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Abstract:  Quadrupole Potential in a plane forms a kind of saddle potential for the charged particle in that plane. The potential in 

that plane is a hyperbolic function; increases in one dimension and decreases in the other. As a result, the electric field is inward in 

one dimension and outward in the other. The particle’s motion in such a field configuration cannot have a stable equilibrium. It is 

seen that the quadrupole potential can be rotated in transverse plane and the particle’s motion can be stabilized over time, for 

sufficiently larger frequencies of rotation [1, 2]. The transverse motion of a charged particle in such rotating quadrupole potential 

exhibits micro-circular motion and a prograde precision in larger scale. The motion of the guiding centre of the trajectory can be 

represented with an equation similar to that of a Foucault’s pendulum. 

 

Index Terms – Rotating Quadrupole Potential, Brouwer’s Equation, Foucault Pendulum, Charged Particle Dynamics. 

I. INTRODUCTION 

In a stabilized motion of a particle in a rapidly rotating planar saddle potential, a precessional motion is also observed, which has 

been shown due to a Coriolis-like force caused by the rotation of the potential. This is a unique example where such a force arises in 

an inertial reference frame. The equations of motion in such system are the similar to the equations derived in 1918 by Brouwer 

(1881–1966), while considering the stability of a heavy particle on a rotating slippery surface. His famous equations, �̈� + 𝑥 cos 2𝜔𝑡 +
𝑦 sin 2𝜔𝑡 = 0 , �̈� + 𝑥 sin 2𝜔𝑡 − 𝑦 cos 2𝜔𝑡 = 0, also govern the motion of a unit mass in a plane under the influence of a potential 

force given by the rotating saddle potential—the potential whose graph is obtained by rotating the graph 𝑧 =
1

2
(𝑥2 − 𝑦2) around the 

z-axis with angular velocity 𝜔. A good example is the motion of a charged particle in a rotating electrostatic quadrupole potential. 

The motion of a particle on such a saddle is stabilized for all sufficiently high 𝜔. The particle trapped in the rotating saddle exhibits 

a prograde precession in the laboratory frame, i.e., the particle moves along an elongated trajectory that in itself slowly rotates in the 

laboratory frame with the angular velocity 𝜔𝑝  in the same sense as the saddle. It has been demonstrated that the rapid rotation of the 

saddle potential creates a weak Lorentz-like (or Coriolis-like) force, in addition to an effective stabilizing potential, all in the inertial 

frame [1]. It is also shown in [3] that a simplified equation can be found for the guiding center of the trajectory that coincides with 

the equation of the Foucault’s pendulum. In this sense, a particle trapped in the symmetric rotating saddle trap is, effectively, a 

Foucault’s pendulum, but in the inertial frame. In this paper, a similar approach is followed in case of charged particle motion in 

rotating quadrupole potential. The method will be of use while designing such devices in charged particle beam transfer lines used in 

particle accelerator systems  or in ion traps. In charged particle beam transport systems, electrostatic of magnetic quadrupoles are 

used to keep the beam confined in transverse direction or to focus the beam. Inherently, a quadrupole field configuration cause 

focusing in one transverse plane and defocusing in the other transverse plane. A sequence of focusing and defocusing quadrupole 

field causes effective focusing of beam in both the transverse planes. Strong focusing, i.e., alternating focusing and defocusing fields, 

increases largely by exploring field rotations about the optic axis. Literatures are found on electric or magnetic quadrupoles rotating 

helically in space around the optic axis [3, 10]. Field rotating in time, rather than space, has also been discussed and it has been 

suggested that such strong focusing method can effectively be explored in beam line applications, particularly in radiofrequency 

quadrupole accelerator system.  

II. Motion of charged particle in Rotating Quadrupole potential 

We use a Cartesian coordinate system with a preferential longitudinal axis (z) along the beam transport line. Also we consider 

the transverse dimension of the device is much less than the longitudinal dimension, as it is generally in case of a beam transport 

device like electrostatic quadrupoles. The static scalar potential, follows the two dimensional Laplace equation in transverse (𝑥, 𝑦) 

plane ∇x,y
2ψ = 0. The quadrupole term of the general solution is given by, 

ψ(𝑥, 𝑦) = 𝑎(𝑥2 − 𝑦2) + 2𝑏𝑥𝑦                         (1) 

Now we consider the case where the scalar potential function is to be rotated around the 𝑧-axis. It can be done with a time varying 

normal 𝑎(𝑥2 − 𝑦2) and skew 2𝑏𝑥𝑦 configuration superimposed on each other, with a phase difference of 𝜋/2. The time varying 

rotatin potential function can be written as, 

ψ(𝑥, 𝑦, 𝑡) = 𝑎 cos(𝜔𝑡) (𝑥2 − 𝑦2) + 2𝑏 sin(𝜔𝑡)  𝑥𝑦                      (2) 

where angular frequency 𝜔 = 2𝜋 𝑇⁄ , 𝑇 being the time period of the sinusoidal potential.  

Hence the equations of motion are as follows: 
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�̈� = −
𝑞

𝛾𝑚0

(2𝑎𝑥 cos(𝜔𝑡) + 2𝑏𝑦 sin(𝜔𝑡))                         (3) 

�̈� =
𝑞

𝛾𝑚0

(−2𝑎𝑥 sin(𝜔𝑡) + 2𝑏𝑦 cos(𝜔𝑡))                         (4) 

We may normalize the constants as 
2𝑎𝑞

𝛾𝑚0
=

2𝑏𝑞

𝛾𝑚0
= 1, 

�̈� + 𝑥 cos(𝜔𝑡) + 𝑦 sin(𝜔𝑡) = 0                                            (5) 

�̈� + 𝑥 sin(𝜔𝑡) − 𝑦 cos(𝜔𝑡) = 0                                            (6) 

The solutions of these equations in parametric form are shown in figure 1. The stable motion for all higher values is shown in figure 

2. The particle moves on a stretched curved trajectory that itself rotates in the same sense as the rotating field. 

 

Figure 1: Trajectories of charged particle under rotating quadrupole potential. For 𝜔 = 3 motion is stable or confined in the 

transverse direction. The particle executes a small scale circular micro-motion and a large scale circular secular motion. 

III. Transformation 

Now we may look in to the potential from a coordinate system (𝑥′, 𝑦′) rotated by an angle 𝜑 say. Applying the transformation 

𝑥 = 𝑥′ cos 𝜑 − 𝑦′ sin 𝜑  and 𝑦 = 𝑥′ sin 𝜑 + 𝑦′ cos 𝜑 , we get, 

ψ(𝑥′, 𝑦′) = (𝑥′2
− 𝑦′2

)(𝑎 cos 2𝜑 + 𝑏 sin 2𝜑) + 2𝑥′𝑦′(𝑏 cos 2𝜑 − 𝑎 sin 2𝜑) 

Without losing the generality of the problem, we can choose a rotated coordinate system such that the skew term vanishes, i.e.,  

𝑏 cos 2𝜑 − 𝑎 sin 2𝜑 = 0. Considering a symmetric normal and skew component, i.e., 𝑏 = 𝑎, we find tan 2𝜑 = 1. Or, 𝜑 = 𝜋/8. In 

this coordinate system, the potential can be represented by  

ψ(𝑥′, 𝑦′) =
(𝑥′2

− 𝑦′2
)

2
                    (7) 

Thus, the charged particle in a rotating quadrupole potential, behaves like a particle on a rotating saddle potential. Now, the 

governing equations (5) & (6) can be written in vector form as 

�̈� + 𝑆(𝜔𝑡) 𝑿 = 0                             (8) 

Where, 𝑿 = [
𝑥
𝑦] and 𝑆(𝜔𝑡) = [

cos 𝜔𝑡 sin 𝜔𝑡
sin 𝜔𝑡 − cos 𝜔𝑡

] 

Kirillov and Levi has shown that the motion 𝑋(𝑡), governed by equation (8), can be assigned with a “guiding centre” or 

“hodograph”, given by 𝒖 = 𝑿 −
𝜀2

2
𝑆(𝜔𝑡)(𝑿 − 𝜀𝐽�̇�) , where 𝜀 = 1/𝜔 and 𝐽 = [

0 −1
1 0

] is counter-clock wise rotation by 𝜋/2. They 

have shown that for large 𝜔 the dynamical equation for guiding centre, neglecting the terms of 𝑂(𝜀4), is given by 

�̈� −
𝜀3

4
𝐽�̇� +

𝜀2

4
𝒖 = 0                           (9) 

This is in fact the equation of Foucault pendulum. 
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Figure 2: Motion of the ‘guiding centre’ governed by 

equation (9) for 𝜔 = 3. 

 

Figure 3: Motion of the ‘guiding centre’ superimposed 

on the motion of charged particle. 

Figure 2 shows the motion of the ‘guiding centre’ and figure 3 shows the same superimposed on the motion of the charged 

particle. It shows that the large scale precession of the trajectory is depicted by the motion of an equivalent Foucault pendulum. 

This representation simplifies the calculations of gross dynamics of the charged particle in rotating quadrupole potential. 

IV. CONCLUSION 

Transverse dynamics of a charged particle in the rotating quadurpole potential is investigated. The equations of motion are similar 

to the famous Brouwer’s equations for a particle on a rotating slippery surface. Parametric plots of numerical solution of the equations 

show that the motion is confined in transverse direction for all higher rotational frequencies. In case of stable motion, the trajectory 

in transverse plane is a combination of circular micromotion and a prograde precession. The motion can be represented by an 

equivalent Foucault Pendulum. 
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