SOME SPECIAL PYTHAGOREAN TRIANGLES

${ }^{1}$ Mita Darbari, ${ }^{2}$ Prashans Darbari
${ }^{1}$ Dean, Physical Sciences, ${ }^{2}$ Student, IISER Mohali
${ }^{1}$ Department of Mathematics,
${ }^{1}$ St.Aloysius College (Autonomous), Jabalpur, India

Abstract: Special Pythagorean Triangles, in terms of perimeter to be a sum of three squares, with consecutive sides are obtained. A few interesting results are observed.

Key Words - Pythagorean Triangles, sum of three sides is a square.
Subject Classification Code - 11D09

I. Introduction

In the Pythagorean Mathematics, the determination of classifying all Pythagorean triangles wherein each of which the perimeter can always be represented as the sum of three distinct squares by Gopalan and Devibala [1], motivates to examine whether there exists any Pythagorean Triangle, with two consecutive sides and sum of legs to be a square. It is towards this end an attempt is made to find patterns of Special Pythagorean Triangles with two consecutive sides and perimeter as sum of three squares.

II. METHOD OF ANALYSIS

The primitive solutions of the Pythagorean Equation
$\mathbf{X}^{2}+\mathbf{Y}^{2}=\mathbf{Z}^{2}$
is given by [2]
$\mathrm{X}=m^{2}-n^{2}, \mathrm{Y}=2 m n, \mathrm{Z}=m^{2}+n^{2}$
where $\boldsymbol{m}, \boldsymbol{n} \in \mathrm{I}$ such that $\boldsymbol{m}>\boldsymbol{n}>\mathbf{0}$ and $(m, n)=1$ with one of them is odd other even.
2.1 Sum of two legs is a square:
$X+Y=\beta^{2}$
Then solutions of (3) is given by
$\mathrm{m}=2 \mathrm{p}^{2}+\mathrm{q}^{2}-2 \mathrm{pq}$,
$\mathrm{n}=2 \mathrm{pq}$,
$\beta=2 p^{2}-q^{2}, p$ and q are positive integers.
(2) and (4) give
$X=\left(2 p^{2}+q^{2}\right)\left(2 p^{2}+q^{2}-4 p q\right)$
$\mathrm{Y}=4 \mathrm{pq}\left(2 \mathrm{p}^{2}+\mathrm{q}^{2}\right)-8 \mathrm{p}^{2} \mathrm{q}^{2}$
$\mathrm{Z}=\left(2 \mathrm{p}^{2}+\mathrm{q}^{2}-2 \mathrm{pq}\right)^{2}+(2 \mathrm{pq})^{2}$

2.2 Hypotenuse and one leg are consecutive:

In such cases, $\mathrm{m}=\mathrm{n}+1$
$\Rightarrow 2 \mathrm{p}^{2}+\mathrm{q}^{2}-4 \mathrm{pq}=1$
$\Rightarrow q=2 p \pm \sqrt{ }\left(1+2 p^{2}\right)$
Applying (6) to (5), we get
$X=1+4 \mathrm{pq}$
$\mathrm{Y}=4 \mathrm{pq}(1+2 \mathrm{pq})$
$\mathrm{Z}=4 \mathrm{pq}(1+2 \mathrm{pq})+1$

2.3 Perimeter is sum of three squares:

From (2) and (3),
$\mathrm{X}+\mathrm{Y}+\mathrm{Z}=\beta^{2}+m^{2}+n^{2}$
(2), (4), (6) and (7) generates X and Y which satisfy (1) and (3) in correspondence with (8).

Few examples are given in the table 1 below:
Table1

3	$337+56784=57121=239^{2}$	$\mathbf{2 3 9}$	$113906=337+56784+56785$

III OBSERVATIONS

We observe that

1. $\mathrm{X}+\mathrm{Y}+\mathrm{Z}=2(1+4 \mathrm{pq})(1+2 \mathrm{pq})=0(\bmod 2)$
2. The Pythagorean Triplets ($\mathrm{X}, \mathrm{Y}, \mathrm{Z}$) given by (6) are all primitives as $\mathrm{Z}=\mathrm{Y}+1$
3. $(\mathrm{Y}+\mathrm{Z}-\mathrm{X})^{2}=2(\mathrm{Y}+\mathrm{Z})(\mathrm{Z}-\mathrm{X})$
4. $(\mathrm{X}+2 \mathrm{Y}+\mathrm{Z})^{2}=(\mathrm{Z}-\mathrm{X})^{2}+4(\mathrm{X}+\mathrm{Y})(\mathrm{Y}+\mathrm{Z})$
5. $\mathrm{X}+2 \mathrm{Y}+\mathrm{Z} \pm 2\{(\mathrm{X}+\mathrm{Y})(\mathrm{Z}-\mathrm{Y})\}^{1 / 2}=0(\bmod 16)$ or $=0(\bmod 4)$
6. Except for $q=1$, the values of β and the values of q are same with q repeated twice.
7. For every value of p, there are two values of q and vice-versa.

Thus, the question arises: whether q can be obtained from previously obtained β and hence p ?
From (6) we get $2 p^{2}+q^{2}-4 p q=1$.
Putting $\mathrm{q}=8119$, we get, $\mathrm{p}=2378$ and $\mathrm{p}=13860$.

Solving for $\mathrm{m}, \mathrm{n}, \mathrm{X}, \mathrm{Y}, \mathrm{Z}$ and β when $\mathrm{p}=2378$ using software Mathematica, we get
$\mathrm{m}=38613965, \mathrm{n}=38613964, \mathrm{X}=77227929, \mathrm{Y}=2982076508814520, \mathrm{Z}=2982076508814521$ and
$\beta=54608393$ which satisfy (7) (Table 2)
Table 2

IV 3D PLOTS

Solving the Diophantine equation $m^{2}-n^{2}+2 m n=\beta^{2}$ i.e., $X+Y=\beta^{2}$ with the help of Mathematica for for $\mathrm{n}<\mathrm{m} ; 0<\mathrm{m}<10000$; $0<\mathrm{n}<10000 ; 0<\beta<10000$, we get 9354 solutions of which ListPlot3D, ListPointPlot3D and L istSurfacePlot3D are given below:

ListPlot3D

ListPointPlot3D

ListSurfacePlot3D

For consecutive leg and hypotenuse and $\mathrm{X}+\mathrm{Y}=\beta^{2}$, solving the equation
$(n+1)^{2}-n^{2}+2(n+1) n=\beta^{2}$ using the software Mathematica for the values $0<n<10^{10}$ and $0<\beta<10^{10}$ we get only 130 solutions!

In conclusion, one may attempt to find other patterns of Pythagorean Triangle which satisfy the conditions presented in the above problem.

References

[1] Gopalan, M.A.. Devibala.S. 2007.Special Pythagorean Triangles. The Mathematics Education, Vol. XLI(4): 293.
[2] Burton, David M. 2009. Elementary Number Theory. Tata MacGraw-Hill Edition. New Delhi: 248.

