SOME SPECIAL PYTHAGOREAN TRIANGLES

¹Mita Darbari, ²Prashans Darbari ¹Dean, Physical Sciences, ²Student, IISER Mohali ¹Department of Mathematics, ¹St.Aloysius College (Autonomous), Jabalpur, India

Abstract : Special Pythagorean Triangles, in terms of perimeter to be a sum of three squares, with consecutive sides are obtained. A few interesting results are observed.

Key Words - Pythagorean Triangles, sum of three sides is a square. *Subject Classification Code* – **11D09**

I. INTRODUCTION

In the Pythagorean Mathematics, the determination of classifying all Pythagorean triangles wherein each of which the perimeter can always be represented as the sum of three distinct squares by Gopalan and Devibala [1], motivates to examine whether there exists any Pythagorean Triangle, with two consecutive sides and sum of legs to be a square. It is towards this end an attempt is made to find patterns of Special Pythagorean Triangles with two consecutive sides and perimeter as sum of three squares.

II. METHOD OF ANALYSIS

The primitive solutions of the Pythagorean Equation	
$\mathbf{X}^2 + \mathbf{Y}^2 = \mathbf{Z}^2$	(1)
is given by [2]	
$X = m^2 - n^2$, $Y = 2mn$, $Z = m^2 + n^2$	(2)
where $m, n \in I$ such that $m > n > 0$ and $(m, n) = 1$ with one of them is odd other even.	
2.1 Sum of two legs is a square:	
$X+Y=\beta^2$	(3)
Then solutions of (3) is given by	(4)
$\mathbf{m} = 2\mathbf{p}^2 + \mathbf{q}^2 - 2\mathbf{p}\mathbf{q},$	
n = 2pq,	
$\beta = 2p^2 - q^2$, p and q are positive integers.	
(2) and (4) give	
$X = (2p^2 + q^2) (2p^2 + q^2 - 4pq)$	
$Y = 4pq (2p^2 + q^2) - 8p^2 q^2$	
$Z = (2p^2 + q^2 - 2pq)^2 + (2pq)^2$	(5)
2.2 Hypotenuse and one leg are consecutive:	
In such cases, $m = n + 1$	

(8)

$\Rightarrow q = 2p \pm \sqrt{(1+2p^2)}$	(6)
Applying (6) to (5), we get	
X = 1 + 4pq	
Y = 4pq (1+2pq)	
Z = 4pq (1+2pq) + 1	(7)
2.3 Perimeter is sum of three squares:	
From (2) and (3),	

 $X + Y + Z = \beta^2 + m^2 + n^2$

(2), (4), (6) and (7) generates X and Y which satisfy (1) and (3) in correspondence with (8).

Few examples are given in the table 1 below:

	Table1								
С	1	2	3	4		5		6	7
R↓	р	q	М	n	2	K	Y		Z
1	2	1	5	4	9		40		41
2	2	7	29	28	5	7 1		624	1625
3	12	7	169	168	33	37 5		6784	56785
4	12	41	985	984	19 <mark>6</mark> 9		193	38480	1938481
5	70	41	5741	5740	114	481	65906680		65906681
6	70	239	33461	33460	669	66921 223		210120	2239210121
7	408	239	195025	195024	390	049 76069		9111200	76069111201
8	408	1393	1136689	1136688	2273377		2584121492064		2584121492065
9	2378	1393	6625109	6625108	13250217		87784125273544		87784125273545
10	?	8119	?	?		?		?	?
C	8					9 10			
R↓	$X + Y = \beta^2$					β X +		X +	$\mathbf{Y} + \mathbf{Z} = \mathbf{\beta}^2 + \mathbf{m}^2 + \mathbf{n}^2$
1	$9 + 40 = 49 = 7^2$					7		90 = 9 + 40 + 41	
								$=7^2+5^2+4^2$	
2	$57 + 1624 = 41^2$						41	6 = 57 + 1624 + 1625	
							$= 41^2 + 29^2 + 28^2$		

JETIR1902016 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org

3	$337 + 56784 = 57121 = 239^2$	239	113906 = 337 + 56784 + 56785
			$=239^{2}+169^{2}+168^{2}$
C□	8	9	10
R↓	$\mathbf{X} + \mathbf{Y} = \mathbf{\beta}^2$	β	$\mathbf{X} + \mathbf{Y} + \mathbf{Z} = \mathbf{\beta}^2 + \mathbf{m}^2 + \mathbf{n}^2$
4	1969 + 1938480 = 1940449	1393	$3878930 = 1393^2 + 985^2 + 984^2$
	- 13032		
	- 1375		
5	11481 + 65906680	8119	$131824842 = 8119^2 + 5741^2 + 5740^2$
	$= 65918161 = 8119^{2}$		
6	66921 + 2239210120 = 2239277041	47321	$4478487162 = 47321^2 + 33461^2$
	$=47321^{2}$		$+33460^{2}$
7	200040 - 20000111200 - 2000001240	075007	152120512450 2750072
/	390049 + 76069111200 = 76069501249	275807	$152138612450 = 275807^2 +$
	$=275807^{2}$		$195025^2 + 195024^2$
8	2273377 + 2584121492064 -	1607521	$5168245257506 - 1607521^2 +$
0	2273377 + 2304121472004 -	1007521	5100245257500 = 1007521 +
	$2584123765441 = 1607521^2$		$1136689^2 + 1136688^2$
9	87784138523761 = 13250217 +	9369319	175568263797306 = 9369319 ² +
	87784125273544 = 9369319 ²		$6625109^2 + 6625108^2$
10	?	?	?

III OBSERVATIONS

We observe that

- 1. $X + Y + Z = 2 (1 + 4pq) (1 + 2pq) = 0 \pmod{2}$
- 2. The Pythagorean Triplets (X,Y,Z) given by (6) are all primitives as Z = Y + 1
- 3. $(Y + Z X)^2 = 2(Y + Z)(Z X)$
- 4. $(X + 2Y + Z)^2 = (Z X)^2 + 4(X + Y)(Y + Z)$
- 5. $X + 2Y + Z \pm 2\{ (X + Y)(Z Y) \}^{1/2} = 0 \pmod{16}$ or $= 0 \pmod{4}$
- 6. Except for q = 1, the values of β and the values of q are same with q repeated twice.
- 7. For every value of p, there are two values of q and vice-versa.

Thus, the question arises: whether q can be obtained from previously obtained β and hence p?

From (6) we get $2p^2 + q^2 - 4pq = 1$.

Putting q = 8119, we get, p = 2378 and p = 13860.

Solving for m, n, X, Y, Z and β when p = 2378 using software *Mathematica*, we get

 $m=38613965,\,n=38613964,\,X=77227929,\,Y=2982076508814520,\,Z=2982076508814521\,\,and$

 β = 54608393 which satisfy (7) (Table 2)

С	1	2	3	4		5		6	7	
R↓	р	q	М	n		X		Y	Z	
10	2378	8119	38613965	3861	613964 7		7929	2982076508814520	2982076508814521	
C	8			Ģ	9 10					
R↓	$\mathbf{X} + \mathbf{Y} = \mathbf{\beta}^2$			$\beta \qquad \qquad X + Y + Z = \beta^2 + m^2 + n^2$						
10	2982076586042449				5460	$54608393 \qquad 5964153094856970 = 54608393^2 +$				
	= 77227929 +				38613965 ² + 38613964 ²					
	2982076508814520									
		= 54	608393 ²							

Table 2

IV 3D PLOTS

Solving the Diophantine equation $m^2 - n^2 + 2mn = \beta^2$ i.e., $X + Y = \beta^2$ with the help of *Mathematica* for for n < m; 0 < m < 10000; 0 < n < 10000; $0 < \beta < 10000$, we get 9354 solutions of which ListPlot3D, ListPointPlot3D and L istSurfacePlot3D are given below:

For consecutive leg and hypotenuse and $X + Y = \beta^2$, solving the equation

 $(n + 1)^2 - n^2 + 2(n + 1) n = \beta^2$ using the software *Mathematica* for the values $0 < n < 10^{10}$ and $0 < \beta < 10^{10}$ we get only 130 solutions!

In conclusion, one may attempt to find other patterns of Pythagorean Triangle which satisfy the conditions presented in the above problem.

REFERENCES

Gopalan, M.A.. Devibala.S. 2007.Special Pythagorean Triangles. The Mathematics Education, Vol. XLI(4): 293.
Burton, David M. 2009. Elementary Number Theory. Tata MacGraw-Hill Edition. New Delhi: 248.