
© 2018 JETIR December 2018 , Volume 5, Issue 12 www.jetir.org (ISSN-2349-5162)

JETIR1812F05 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 596

A Study of Code Clone Detection in Software

Systems

Jai Bhagwan

Assistant Professor

Department of Computer Science & Engineering,

Guru Jambheshwar University of Science & Technology, Hisar, India

Abstract: Software engineering is a wider area of research. Various hot topics are picked for research like quality prediction, bug

detection, clone detection, efforts estimation etc. Software clone detection can save the development efforts and helpful in

developing efficient software. The clones are useful for code reuse but, the copy-paste technical may increase the problem of code

reliability and robustness. Unnecessary duplicate code not only affects the software itself but entire system performance is

affected. So, this research covers the software clone detection techniques. The scientists have introduced various tools and

techniques for clone detection such as token based code representation, abstract syntax tree based model, CDLH, NiCad, LWH

model, PMD, CodePro etc. In this paper, various researches are studied and compared.

IndexTerms – Abstract Syntax Tree, Code Clones, CCLearner, NiCad, SDLC.

I. INTRODUCTION

People are living in the digital era; as a result, the demand of software is rapidly growing. In software development life cycle

(SDLC) various phases are included such as requirements and documentation, designing, coding, testing, implementation and

maintenance. Coding part is a major part in software development as it is the backbone of the entire development process. There are

various forms of redundancy or replication in software programs. This type of coding redundancy is typically referred to as clones;

many taxonomies and definitions of clones have been put forth [1]. In software development, it's common practice to copy

preexisting code pieces and paste them with or without alterations into other code sections. Software clones are code copies, and

the method of creating them is known as software cloning [2]. It is discovered that code cloning poses a greater risk to industrial

software systems. The system's regular operation might not be impacted by clones, but if the maintenance department doesn't take

preventative action, future development might become unaffordable. Clones are thought to be detrimental to growth. Code clones

may have a negative impact on the quality of software systems, particularly on their readability and maintainability. Cloning, for

instance, raises the likelihood of update irregularities [6]. The Big Data era has brought new clone detecting applications. Clone

detection has been used to locate code examples, categorize code snippets effectively, find comparable mobile applications, and

more. Numerous clone detection technologies have been offered A few of such methods are just text-based, while others are token-

based, tree-based, metrics-based, graph-based, and hybrid—for instance, parser-based but with text comparison, etc [4].

Refactoring is a method that facilitates the processing of code clones. According to Fowler (1999), refactoring is the process of

"restructuring an existing body of code, altering its internal structure without changing its external behavior." Refactoring the

identified clones may enhance the system's interpretability, maintainability, and extensibility while lowering its complexity (Fowler

1999) [7]. It makes sense to quantify the functional similarity if the code fragments' functional behaviors could be meticulously

characterized. By simultaneously taking into account the lexical data and syntactical patterns of code fragments, latent properties

that define the functionalities of the code might be acquired in order to accomplish this goal [8].

1.1 Clone Detection Techniques

There are various clone detection techniques. A few of them are explain below in short [5].

 Token-Based - Token-based approaches generate a stream of tokens by applying complex changes to the source

code, such as lexical analyzers. To find out if two code fragments are clones or not, these algorithms compare tokens

of the two fragments.

 Metrics-Based - Metrics-based approaches calculate and contrast various software metrics of two portions of code to

ascertain whether or not they are clones. These techniques compare these metrics rather than the codes themselves.

When two code fragments have comparable related metrics values, they are deemed to be clones.

 Learning-Based - Using learning-based approaches, the code fragments are used to extract features. A machine

learning model is then trained using these features in order to identify clones. These methods of learning can be

unsupervised or supervised. These methods have problems with scalability, much like metrics-based methods.

In this paper, we have compared various research papers. These are research as well as literature based papers. We have

presented a detailed related work, comparison of various clone detection approaches. Further the paper is organized as: Section II

represents the related work. In section III, we have compared various techniques in tabular form for easy understanding. Finally,

section IV concludes this research.

II. RELATED WORK

We have reviewed various research papers relating to software clone detection. The scientists in [1] shared their experiences to

detect clones in software. The authors used three different tools for this purpose. Various taxonomies and definitions are given

http://www.jetir.org/

© 2018 JETIR December 2018 , Volume 5, Issue 12 www.jetir.org (ISSN-2349-5162)

JETIR1812F05 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 597

about software clones. In this research, the impact of clones is mapped for software quality metrics. In [2], different types of clones

and their factors are explained. Various matching techniques are detected and reported. Also, drawbacks and benefits are

summarized in this research.

The authors [3] discuss the main sources of code clones and reason behind it. Also, the negative effects behind the code

duplication are highlighted. Various existing code clones techniques are analyzed. This research summarized the open problems

about software code clones. A basic introduction to clone detection is given in [4] along with benchmark terminology. In [6],

authors give introduction about software clones, review clone taxonomies, detection techniques and evaluation of various tools

available for clone detection. The authors discuss various applications of clone detection techniques and their effects in other

domains of software engineering. The scientist also identified open problems concerning to clone detection approaches.

In [7], scientists said that research on software code clones has been executed over a decade. The research shows that software

systems may have 9-17% duplicate code. In this research, various tools have been analyzed and discussed. Different techniques

such as token-based, Abstract Syntax Tree-based and text-based approaches are used. In this paper, a hybrid approach of textual

and a metrics-based concept has been proposed and the results and effects are explored.

The paper [8] proposed a supervised learning model called CDLH, to detect functional code clones. CDLH learns hash codes by

following lexical analysis and syntactical information. The approach uses deep learning features to detection functional based code

clones. A deep learning based concept to detect clones is introduced in [9] and the research is followed by token-based approach.

The model has been given a name as CCLearner. The tree-matching algorithm was also explored. The paper [10] proposes a

method by following Cyclomatic complexity and Halstead measures. For exact match refactoring, slicing techniques were used.

Code smell detected and analyzed using specific metrics. The experiments were carried out on various modules of GanttProject.

In [11], refactoring, design pattern, and clones classification schemes are explained. This research also discusses the aim behind

cloning patterns instead of abstractions. Here, various code duplication and usage patterns are observed. In [12], an abstract syntax

tree-based model was designed to detect near miss clones. The proposed approach is capable to detect exact and near miss clones

patterns. The proposed method is successful to detect in complex language constructs with the help of ASTs. The proposed method

is better than previous one.

A token-based approach was proposed in [13] and it is named as RFT (Repeated Tokens Finder). This technique incorporates a

suffix array based algorithm for clone detection. This approach is customizable and locates methods boundaries. The proposed RTF

method is integrated into Clone-Miner tool for similarity patterns. A new algorithm is presented in [14] for detecting similarities in

software systems. This method is relied on the notion of the function. The proposed method produces effective results for insertion,

detection of code blocks.

III. COMPARISON AND ANALYSIS

The analysis of various researches is also shown in Table 1.

Table 1. Comparison of Various Researches

Ref. No. Methods Used Limitations Practical Implications

[1] Exact and Replace Method,

Exact Class

Refactoring has more disadvantages,

Extracting Classes increases

dependencies, Removal of code and

new code smells not detected,

different tools find different types of

clones.

Various clone detection tools yield varying

outcomes as a result of employing distinct

detection methodologies. The elimination

of redundant code leads to enhancements in

the stability, cohesion, and complexity of

the system. The act of refactoring proves

beneficial in enhancing the quality of

particular classes. The examination of the

existence of fresh code smells subsequent

to the refactoring of clones. In certain

instances, refactoring may not be

advantageous, particularly when it

engenders an increase in dependencies.
[2]

Not Mentioned

Complexity of large systems leads to

code copying. Some programming

languages have less support for

reusability of code. Forking and

Templating are short-term reused

mechanisms.

The identification of research gaps in the

field of software cloning and clone

detection is crucial. It is imperative to raise

awareness about the numerous benefits that

come with effective software clone

management. Additionally, there is a

pressing need to emphasize the utilization

of semantic and model-based techniques in

clone detection. Instead of simply removing

clones, it is recommended to establish

proper clone management facilities.

Furthermore, this study offers valuable

recommendations for future research

endeavors in the realm of clone detection.

[3]

None of the clone detection methods

currently in use are suitable for use in

industrial settings, and their accuracy

and thoroughness are both lacking.

Code replication poses a significant

challenge within the realm of software

development. The presence of identical

code fragments exacerbates the complexity

http://www.jetir.org/

© 2018 JETIR December 2018 , Volume 5, Issue 12 www.jetir.org (ISSN-2349-5162)

JETIR1812F05 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 598

Not Mentioned

of software maintenance and support.

Current methodologies for detecting code

clones display certain limitations in relation

to their precision and comprehensiveness.

Unanswered inquiries persist concerning

the detection of code clones and its effect

on the quality of software.

[4] Pre-Validated Clones Issues with developing a clone

benchmark that has been verified for

comparison. Several hundred

prospective clones must be manually

checked. Validated clones that were

made artificially might not accurately

represent clone detecting tools' recall.

Difficulties in precisely assessing the

recall and precision of clone

detection instruments.

It is now feasible to conduct an impartial

assessment of clone detection tools. The

difficulties encountered in constructing

benchmarks for clone detection have been

explicated. Upcoming endeavors ought to

prioritize the establishment of a firm

objective foundation for evaluating clone

detectors.

[6]

Not Mentioned

Restrictions brought about by

developers and programming

languages.

Provides a comprehensive survey on

software clone detection research.

Describes clone terms, taxonomies,

detection approaches, and experimental

evaluations. Points out open problems for

further research in clone detection. Assists

potential users in selecting the right tool or

technique. Identifies avenues for future

research and interesting combinations of

techniques.

[7] LWH Approach Limitations in locating either

functional or structural information.

Human mistake may occur in the

Clones Manual evaluation.

The proposed approach known as LWH

exhibits enhanced precision and reduced

comparison cost. It possesses the capability

to accurately identify method-level clones

with a high degree of precision and recall.

In the future, efforts will be made to

augment the technique specifically for web

static pages and clone elimination.

Furthermore, the tool has the ability to

preserve prior clone detection outcomes in

order to decrease processing time.

[8] CDLH 32-bit hash code with limited room

for experimental results. The value of

the threshold is not stated. No

mention of restrictions in the context

at hand.

The present study considers the issue of

identifying software functional clones. It

introduces a novel supervised deep feature

learning framework, referred to as CDLH.

CDLH leverages both lexical and

syntactical data in order to quantify the

functional resemblance among code

fragments. Remarkably, CDLH surpasses

current cutting-edge methods in software

functional clone detection.

[9] Token Based, Deep Learning,

AST

Not Mentioned

CCLEARNER is an approach for clone

detection that is based on deep learning and

does not rely on specialized algorithms. In

comparison to existing token-based

approaches, CCLEARNER is able to detect

a wide range of clones with a high level of

precision and recall. Additionally, when

compared to tree-based approaches,

CCLEARNER is able to efficiently detect

clones with a high level of precision. The

effectiveness of CCLEARNER is

influenced by factors such as the number of

hidden layers and iterations in the deep

neural network (DNN). Indicators of code

clones include the similar usage of reserved

words, markers, type identifiers, and

method identifiers. Code clones are more

likely to utilize divergent operators, literals,

qualified names, and variable identifiers. In

http://www.jetir.org/

© 2018 JETIR December 2018 , Volume 5, Issue 12 www.jetir.org (ISSN-2349-5162)

JETIR1812F05 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 599

future research, more advanced methods

will be explored to match similar terms

without incurring runtime overhead.

Furthermore, other machine learning

techniques will be investigated for the

purpose of clone detection. It is also worth

noting that deep learning can be employed

to automatically extract features from

known code clones.

[10] Cyclomatic Complexity,

Halstead Measures
Code smell definitions provided by

Fowler are too vague to be put into

practice. The lack of clarity in code

smell definitions affects how well

they are identified. It is a low-

probability event when a code

element has a code smell. There is a

significant skew in the distribution of

"smelly" and "non-smelly" code

items. The experiments' limited size

makes them less statistically

significant.

Different software engineering tools for

detecting code smells do not reach a

consensus in their findings. Tools for

identifying code smells have the capability

to pinpoint problematic sections of code.

These tools serve a valuable purpose in

evaluating the evolution of software.

Among the various tools considered, only

one possesses the ability to perform

refactoring. In order to effectively eliminate

code smells, these detection tools must

possess the capability to support their

removal. Additional data is necessary to

further refine experiments and establish a

benchmark dataset. Manual validations are

imperative in order to facilitate a more

thorough comparison of results. The

definitions of code smells can be enhanced

to optimize the techniques employed for

detection. The relationships between code

smells and other structural elements within

the code base should be thoroughly

analyzed.

[11] Cloning Patterns

Not Mentioned

Code duplication can be employed in a

constructive manner within software

systems. The utilization of duplication

patterns can be regarded as a logical design

choice. It is imperative to devise tools that

assist in making informed decisions

pertaining to maintenance and refactoring.

The incorporation of cloning patterns

necessitates the contemplation of long-term

consequences. It is of utmost significance

to identify additional cloning patterns and

ascertain their rates of success.

[12] Abstract Syntax Trees Prior research was restricted to

identifying precise textual matches or

close calls on entire function bodies.

As size grows, the quantity of

unintentional code fragments

decreases significantly.

Software maintenance costs can be reduced

by identifying and eliminating code clones.

The technology given has the ability to

identify clones on a big scale and detect

near-misses. The technique can identify

clones in any language construct and is

very easy to apply. To get rid of the clones

without interfering with program

functionality, macros can be calculated.

Tools for detecting clones have the

potential to support domain analysis.

[13] Repeated Tokens Finder One problem is the detection of very

short clones. It's possible that

language-level approaches won't be

enough to bring all clones together.

Offers a unique, versatile tokenization

method for token-based clone detection.

Adds clone detecting functionality to the

Clone Miner tool. Assures code reuse and

program comprehension that is superior to

code clones. Gives consumers the option to

specify the token-based minimum size for

clones. Offers a lower memory use than

CCFinder.

[14] Notion of Functions, Pattern

matching
False-positive results because of how

long the leaf functions are. There is

no indication of a lower bound on the

Opposition to obfuscator techniques such

code shifting, in-lining, and outlining. If the

function calls are not taken into account,

http://www.jetir.org/

© 2018 JETIR December 2018 , Volume 5, Issue 12 www.jetir.org (ISSN-2349-5162)

JETIR1812F05 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 600

length of leaf functions. precision is decreased. A maximum

threshold for leaf function lengths needs to

be established because false positives can

occur. Taking function call order into

account while calculating new function

comparison metrics. To cut down on false

positives, data-flow analysis can be done.

Function calls with multiple function calls

as parameters are not yet handled by the

method. A preliminary method for

unfolding constructed calls by introducing

temporary local variables. Partial outlining

graphs provide a visual representation of

the outcomes of outline procedures. It's

necessary to research more user-friendly

result rendering tools.

[15] Active Testing using Rule

Evaluation

Not Mentioned

Uses clone detection to locate bug pattern

matching code snippets. Uses interactions

between code fragments to identify high-

and low-potential issues. It is imperative

that testing efforts be localized to possible

concurrency problems. Minimizes search

space for software testing that is done

concurrently. To finish the active testing

process, further labour and experimentation

are needed.

IV. CONCLUSION

The field of software engineering research is more broader. Research is conducted on a variety of trending subjects, such as

efforts estimates, clone detection, bug detection, and quality prediction. Software clone detection can reduce development time and

aid in the creation of effective software. Although the clones are helpful for reusing code, the copy-paste technique could make the

code less stable and reliable. The performance of the entire system is impacted by superfluous duplicate code in addition to the

software itself. Thus, the methods for detecting software clones are included in this research. Token-based code representation,

abstract syntax tree-based models, CDLH, NiCad, LWH models, PMD, CodePro, and other methods have been introduced by

scientists as tools and strategies for clone detection. Many studies are examined and contrasted in this paper. The limitations and

practical implications are also mentioned in this research.

In future, it is a need to develop a machine learning model to detect software clones as the accuracy is not up-to the mark in

case of existing models.

References

[1] Fontana, F. A., Zanoni M., Ranchetti, A. and Ranchetti, D. 2013. Software Clone Detection and Refactoring. ISRN Software

Engineering, 2013: 1-9.

[2] Rattan, D., Bhatia, R., and Singh, M. 2013. Software Clone Detection: A Systematic Review. Information and Software

Technology, 55: 1165-1199.

[3] Akhin, M., and Itsykson, V. 2010. Clone Detection: Why, What and How?. IEEE, 36-42.

[4] Roy, C. K., and Cordy, J. R. 2018. Benchmark for Software Clone Detection: A Ten-Year Retrospective. IEEE, 26-37.

[5] Saini, V. P. S. 2018. Towards Accurate and Scalable Clone Detection using Software Metrics. PhD Thesis, University of

California, Irvine.

[6] Roy, C. K., and Cordy J. R. 2007. A survey on Software Clone Detection Research. School of Computing, Queen’s University

at Kingston, Ontario, Canada.

[7] Kodhai, E., and Kanmani, S. 2014. Method-Level Code Clone Detection through LWH (Light Weight Hybrid) Approach.

Journal of Software Engineering Research and Development, 2(12): 1-29.

[8] Wei, H. H., and Li, M. 2017. Supervised Deep Features for Software Functional Clone Detection by Exploiting Lexical and

Syntactical Information in Source Code. Proceedings of the Twenty-Sixth International Joint Conference on Artificial

Intelligence, 3034-3040.

[9] Li, L., Feng, H., Zhuang, W., Meng, N., and Ryder, B. 2017. CCLearner: A Deep Learning-Based Clone Detection Approach.

International Conference on Software Maintenance and Evolution, IEEE, 249-260.

[10] Fontana, F. A., Braione, P., and Zanoni, M. 2011. Automatic detection of bad smells in code: An experimental assessment.

Journal of Object Technology, 1-38.

[11] Kasper, C., and Godfrey, M. W. 2006. “Cloning Considered Harmful” Considered Harmful. 13th Working Conference on

Reverse Engineering, IEEE.

[12] Baxter, I. D., and Anna, M. S., and Bier, L. 1998. Clone Detection Using Abstract Syntax Trees. International Conference

on Software Maintenance.

[13] Basit, H. A., Puglisi, S. J., and Smyth, W. F. 2007. Efficient Token Based Clone Detection with Flexible Tokenization.

Proceedings of the the 6th joint meeting of the European software engineering conference and the ACM SIGSOFT symposium

on The foundations of software engineering, 513-516.

http://www.jetir.org/

© 2018 JETIR December 2018 , Volume 5, Issue 12 www.jetir.org (ISSN-2349-5162)

JETIR1812F05 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 601

[14] Chilowicz, M., Duris, E., and Roussel, G. 2009. Finding Similarities in Source Code through Factorization. Electronic Notes

in Theoretical Computer Science, 238: 47-62.

[15] Jelbert, K., Bradbury, J. S. 2010. Using Clone Detection to Identify Bugs in Concurrent Software. International Conference

on Software Maintenance.

http://www.jetir.org/

