
© 2018 JETIR December 2018, Volume 5, Issue 12 www.jetir.org (ISSN-2349-5162)

JETIR1812847 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 291

SIMULATION AND COMPARISON OF

EFFICENCY OF DIJKSTRA'S AND A*

ALGORITHM

Anita, Department of Computer Science Engineering (CSE)

Prannath Parnami Institute science and Technology,

Chaudharywas,

Hisar, Haryana, India

Neeraj Verma, Department of Computer Science

Engineering (CSE)

Prannath Parnami Institute science and technology,

Chaudharywas,

Hisar, Haryana, India

Abstract-There are a lots of paths to go from one

place to another place i.e. point A to point B in real

road maps and Driver need to pick the best path. To

do this, the pathfinding calculations is utilized. At

present, a few calculations have been proposed for

steering in recreations so the general difficulties of

them is high utilization of memory and a long

Execution time. Because of these issues, the

improvement and presentation of new calculations

will be proceeded. At the initial segment of this

article, notwithstanding essential and imperative

utilized calculations, everyone knows the point

where the driver or user is and where they want to

go. The map has roads (they are called edges) that

connect the nodes (places with coordinates).From

every node, user can go to one or many edges. An

edge has a cost (e.g. length or time it takes to travel

it). For small maps, one could perhaps calculate all

possible routes to the destination and select the

shortest.

For these calculations in the different modes and

Simulated calculations various algorithms are

Dijkstra, Iddfs, Biddfs, Bfs (Breadth first search),

Greedy Best First Search, Ida*, A*, Jump point seek,

HPA*.

Keywords -Dijkstra algorithm, shortest path, small

heap, passing point, heuristic, pathfinding.

I. INTRODUCTION

Way finding is characterized as the way toward

moving a protest from its prior position to the last

position. Distinctive application territories utilized

Path Finding Algorithms (PFA). These incorporate

Games and Virtual Tours, Driverless Vehicles,

Robot Motion and Navigation.

Way finding is typically portrayed as a procedure of

finding a way between two focuses in a specific

domain. By and large the goal is to locate the briefest

way conceivable, which would be ideal i.e., the most

limited, least expensive or easiest. A few criteria, for

example, way which emulates way picked by a man,

way which requires the most reduced measure of

fuel, or from two focuses A and B through point C is

frequently discovered significant in numerous way

discovering undertakings.

Finding the briefest way is the most troublesome

issue in numerous fields, beginning with

navigational frameworks, manmade brainpower and

closure with PC reenactments. In spite of the fact that

these fields have their own particular calculations,

there are numerous universally useful way

discovering calculations that are connected

effectively. In any case, it stays misty what benefits

certain calculation have in correlation with others.

Briefest way calculations are at present utilized

generally. They are the premise of a few issues, for

example, arrange stream issues, tree issues and other

related issues. They choose the base cost of

movement of the issues generation cycle, the briefest

way in an electric circuit or the most dependable

way.

The web is an immense field where the briefest way

calculation is typically connected. The Internet

issues contain information bundle transmissions with

insignificant time or utilizing the most solid way.

http://www.jetir.org/

© 2018 JETIR December 2018, Volume 5, Issue 12 www.jetir.org (ISSN-2349-5162)

JETIR1812847 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 292

The paths to reach the destination may consist of

various kinds of obstacles which the NPC is to avoid.

Also, it is feasible to expect that the NPC would take

the shortest path possible to arrive at its destination

while avoiding these obstacles. This arises an issue

of the NPC finding the shortest path between these

two end points while eluding obstacles. The

technique used to resolve this issue is called

pathfinding, which finds the shortest path between

two locations for the computer-controlled player.

The concept of pathfinding has become more and

more popular as the gaming industry is gaining more

and more importance. Dijkstra’s algorithm has been

the solid foundation on which various pathfinding

algorithms have been developed. Many conventional

solutions to the pathfinding problem like Depth-first

Search, Best- First Search and Breadth-First Search

were overwhelmed by the increase in the complexity

demands by the games. A* algorithm has become the

most popular and provably the optimal solution to

the pathfinding problem. Nevertheless, it presents a

very promising field for future research by

considering various improvements and

optimization’s to the A* algorithm.

II. PROBLEM STATEMENT

In this paper, the problem under study is to analyze

the shortest path and analyzing the performance

using Dijkstra’s and A* algorithm and to implement

on Microsoft visual studio using C# to mimic the real

behavior of the system. To analyze the performance

of shortest path using A* environment is much better

than to test it on real system rather than Dijkstra’s.

The main problems faced while routing are taken into

consideration:

1. Calculating the shortest path between origin and

destination. In section 3.2 step 3, the researcher used

an application of his development in visual C# to

calculate the shortest path between the origin and

destination points based on Dijkstra and A*

algorithm.

2. Detecting the source and destination points. For

the path to be drawn, the user should determine the

starting point (origin) and final point (destination) for

routing. However, in general the origin and

destination can be any point.

3. There is no direct path from origin and destination

points.

4. Dealing with huge data. The transportation

systems have huge datasets to represent destinations,

transmit type, etc.; hence manipulation such as

calculating shortest path requires handling huge data;

the researcher has faced this problem while reading

and processing in Microsoft Visual C#. The map has

roads (they are called edges) that connect the nodes

(places with coordinates).From every node, you can

go to one or many edges. An edge has a cost (e.g.

length or time it takes to travel it). For little maps,

one could maybe compute every conceivable course

to the goal and select the briefest. In any case, that

isn't extremely useful for maps with numerous hubs

as the mixes develop exponentially.

III. OBJECTIVES OF THE RESEARCH

The reason for inquire about is to find the response

to inquiries through the use of logical techniques.

The fundamental point of the exploration is to

discover reality which is covered up and which has

not been found up 'til now. Each exploration examine

has its own particular reason, so this examination

work likewise has its own particular targets. The

noteworthy point of this exploration is to get the best

way and going to least hubs by utilizing Dijkstra's

and A*. The emphasis will be on getting the best way

with least cost.

IV. PSEUDO CODES

a) Pseudo code for Dijkstra's calculation

The Dijkstra calculation was found in 1959 by

Edsger Dijkstra. This is the manner by which it

works:

(i) From the begin hub, add every associated

hub to a need line.

(ii) Sort the need line by least cost and make the

principal hub the present hub.

(iii)For each tyke hub, select the best that

prompts the most limited way to begin.

http://www.jetir.org/

© 2018 JETIR December 2018, Volume 5, Issue 12 www.jetir.org (ISSN-2349-5162)

JETIR1812847 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 293

(iv) When the sum total of what edges have been

examined from a hub, that hub is “Went to"

and you don't have to go there once more.

(v) Add every kid hub associated with the

present hub to the need line.

(vi) Go to stage 2 until the point that the line is

vacant.

(vii) Recursively make a rundown of

every hub that leads the most limited way

from end to begin.

(viii) Reverse the rundown and you have

discovered the most limited way

b) Pseudo code for the A * calculation

(i) There are numerous upgrades of Dijkstra's

calculation. A standout amongst the most

widely recognized is called A*. It is

essentially the same as Dijkstra with one

straightforward alteration.

(ii) Edges are organized additionally as for how

much closer that edge prompts a straight-line

separation to the objective. So before running

an A* seek, the straight-line separation to the

last goal must be estimated for each hub,

which is simple in the event that you know

every hub facilitate. This is the easiest type of

A* and its definition additionally takes into

account enhancements of the heuristics work.

(For this situation Straight Line Distance To

End)

(iii) This calculation has a major execution

advantage since it doesn't have to visit the

same number of hubs when the course of the

way end is known.

V. RESULTS

The following tests will illustrate how the Dijkstra’s

and A* algorithm is used for path finding on huge

data i.e. Network of roads in real life. These tests will

show the effectiveness of the A* algorithm against

the system running without A* i.e. working in

Dijkstra’s Algorithm mode. Since it is possible to use

both algorithms i.e. Dijkstra's or A* calculation,

various test correlations will be done to demonstrate

how A* calculation can enhance the directing when

ways are longer legitimate and new routes have to be

chosen.

Test: Number of nodes to be taken 3000

Result of 3000 nodes using Dijkstra’s mode

Fig.5.1 Result of 3000 nodes using Dijkstra’s

Algorithm

http://www.jetir.org/

© 2018 JETIR December 2018, Volume 5, Issue 12 www.jetir.org (ISSN-2349-5162)

JETIR1812847 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 294

Result of 3000 nodes using A* Algorithm mode

Fig.5.2Result of 3000 nodes using A* Algorithm

The test contains two results:

 GUI 1 (Dijkstra’s Mode)

 GUI 2 (A* Mode)

From this, it is clear that even by the first 3000 nodes

visits completed; Dijkstra’s mode has higher no. of

visited nodes to reach the destination but A* reduced

the average number of nodes by approximately 45

times. At the end of the analysis optimal route is

obtained, resulting in A* improving performance by

almost 45 times visiting and it is in very small data

of 3000 nodes.

Now analysis tests will be performed by increasing

number of nodes to be made in successive tests and

we will observe the number of nodes visited to

complete the route, then we will compare the

simulation results of Dijkstra’s vs. A*algorithm.

CONCLUSION

This paper gives a short portrayal of the essential

pathfinding calculations which fill in as an

establishment for the effective execution of A*

calculation. It at that point displays an unpleasant

draw of the A* calculation outlining how it clubs the

benefits of Dijkstra's calculation and

Best-First-Search calculation, killing their

disadvantages. The paper finishes up by talking

about different improvement procedures for the A*

calculation and future research scope around there.

REFERENCES

1. Xiao Cui and Hao Shi, “A*-based Path-

finding in Modern Computer Games”

Melbourne, Australia: IJCSNS International

Journal of Computer Science and Network

Security, VOL.11 No.1, January 2011.

2. Tristan Cazenave, Labo IA, “Optimizations

of data structures, heuristics and algorithms

for path-finding on maps”, France:

Computational Intelligence and Games, 2006

IEEE Symposium, May 2006.

3. S. M. Lucas, M. Mateas, M. Preuss, P.

Spronck, and J. Togelius, “Artificial and

computational intelligence in games

(dagstuhl seminar 12191).” Dagstuhl

Reports, vol. 2, no. 5, pp. 43–70, 2012.

4. Artificial and Computational Intelligence in

Games.SchlossDagstuhlZentrumf¨urInforma

tik GmbH, 2013.

5. C. B. Browne, E. Powley, D. Whitehouse, S.

M. Lucas, P. I. Cowling, P. Rohlfshagen, S.

Tavener, D. Perez, S. Samothrakis, and S.

Colton, “A survey of monte carlo tree search

methods,” Computational Intelligence and AI

in Games, IEEE Transactions on, vol. 4, no.

1, pp. 1–43, 2012.

6. G. N. Yannakakis and J. Togelius,

“Experience-driven procedural content

generation,” Affective Computing, IEEE

Transactions on, vol. 2, no. 3, pp. 147–161,

2011.

7. J. Togelius, G. N. Yannakakis, K. O. Stanley,

and C. Browne, “Search-based procedural

content generation: A taxonomy and survey,”

Computational Intelligence and AI in Games,

IEEE Transactions on, vol. 3, no. 3, pp. 172–

186, 2011.

8. G. N. Yannakakis, P. Spronck, D. Loiacono,

and E. Andre, “Player modeling,” Dagstuhl

Follow-Ups, vol. 6, 2013.

9. M. Riedl and V. Bulitko, “Interactive

narrative: A novel application of artificial

intelligence for computer games.” in AAAI,

2012.

10. M. O. Riedl and A. Zook, “AI for game

production,” in Computational Intelligence in

Games (CIG), 2013 IEEE Conference on.

IEEE, 2013, pp. 1–8.

11. P. Hingston, C. B. Congdon, and G. Kendall,

“Mobile games with intelligence: A killer

application?” in Computational Intelligence

in Games (CIG), 2013 IEEE Conference on.

IEEE, 2013, pp. 1–7.

12. G. N. Yannakakis, “Game AI revisited,” in

Proceedings of the 9th conference on

Computing Frontiers, ser. CF ’12. New York,

NY, USA: ACM, 2012, pp. 285–292.

http://www.jetir.org/

© 2018 JETIR December 2018, Volume 5, Issue 12 www.jetir.org (ISSN-2349-5162)

JETIR1812847 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 295

13. B. Stout, “Smart moves: intelligent path-

finding,” in Game Developer Magazine,

pp.28-35, 1996.

14. Stanford Theory Group, “Amit’s A* page”,

October 12, 2010.

15. N.Nilsson, Artificial Intelligence: A New

Synthesis, Morgan Kaufmann Publishers,

San Francisco, 1998.

16. P. Hart, N. Nilsson, and B. Raphael, “A

formal basis for the heuristic determination

of minimum cost paths,” IEEE

Trans.Syst.Sci.Cybernet., vol.4, no.2,

pp.100-107, 1968

17. B. Stout, “The basics of A* for path

planning,” in Game Programming GEMS,

pp.254-262, Charles River Meida, America,

2000.

18. A.Botea, M.Mueller, and J.Schaeffer, “Near

optimal hierarchical path-finding,” J. GD,

vol.1, no.1, pp.7-28, 2004.

19. Unreal Developer Network, “Navigation

mesh reference”, Jan.13, 2011.

20. Game/AI, “Fixing pathfinding once and for

all”, September 23, 2010.

21. P. Tozour, “Building a near-optimal

navigation mesh,” in AI Game Programming

Wisdom, pp.171-185, Charles River Media,

America, 2002.

22. S. Rabin, “A* speed optimizations,” in Game

Programming GEMS, pp.264-271, Charles

River Media, America, 2000.

23. B. D. Bryant, “Evolving visibly intelligent

behavior for embedded game agents,” Ph.D.

dissertation, Department of Computer

Sciences, The University of Texas at Austin,

2006.

24. R. Miikkulainen, B. D. Bryant, R. Cornelius,

I. V. Karpov, K. O. Stanley, and C. H. Yong,

“Computational intelligence in games,” in

Computational Intelligence: Principles and

Practice, G. Y. Yen and D. B. Fogel, Eds.

IEEE Computational Intelligence Society,

2006.

25. R. C. Arkin, Behavior-Based Robotics. CA:

MIT Press, 1998.

26. M. J. Mataric`, “Behavior-based control:

Examples from navigation, learning, and

group behavior,” Journal of Experimental

and Theoretical Artificial Intelligence, vol. 9,

no. 2-3, pp. 323–336, 1997, journal of

Experimental and Theoretical Artificial

Intelligence.

27. Adam A. Razavian, Sun J. (2005). Cognitive

Based Adaptive Path Planning Algorithmfor

Autonomous Robotic Vehicles, Southeast

Con 2005 Proceedings, 8-10.

28. Amemiya T., Yamashita J., Hirota K. and

Hirose M. (2004). Virtual leading blocks for

thedeaf-visually impaired: a real-time way-

finder by verbal-nonverbal hybridinterface

and high-density RFID tag space.

29. BenaichaRamzi, Taibi Mahmoud.

(2013).Dijkstra Algorithm Implementation

On Fpga Card For Telecom Calculations.

30. Benjamin Chong Min Fui.(2012). A

Comparative Study Of Maze Solving

Algorithm For An Autonomous Mobile

Robot.

31. BusraOzdenizci, Kerem , VedatCoskun,

Mehmet N. Aydin. (2011). “Development of

an Indoor Navigation System Using NFC

Technology”.

32. Cormen, T., Leiserson, C., Rivest, R., and

Stein, C. (2001). Single-source shortest

Paths: Introduction to algorithms. 2nd ed.

Cambridge, MA: MIT Press,581-635.

33. Carsten J. (2007).Global Path Planning on

board the Mars Exploration Rovers. IEEE

Aerospace Conference.

34. David M. Bourg, Seeman G.(2004). AI for

Game Developers, O'Reilly, Chapter 7.

35. Edward M. Measure, David Knapp, Terry

Jameson, and Andrew Butler. (2009).

Automated Routing of U\nmanned Aircraft

Systems (UAS).

36. Hart P. E., Nilsson N. J., Raphael B. (1968).

“A Formal Basis for the Heuristic

Determination of Minimum Cost Paths.

37. Jacob R., Marathe M. and Nagel K. (1999).

A Computational Study of Routing

Algorithms for Realistic Transportation

Networks, ACM Journal of Experimental

Algorithms. 4 No 6.ume-

http://www.jetir.org/

