^{v_{n} \rho_{f}}} \leq\left[\frac{\left({ }_{v_{n}} \bar{\sigma}_{f}+\varepsilon\right)}{\left(\bar{v}_{n} \bar{\sigma}_{g}-\varepsilon\right)}\right]^{\frac{1}{v_{n} \rho_{g}}}$
(28)

We get from (28) that,
${ }_{v_{n}} \bar{\rho}_{g}(f) \leq\left[\frac{v_{n} \bar{\sigma}_{f}}{v_{n}} \bar{\sigma}_{g}\right]^{\frac{1}{v_{n} \rho_{g}}}$
Since in view of lemma, $\frac{v_{n} \rho_{f}}{v_{n} \lambda_{g}} \leq v_{n} \rho_{g}(f)$ and as $\varepsilon(>0)$ is arbitrary, therefore further in view of (15), we get from (9) for a sequence of values of $r_{1}, r_{2}, \ldots, r_{n}$ tending to infinity that
$M_{g}^{-1} M_{f}\left(r_{1}, r_{2}, \ldots, r_{n}\right) \leq M_{g}^{-1}\left[\exp \left[\left(v_{n} \bar{\tau}_{f}+\varepsilon\right)\left[r_{1} r_{2} \ldots r_{n}\right]^{v_{n}} \lambda_{f}\right]\right]$
Then,
$\frac{M_{g}^{-1} M_{f}\left(r_{1}, r_{2}, \ldots, r_{n}\right)}{\left[r_{1} r_{2} \ldots r_{n}\right]_{v_{n}}^{v_{n} \lambda_{f}} \lambda_{g}} \leq\left[\frac{\left({ }_{v_{n}} \bar{\tau}_{f}+\varepsilon\right)}{\left(v_{n} \bar{\tau}_{g}-\varepsilon\right)}\right]^{\frac{1}{v_{n} \lambda_{g}}}$
(30)

As in view of lemma $\frac{v_{n} \rho_{f}}{v_{n} \lambda_{g}} \leq_{v_{n}} \rho_{g}(f)$ and as $\varepsilon(>0)$ is arbitrary
${ }_{v_{n}} \bar{\rho}_{g}^{L^{*}}(f) \leq\left[\frac{v_{n} \bar{\tau}_{f}}{v_{n} \bar{\tau}_{g}}\right]^{\frac{1}{v_{n} \lambda_{g}}}$
Similarly from (12) and in view of (14), it follows for a sequence of values of $r_{1}, r_{2}, \ldots, r_{n}$ tending to infinity that
$M_{g}^{-1} M_{f}\left(r_{1}, r_{2}, \ldots, r_{n}\right) \leq M_{g}^{-1}\left[\exp \left[\left({ }_{v_{n}} \tau_{f}+\varepsilon\right)\left[r_{1} r_{2} \ldots r_{n}\right]^{v_{n}} \lambda_{g}\right]\right]$
Then,
$\frac{M_{g}^{-1} M_{f}\left(r_{1}, r_{2}, \ldots, r_{n}\right)}{\left[r_{1} r_{2} \ldots r_{n}\right]_{v_{n}}^{v_{n}} \lambda_{f}} \leq\left[\frac{\left({ }_{v_{n}} \tau_{f}+\varepsilon\right)}{\left({ }_{v_{n}} \tau_{g}-\varepsilon\right)}\right]^{\frac{1}{v_{n} \lambda_{g}}}$
(32)

As in view of lemma, $\frac{v_{n} \lambda_{f}}{v_{n} \lambda_{g}} \leq_{v_{n}} \rho_{g}(f)$ and as $\varepsilon(>0)$ is arbitrary
${ }_{v_{n}} \bar{\rho}_{g}(f) \leq\left[\frac{v_{n} \tau_{f}}{\tau_{n} \tau_{g}}\right]^{\frac{1}{v_{n} \lambda_{g}}}$
Again in view of (7), we get from (9) for a sequence of values of $r_{1}, r_{2}, \ldots, r_{n}$ tending to infinity that
$M_{g}{ }^{-1} M_{f}\left(r_{1}, r_{2}, \ldots, r_{n}\right) \leq M_{g}{ }^{-1}\left[\exp \left[\left(v_{n} \bar{\tau}_{f}+\varepsilon\right)\left[r_{1} r_{2} \ldots r_{n}\right]^{v_{n}} \lambda_{f}\right]\right]$

Then,

$$
\begin{equation*}
\frac{M_{g}^{-1} M_{f}\left(r_{1}, r_{2}, \ldots, r_{n}\right)}{\left[r_{1} r_{2} \ldots r_{n}\right]_{v_{n}}^{v_{n} \nu_{f}^{*}}} \leq\left[\frac{\left(v_{v}^{*} \bar{\tau}_{f}+\varepsilon\right)}{\left(v_{v_{n}} \sigma_{g}-\varepsilon\right)}\right]^{\frac{1}{v_{n} \rho_{g}}} \tag{34}
\end{equation*}
$$

As in view of lemma, $\frac{v_{n} \lambda_{f}}{v_{n} \sigma_{g}} \leq v_{n} \rho_{g}(f)$ and as $\varepsilon(>0)$ is arbitrary
${ }_{v_{n}} \bar{\rho}_{g}(f) \leq\left[\frac{v_{n} \bar{\tau}_{f}}{v_{n} \sigma_{g}}\right]^{\frac{1}{v_{n} \rho_{g}}}$
Similarly from (12) and in view of (6), it follows for a sequence of values of $r_{1}, r_{2}, \ldots, r_{n}$ tending to infinity that
$M_{g}^{-1} M_{f}\left(r_{1}, r_{2}, \ldots, r_{n}\right) \leq M_{g}^{-1}\left[\exp \left[\left({ }_{v_{n}} \tau_{f}+\varepsilon\right)\left[r_{1} r_{2} \ldots r_{n}\right]^{v_{n}} \lambda_{f}\right]\right]$

Then,

$$
\begin{equation*}
\frac{M_{g}^{-1} M_{f}\left(r_{1}, r_{2}, \ldots, r_{n}\right)}{\left[r_{1} r_{2} \ldots r_{n}\right]_{v_{n}}^{v_{n} \rho_{f}}} \leq\left[\frac{\left({ }_{v_{n}}\right.}{\left.\tau_{f}+\varepsilon\right)}\left(\frac{v_{n}}{v_{n}} \bar{\sigma}_{g}-\varepsilon\right)\right]^{\frac{1}{v_{n} \rho_{g}}} \tag{36}
\end{equation*}
$$

As in view of lemma, $\frac{v_{n} \lambda_{f}}{v_{n} \sigma_{g}} \leq v_{n} \rho_{g}(f)$ and as $\varepsilon(>0)$ is arbitrary
${ }_{v_{n}} \bar{\rho}_{g}(f) \leq\left[\frac{v_{n} \tau_{f}}{{ }_{v_{n}} \bar{\sigma}_{g}}\right]^{\frac{1}{v_{n} \rho_{g}}}$
(37)

Hence the second part of the theorem follows from (24), (26), (29), (31), (33), (35) and (37).
THEOREM 2. Let $f\left(z_{1}, z_{2}, \ldots, z_{n}\right)$ and $g\left(z_{1}, z_{2}, \ldots, z_{n}\right)$ be any two entire functions with $0 \leq_{v_{n}} \lambda_{f} \leq_{v_{n}} \rho_{f}<\infty$ and $0 \leq_{v_{n}} \lambda_{g} \leq_{v_{n}} \rho_{g}<\infty$
Then
$\max \left\{\begin{array}{ll}{\left[\frac{v_{n} \bar{\tau}_{f}}{v_{v}}\right]^{\frac{1}{v_{n} \lambda_{g}}},} & {\left[\frac{v_{n} \tau_{f}}{v_{n} \tau_{g}}\right]^{\frac{1}{v_{n} \lambda_{g}}},\left[\frac{v_{n}}{v_{n} \bar{\sigma}_{f}}\right]^{\frac{1}{v_{n} \rho_{g}}}} \\ {\left[\frac{v_{n} \sigma_{f}}{v_{n} \sigma_{g}}\right]^{\frac{1}{v_{n} \rho_{g}}},} & {\left[\frac{v_{n} \sigma_{f}}{v_{n} \bar{\tau}_{g}}\right]^{\frac{1}{v_{n} \lambda_{g}}},\left[\frac{v_{n} \bar{\sigma}_{f}}{{ }_{v_{n}} \tau_{g}}\right]^{\frac{1}{v_{n} \lambda_{g}}}}\end{array}\right\} \leq_{v_{n}} \bar{\tau}_{g}(f) \leq\left[\frac{v_{n} \bar{\tau}_{f}}{v_{n} \bar{\sigma}_{g}}\right]^{\frac{1}{v_{n} \rho_{g}}}$
and

Proof: We obtain from (11) and (13), for a sequence of values of $r_{1}, r_{2}, \ldots, r_{n}$ tending to infinity that
$M_{g}^{-1} M_{f}\left(r_{1}, r_{2}, \ldots, r_{n}\right) \geq M_{g}^{-1}\left[\exp \left[\left(v_{n} \bar{\tau}_{f}-\varepsilon\right)\left[r_{1} r_{2} \ldots r_{n}\right]^{v_{n}} \lambda_{f}\right]\right]$
Then,
$\frac{M_{g}^{-1} M_{f}\left(r_{1}, r_{2}, \ldots, r_{n}\right)}{\left[r_{1} r_{2} \ldots r_{n}\right]_{v_{n}}^{v_{n} \lambda_{f}}} \geq\left[\frac{\left(\bar{v}_{n} \bar{\tau}_{f}-\varepsilon\right)}{\left(v_{n} \bar{\tau}_{g}+\varepsilon\right)}\right]^{\frac{1}{v_{n} \lambda_{g}}}$

As in view of lemma, $\frac{v_{n} \lambda_{f}}{v_{n} \sigma_{g}} \leqslant v_{n} \lambda_{g}(f)$ and as $\varepsilon(>0)$ is arbitrary
$\underset{\substack{r_{1}, r_{2}, \ldots, r_{n} \rightarrow \infty}}{\lim \sup } \frac{M_{g}^{-1} M_{f}\left(r_{1}, r_{2}, \ldots, r_{n}\right)}{\left[r_{1} r_{2} \ldots r_{n}\right]_{n}^{\gamma_{n}(f)}} \geq\left[\frac{\bar{v}_{n} \bar{\tau}_{f}}{{ }_{v_{n}} \bar{\tau}_{g}}\right]^{\frac{1}{v_{n} \lambda_{g}}}$
and
${ }_{v_{n}} \bar{\tau}_{f} \geq\left[\frac{v_{n} \bar{\tau}_{f}}{{ }_{v_{n}} \bar{\tau}_{g}}\right]^{\frac{1}{v_{n} \lambda_{g}}}$
(38)

Further we obtain from (10) and (16), for a sequence of values of $r_{1}, r_{2}, \ldots, r_{n}$ tending to infinity that
$M_{g}^{-1} M_{f}\left(r_{1}, r_{2}, \ldots, r_{n}\right) \geq M_{g}^{-1}\left[\exp \left[\left({ }_{v_{n}} \tau_{f}-\varepsilon\right)\left[r_{1} r_{2} \ldots r_{n}\right]^{v_{n}} \lambda_{f}\right]\right]$
Therefore,
$\frac{M_{g}^{-1} M_{f}\left(r_{1}, r_{2}, \ldots, r_{n}\right)}{\left[r_{1} r_{2} \ldots r_{n}\right]_{v_{n}}^{v_{n}} \lambda_{f}} \geq\left[\frac{\left(v_{n} \bar{\tau}_{f}-\varepsilon\right)}{\left(v_{v} \bar{\tau}_{g}+\varepsilon\right)}\right]^{\frac{1}{v_{n} \lambda_{g}}}$
As in view of lemma, $\frac{v_{n} \lambda_{f}}{v_{n} \sigma_{g}}<v_{n} \lambda_{g}(f)$ and as $\varepsilon(>0)$ is arbitrary
$\underset{r_{1}, r_{2}, \ldots, r_{n} \rightarrow \infty}{\lim \sup } \frac{M_{g}^{-1} M_{f}\left(r_{1}, r_{2}, \ldots, r_{n}\right)}{\left[r_{1} r_{2} \ldots r_{n}\right]^{r_{n} \lambda_{g}(f)}} \geq\left[\frac{v_{n} \tau_{f}}{v_{n} \tau_{g}}\right]^{\frac{1}{v_{n} \lambda_{g}}}$
and
${ }_{v_{n}} \bar{\tau}_{f} \geq\left[\frac{v_{n} \tau_{f}}{v_{n} \tau_{g}}\right]^{\frac{1}{v_{n} \lambda_{g}}}$
(39)

Now from (3) and in view of (5), we get for a sequence of values of $r_{1}, r_{2}, \ldots, r_{n}$ tending to infinity that
$M_{g}{ }^{-1} M_{f}\left(r_{1}, r_{2}, \ldots, r_{n}\right) \geq M_{g}{ }^{-1}\left[\exp \left[\left(v_{n} \sigma_{f}-\varepsilon\right)\left[r_{1} r_{2} \ldots r_{n}\right]^{v_{n}} \rho_{f}\right]\right]$
Therefore, $\frac{M_{g}^{-1} M_{f}\left(r_{1}, r_{2}, \ldots, r_{n}\right)}{\left[r_{1} r_{2} \ldots r_{n}\right]_{v_{n}}^{v_{n} \rho_{f}}} \geq\left[\begin{array}{l}\left(\begin{array}{c}v_{v} \\ v_{n} \\ \left(\sigma_{f}-\varepsilon\right) \\ v_{n}\end{array} \sigma_{f}+\varepsilon\right)\end{array}\right]^{\frac{1}{v_{n} \rho_{g}}}$
Also from (2) and in view of (8), it follows for a sequence of values of $r_{1}, r_{2}, \ldots, r_{n}$ ending to infinity that
$M_{g}{ }^{-1} M_{f}\left(r_{1}, r_{2}, \ldots, r_{n}\right) \geq M_{g}{ }^{-1}\left[\exp \left[\left({ }_{v_{n}} \bar{\sigma}_{f}-\varepsilon\right)\left[r_{1} r_{2} \ldots r_{n}\right]^{{ }_{n}^{n}} \rho_{f}\right]\right]$
Therefore,
$\frac{M_{g}^{-1} M_{f}\left(r_{1}, r_{2}, \ldots, r_{n}\right)}{\left[r_{1} r_{2} \ldots r_{n}\right]_{v_{n}}^{v_{n} \rho_{g}}} \geq\left[\frac{\left(\bar{v}_{v_{n}} \bar{\sigma}_{f}-\varepsilon\right)}{\left(v_{v_{n}} \bar{\sigma}_{g}+\varepsilon\right)}\right]^{\frac{1}{v_{n} \rho_{g}}}$
As in view of lemma, $\frac{v_{n} \rho_{f}}{v_{n}} \rho_{g} \leq v_{n} \lambda_{g}(f)$ and as $\varepsilon(>0)$ is arbitrary, from (40) we get that
$\underset{\substack{ \\r_{1}, r_{2}, \ldots, r_{n} \rightarrow \infty}}{\lim \sup } \frac{M_{g}^{-1} M_{f}\left(r_{1}, r_{2}, \ldots, r_{n}\right)}{\left[r_{1} r_{2} \ldots r_{n}\right]_{n}^{v_{n} \lambda_{g}(f)}} \geq\left[\frac{v_{n} \sigma_{f}}{v_{n} \sigma_{g}}\right]^{\frac{1}{v_{n} \rho_{g}}}$
Then,
${ }_{v_{n}} \bar{\tau}_{g} \geq\left[\frac{v_{n} \sigma_{f}}{v_{n} \sigma_{g}}\right]^{\frac{1}{v_{n} \rho_{g}}}$
Similarly, we get from equation (41) that
${ }_{v_{n}} \bar{\tau}_{g} \geq\left[\frac{v_{n}}{v_{n}} \bar{\sigma}_{f} \bar{\sigma}_{g}\right]^{\frac{1}{v_{n} \rho_{g}}}$
(43)

In view of lemma, $\frac{v_{n} \rho_{f}}{v_{n} \rho_{g}} \leq v_{n} \lambda_{g}(f)$ and as $\varepsilon(>0)$ is arbitrary
Likewise from (3) and in view of (13), we get for a sequence of values of $r_{1}, r_{2}, \ldots, r_{n}$ tending to infinity that
$M_{g}^{-1} M_{f}\left(r_{1}, r_{2}, \ldots, r_{n}\right) \geq M_{g}{ }^{-1}\left[\exp \left[\left({ }_{v_{n}} \sigma_{f}-\varepsilon\right)\left[r_{1} r_{2} \ldots r_{n}\right]^{v_{n}} \rho_{f}\right]\right]$
Therefore,

In view of lemma, $\frac{v_{n} \rho_{f}}{v_{n} \lambda_{g}} \leq v_{n} \lambda_{g}(f)$ and as $\mathcal{E}(>0)$ is arbitrary
$\underset{r_{1}, r_{2}, \ldots, r_{n} \rightarrow \infty}{\lim \sup } \frac{M_{g}^{-1} M_{f}\left(r_{1}, r_{2}, \ldots, r_{n}\right)}{\left[r_{1} r_{2} \ldots r_{n}\right]_{n}^{v_{n} \lambda_{g}(f)}} \geq\left[\frac{v_{n} \sigma_{f}}{v_{n} \bar{\tau}_{g}}\right]^{\frac{1}{v_{n} \lambda_{g}}}$
Then,
$v_{n} \bar{\tau}_{g} \geq\left[\frac{v_{n} \sigma_{f}}{v_{n} \bar{\tau}_{g}}\right]^{\frac{1}{v_{n} \lambda_{g}}}$
(45)

From (2) and in view of (16), we get for a sequence of values of $r_{1}, r_{2}, \ldots, r_{n}$ tending to infinity that
$M_{g}^{-1} M_{f}\left(r_{1}, r_{2}, \ldots, r_{n}\right) \geq M_{g}^{-1}\left[\exp \left[\left(v_{n} \bar{\sigma}_{f}-\varepsilon\right)\left[r_{1} r_{2} \ldots r_{n}\right]^{v_{n}} \rho_{f}\right]\right]$
Therefore,
$\frac{M_{g}^{-1} M_{f}\left(r_{1}, r_{2}, \ldots, r_{n}\right)}{\left[r_{1} r_{2} \ldots r_{n}\right]_{v_{n}^{n} \rho_{g}}^{v_{g}}} \geq\left[\frac{\left(\bar{v}_{n} \bar{\sigma}_{f}-\varepsilon\right)}{\left(v_{v_{n}} \tau_{g}-\varepsilon\right)}\right]^{\frac{1}{v_{n} \lambda_{g}}}$
Then,
${ }_{v_{n}} \bar{\tau}_{g} \geq\left[\frac{v_{n}}{v_{v_{n}} \bar{\sigma}_{g}}\right]^{\frac{1}{v_{n} \lambda_{g}}}$
Again from (6) and (9), we have for all sufficiently large values of $r_{1}, r_{2}, \ldots, r_{n}$ that
$M_{g}^{-1} M_{f}\left(r_{1}, r_{2}, \ldots, r_{n}\right) \leq M_{g}^{-1}\left[\exp \left[\left(v_{n} \bar{\tau}_{f}+\varepsilon\right)\left[r_{1} r_{2} \ldots r_{n}\right]^{v_{n}} \lambda_{f}\right]\right]$

Therefore,

In view of lemma, $\frac{v_{n} \lambda_{f}}{v_{n} \rho_{g}} \leq v_{v_{n}} \lambda_{g}(f)$ and as $\varepsilon(>0)$ is arbitrary
$\underset{r_{1}, r_{2}, \ldots, r_{n} \rightarrow \infty}{\lim \sup } \frac{M_{g}^{-1} M_{f}\left(r_{1}, r_{2}, \ldots, r_{n}\right)}{\left[r_{1} r_{2} \ldots r_{n}\right]^{r_{n}} \lambda_{g}(f)} \leq\left[\frac{v_{n}}{v_{n}} \bar{\tau}_{f} \bar{\sigma}_{g}\right]^{\frac{1}{v_{n} p_{g}}}$
That is,
${ }_{v_{n}} \bar{\tau}_{g} \leq\left[\frac{v_{n} \bar{\tau}_{f}}{v_{n}} \bar{\sigma}_{g}\right]^{\frac{1}{v_{n} \rho_{g}}}$
Thus the theorem follows from (38), (39), (42), (43), (45), (47) and (48).
Further from (10) and in view of (13), we get for all sufficiently large values of $r_{1}, r_{2}, \ldots, r_{n}$ that
$M_{g}{ }^{-1} M_{f}\left(r_{1}, r_{2}, \ldots, r_{n}\right) \geq M_{g}^{-1}\left[\exp \left[\left({ }_{v_{n}} \tau_{f}-\varepsilon\right)\left[r_{1} r_{2} \ldots r_{n}\right]^{v_{n}} \lambda_{f}\right]\right]$
Therefore,
$\frac{M_{g}^{-1} M_{f}\left(r_{1}, r_{2}, \ldots, r_{n}\right)}{\left[r_{1} r_{2} \ldots r_{n}\right]_{v_{n}}^{v_{n} \lambda_{f}}} \leq\left[\begin{array}{c}\left(\begin{array}{c}\left(v_{g}\right. \\ v_{n}\end{array} \tau_{f}\right) \\ \left(v_{n} \tau_{g}+\varepsilon\right)\end{array}\right]^{\frac{1}{v_{n} \lambda_{g}}}$
In view of lemma, $\frac{v_{n} \lambda_{f}}{v_{n} \lambda_{g}} \leq v_{n} \lambda_{g}(f)$ and as $\varepsilon(>0)$ is arbitrary
$\underset{r_{1}, r_{2}, \ldots, r_{n} \rightarrow \infty}{\limsup } \frac{M_{g}^{-1} M_{f}\left(r_{1}, r_{2}, \ldots, r_{n}\right)}{\left[r_{1} r_{2} \ldots r_{n}\right]^{v_{n} \lambda_{g}(f)}} \leq\left[\frac{v_{n} \tau_{f}}{v_{n} \tau_{g}}\right]^{\frac{1}{v_{n} \lambda_{g}}}$
That is,
${ }_{v_{n}} \tau_{g} \geq\left[\frac{v_{n} \tau_{f}}{v_{n} \bar{\tau}_{g}}\right]^{\frac{1}{v_{n} \lambda_{g}}}$
(49)

Again from (2) and in view of (5), we get for all sufficiently large values of $r_{1}, r_{2}, \ldots, r_{n}$ that
$M_{g}{ }^{-1} M_{f}\left(r_{1}, r_{2}, \ldots, r_{n}\right) \geq M_{g}{ }^{-1}\left[\exp \left[\left({ }_{v_{n}} \bar{\sigma}_{f}-\varepsilon\right)\left[r_{1} r_{2} \ldots r_{n}\right]^{{ }^{v_{n}}} \rho_{f}\right]\right]$
Therefore,
$\frac{M_{g}^{-1} M_{f}\left(r_{1}, r_{2}, \ldots, r_{n}\right)}{\left[r_{1} r_{2} \ldots r_{n}\right]_{v_{n}}^{v_{n} \rho_{g}}} \geq\left[\frac{\left(\bar{v}_{n} \bar{\sigma}_{f}-\varepsilon\right)}{\left(\frac{v_{n}}{v_{n}} \sigma_{g}+\varepsilon\right)}\right]^{\frac{1}{v_{n} \rho_{g}}}$
(50)

In view of lemma, $\frac{v_{n} \rho_{f}}{v_{n} \rho_{g}}<v_{n} \lambda_{g}(f)$ and as $\varepsilon(>0)$ is arbitrary, we get from (50) that
$\underset{r_{1}, r_{2}, \ldots, r_{n} \rightarrow \infty}{\liminf } \frac{M_{g}^{-1} M_{f}\left(r_{1}, r_{2}, \ldots, r_{n}\right)}{\left[r_{1} r_{2} \ldots r_{n}\right]^{r_{n}} \lambda_{g}(f)} \geq\left[\frac{v_{n} \bar{\sigma}_{f}}{v_{n} \sigma_{g}}\right]^{\frac{1}{v_{n} \rho_{g}}}$
That is,
${ }_{v_{n}} \tau_{g} \geq\left[\frac{v_{n}}{v_{n}} \bar{\sigma}_{f} \sigma_{g}\right]^{\frac{1}{v_{n} \rho_{g}}}$
(51)

Again from (2) and in view of (13), we get for all sufficiently large values of $r_{1}, r_{2}, \ldots, r_{n}$ that
$M_{g}{ }^{-1} M_{f}\left(r_{1}, r_{2}, \ldots, r_{n}\right) \geq M_{g}{ }^{-1}\left[\exp \left[\left(v_{n} \bar{\sigma}_{f}-\varepsilon\right)\left[r_{1} r_{2} \ldots r_{n}\right]^{v_{n}} \rho_{f}\right]\right]$
Therefore,
$\frac{M_{g}^{-1} M_{f}\left(r_{1}, r_{2}, \ldots, r_{n}\right)}{\left[r_{1} r_{2} \ldots r_{n}\right]_{v_{n}}^{v_{n} \rho_{f}}} \geq\left[\frac{\left(v_{n} \bar{\sigma}_{f}-\varepsilon\right)}{\left({ }_{v_{n}} \bar{\tau}_{g}+\varepsilon\right)}\right]^{\frac{1}{v_{n} \lambda_{g}}}$
In view of lemma, $\frac{v_{n} \rho_{f}}{v_{n} \lambda_{g}} \leq v_{n} \lambda_{g}(f)$ and as $\varepsilon(>0)$ is arbitrary
$\underset{r_{1}, r_{2}, \ldots, r_{n} \rightarrow \infty}{\liminf } \frac{M_{g}^{-1} M_{f}\left(r_{1}, r_{2}, \ldots, r_{n}\right)}{\left[r_{1} r_{2} \ldots r_{n}\right]^{v_{n} \lambda_{g}(f)}} \geq\left[\frac{v_{n} \bar{\sigma}_{f}}{\bar{v}_{n} \bar{\tau}_{g}}\right]^{\frac{1}{v_{n} \lambda_{g}}}$
That is,
${ }_{v_{n}} \tau_{g} \geq\left[\frac{v_{n} \bar{\sigma}_{f}}{\bar{v}_{n} \bar{\tau}_{g}}\right]^{\frac{1}{v_{n} \lambda_{g}}}$
(52)

We get from (7) and (9) for a sequence of values of $r_{1}, r_{2}, \ldots, r_{n}$ tending to infinity that
$M_{g}^{-1} M_{f}\left(r_{1}, r_{2}, \ldots, r_{n}\right) \leq M_{g}^{-1}\left[\exp \left[\left(v_{n} \bar{\tau}_{f}+\varepsilon\right)\left[r_{1} r_{2} \ldots r_{n}\right]^{v_{n}} \lambda_{f}\right]\right]$
Therefore,
$\frac{M_{g}^{-1} M_{f}\left(r_{1}, r_{2}, \ldots, r_{n}\right)}{\left[r_{1} r_{2} \ldots r_{n}\right]_{v_{n}}^{v_{n} \rho_{g}}} \geq\left[\frac{\left(v_{n} \bar{\tau}_{f}+\varepsilon\right)}{\left({ }_{v_{n}} \sigma_{g}-\varepsilon\right)}\right]^{\frac{1}{v_{n} \rho_{g}}}$
As in view of lemma, $\frac{v_{n} \lambda_{f}}{v_{n} \rho_{g}} \leq_{v_{n}} \lambda_{g}(f)$ and as $\varepsilon(>0)$ is arbitrary
$\underset{r_{1}, r_{2}, \ldots, r_{n} \rightarrow \infty}{\liminf } \frac{M_{g}^{-1} M_{f}\left(r_{1}, r_{2}, \ldots, r_{n}\right)}{\left[r_{1} r_{2} \ldots r_{n}\right]^{v_{n}} \lambda_{g}(f)} \leq\left[\frac{\bar{v}_{n} \bar{\tau}_{f}}{{ }_{v_{n}} \sigma_{g}}\right]^{\frac{1}{v_{n} \rho_{g}}}$
That is,
${ }_{v_{n}} \tau_{g} \leq\left[\frac{v_{n} \bar{\tau}_{f}}{{ }_{v_{n}} \sigma_{g}}\right]^{\frac{1}{v_{n} \rho_{g}}}$
Similarly, from (12) and in view of (6), it follows for a sequence of values of $r_{1}, r_{2}, \ldots, r_{n}$ tending to infinity that
$M_{g}{ }^{-1} M_{f}\left(r_{1}, r_{2}, \ldots, r_{n}\right) \leq M_{g}{ }^{-1}\left[\exp \left[\left({ }_{v_{n}} \tau_{f}+\varepsilon\right)\left[r_{1} r_{2} \ldots r_{n}\right]^{v_{n}} \lambda_{f}\right]\right]$
Therefore,
$\frac{M_{g}^{-1} M_{f}\left(r_{1}, r_{2}, \ldots, r_{n}\right)}{\left[r_{1} r_{2} \ldots r_{n}\right]_{v_{n}}^{v_{n} \rho_{f}}} \leq\left[\frac{\left({ }_{v_{n}} \tau_{f}+\varepsilon\right)}{\left(\bar{v}_{n} \bar{\sigma}_{g}-\varepsilon\right)}\right]^{\frac{1}{v_{n} \rho_{g}}}$

In view of lemma, $\frac{v_{n} \lambda_{f}}{v_{n} \rho_{g}} \leq v_{n} \lambda_{g}(f)$ and as $\varepsilon(>0)$ is arbitrary
$\underset{r_{1}, r_{2}, \ldots, r_{n \rightarrow \infty}}{\liminf } \frac{M_{g}^{-1} M_{f}\left(r_{1}, r_{2}, \ldots, r_{n}\right)}{\left[r_{1} r_{2} \ldots r_{n}\right]^{v_{n}} \lambda_{g}(f)} \leq\left[\frac{v_{n} \tau_{f}}{v_{n} \overline{\sigma_{g}}}\right]^{\frac{1}{v_{n} \rho_{g}}}$
That is,
${ }_{v_{n}} \tau_{g} \leq\left[\frac{v_{n} \tau_{f}}{v_{n} \bar{\sigma}_{g}}\right]^{\frac{1}{v_{n} \rho_{g}}}$
(54)

Hence the second part of the theorem follows from (49), (51), (52), (53) and (54).
COROLLARY. Let f and g be any two entire functions of several complex variables such that g is of regular growth: Then

$$
v_{n} \lambda_{g}(f)=\frac{v_{n} \lambda_{f}}{v_{n} \rho_{g}} \text { and } v_{n} \rho_{g}(f)=\frac{v_{n} \rho_{f}}{v_{n} \rho_{g}}
$$

In addition, if ${ }_{v_{n}} \rho_{f}={ }_{v_{n}} \rho_{g}$; then ${ }_{v_{n}} \rho_{g}(f)={ }_{v_{n}} \lambda_{f}=1$

REFERENCES:

[1] A. K. Agarwal: On the properties of entire function of two complex variables, Canadian Journal of Mathematics, Vol. 20 (1968), pp. 51-57.
[2] L. Bernal: Crecimiento relativo de funciones enteras. Contribuci'on al estudio de lasfunciones enteras con'indice exponencial finito, Doctoral Dissertation, University of Seville, Spain, 1984.
[3] L. Bernal: Orden relative de crecimiento de funciones enteras, Collect. Math., Vol. 39 (1988), pp.209-229.
[4] D. Banerjee and R. K. Datta: Relative order of entire functions of two complex variables, International J. of Math. Sci. \& Engg.Appls. (IJMSEA), Vol. 1, No. 1 (2007), pp. 141-154
[5] S. K. Datta, T. Biswas and G. K. Mondal: A note on the relative order of entire functions of two complex variables, International Journal of Pure and Applied Mathematics (IJPAM), Vol. 101, No. 3 (2015), pp. 339-347.
[6] S. K. Datta, T. Biswas and S. Bhattacharyya: On relative type and weak type of entire functions of two complex variables, Facta Universititatis series: Mathematics and Informatics,
[7] A. B. Fuks: Theory of analytic functions of several complex variables, (1963), Moscow.
[8] S. Halvarsson: Growth properties of entire functions depending on a parameter, Annales Polonici Mathematici, Vol. 14, No. 1 (1996), pp. 71-96.
[9] C. O. Kiselman: Order and type as measure of growth for convex or entire functions, Proc. Lond. Math. Soc., Vol. 66, No. 3 (1993), pp. 152-186.
[10] C. O. Kiselman: Plurisubharmonic functions and potential theory in several complex variables, a contribution to the book project, Development of Mathematics, 1950-2000, edited by Hean-Paul Pier.
[11] B. K. Lahiri and D. Banerjee: A note on relative order of entire functions, Bull. Cal.Math. Soc. Vol. 97, No. 3 (2005), pp. 201-206.
[12] R. K. Dutta: Relative order of entire functions of several complex variables, Matematiqki Vesnik 65 (2), 222-233 (2013).

